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Microscopic derivation of nonlinear fluctuating hydrodynamics for crystalline solid
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We present a microscopic derivation of the nonlinear fluctuating hydrodynamic equation for a homogeneous
crystalline solid from the Hamiltonian description of a many-particle system. We propose a microscopic
expression of the displacement field that correctly generates the nonlinear elastic properties of the solid and
find the nonlinear mode-coupling terms in reversible currents that are consistent with the phenomenological
equation. The derivation relies on the projection onto the coarse-grained fields including the displacement field,
the long-wavelength expansion, and the stationarity condition of the Fokker–Planck equation.
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I. INTRODUCTION

Fluctuating hydrodynamics is a universal theory for the
slow variables that describes the long-time and large-distance
behavior of dynamical fluctuations in many-body systems.
The nonlinear couplings between fluctuating slow modes lead
to nontrivial predictions in macroscopic transport phenomena
that are difficult to understand analytically only on the basis
of microscopic descriptions, e.g., the divergence of the trans-
port coefficients in low-dimensional systems, the long-time
tail in time correlation functions [1,2], and dynamic critical
phenomena [3,4]. In addition to equilibrium systems, fluctu-
ating hydrodynamics provides a useful starting point to study
fluctuations in nonequilibrium steady states [5–7].

There have been various attempts for a long time to derive
the hydrodynamic equation from a microscopic mechanical
model [8–16]. When one derives the hydrodynamic equation,
the slowly varying degrees of freedom in the system need
to be identified. For three-dimensional simple fluids, the five
locally conserved density fields, i.e., the number density, the
three components of the momentum density, and the energy
density, constitute a complete set of slow variables [12,14].
In crystalline solids at low temperatures, however, the trans-
lation invariance is spontaneously broken and the associated
Nambu–Goldstone mode, the displacement field, must be in-
cluded in relevant slow variables [17–19]. These additional
modes play an essential role in understanding the elastic prop-
erties of solids [19,20]. The purpose of this paper is to derive
the hydrodynamic equation for crystals with the displacement
field from a microscopic model.

In this paper, we derive the nonlinear fluctuating hy-
drodynamic equation for homogeneous crystalline solids in
equilibrium from the Hamiltonian description of a many-
particle system in a clear and compact manner. The work in
this paper bears a lot of similarities with the previous work
[21–25]. The program for the microscopic derivation of the
hydrodynamic equation for crystals was initiated by Szamel
and his co-workers [21,22] and further developed recently by
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Refs. [23,24]. While these previous works used the micro-
scopic definition of the displacement field proposed in [21],
we show that the definition is not justified beyond the linear
response regime. In this paper, to take the nonlinear elastic
properties into account, we propose an alternative definition
of the displacement field that correctly generates nonlinear hy-
drodynamics. By applying the projection operator method to
the coarse-grained fields including the displacement field, we
obtain the nonlinear fluctuating hydrodynamic equation for
crystals. While Ref. [25] applied a similar approach for deriv-
ing the nonlinear fluctuating hydrodynamics, the consistency
with the phenomenological hydrodynamic equation is still
unclear. We show that our resulting equation contains the
nonlinear coupling terms and they are consistent with
the phenomenological hydrodynamic equation. In parciular,
the expression for the momentum current density (66), which
is shown to be consistent with the phenomenological hy-
drodynamics, is not found in Ref. [25]. Contrary to the
previous works for linear hydrodynamics [21–24], our re-
sult presents a useful starting point for further analysis of
nonlinear phenomena, e.g., the renormalization effect of the
transport coefficients [26].

The paper is organized as follows. In Sec. II we identify
a relevant set of slow variables for crystalline solids and ex-
plain the coarse-graining procedure based on the projection
operator method. Coarse graining with the time-scale separa-
tion provides a formal expression of the nonlinear Langevin
equation for hydrodynamic modes. In Sec. III, we determine
the reversible and irreversible currents using the stationarity
condition and the long-wavelength expansion. As a result, we
obtain the explicit forms of reversible-mode coupling terms
in terms of thermodynamic quantities and the Green–Kubo
formula for the bare transport coefficients.

II. COARSE-GRAINING PROCEDURE

A. Setup and conventions

For a set of lattice unit vectors { f̄ a : a = 1, 2, 3}, we define
the three-dimensional box BL = {∑3

a=1 ma f̄ a : ma ∈ [0, L)}
with side length L. We consider N particles in BL and let
ri and pi be the position and momentum of the ith particle

2470-0045/2023/108(5)/054101(10) 054101-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.054101&domain=pdf&date_stamp=2023-11-03
https://doi.org/10.1103/PhysRevE.108.054101


KEN HIURA PHYSICAL REVIEW E 108, 054101 (2023)

with mass m, respectively. We use � = (ri, pi )N
i=1 to denote a

microscopic configuration. A periodic boundary condition is
imposed, and the particles interact via a translation-invariant
potential �(r) = ∑

n∈Z3 ϕ(r − L
∑3

a=1 na f̄ a), where ϕ is a
short-ranged central potential function. The Hamiltonian of
the system is Ĥ (�) := ∑N

i=1 ĥi with

ĥi := pia pia

2m
+ 1

2

∑
j( �=i)

�(ri − r j ). (1)

In this paper, the summation over repeated coordinate indices
a, b, c, . . . , are implicitly assumed. We use �t to denote the
solution at time t of the Hamilton equation for an initial
configuration �. The symbol ·̂ on a variable indicates that it
is a function on the phase space. We also simply use f and g
to denote a vector ( fa)3

a=1 and a tensor (gab)3
a,b=1, respectively.

The Boltzmann constant is set to unity.

B. Slow modes in crystalline solid

In the crystalline phase, there are eight slow modes
consisting of five locally conserved quantities and three com-
ponents of the displacement field. First, we explain the five
conserved quantities, which are the particle number, three
components of the momentum, and the energy. We define the
corresponding empirical density fields, n̂(r, �) := ∑

i δ(r −
r̂i ), π̂a(r, �) := ∑

i p̂iaδ(r − r̂i ), and ê(r, �) := ∑
i ĥiδ(r −

r̂i ), for r ∈ R3. Since we impose the periodic boundary
condition, the conserved density fields are periodic func-
tions: n̂(r + L

∑3
a=1 ma f̄ a, �) = n̂(r, �) for any m ∈ Z3. Let

RL := {∑3
a=1 maḡa/L : ma ∈ Z} be the corresponding recip-

rocal space, where (ḡa) is a set of reciprocal unit vectors
satisfying f̄ a

c ḡb
c = 2πδab. We introduce the Fourier compo-

nents of the conserved density fields, (n̂k, π̂a,k, êk : k ∈ RL ).
The Fourier transform convention in this paper is n̂(r, �) =∑

k∈RL
eik·r n̂k (�) with

n̂k (�) := 1

V

∫
BL

e−ik·r n̂(r, �)d3r, (2)

where V is the volume of BL. The conservation laws are
expressed as continuity equations in terms of the locally con-
served current densities ( ĵn

a,k, ĵπab,k, ĵe
a,k : k ∈ RL ),

∂t n̂k (�t ) = −ika ĵn
a,k (�t ), (3)

∂t π̂a,k (�t ) = −ika ĵπab,k (�t ), (4)

∂t êk (�t ) = −ika ĵe
a,k (�t ). (5)

The microscopic expressions for locally conserved current
densities are presented in Appendix A 2.

We next consider the displacement field. A standard way
to define the displacement field microscopically is to as-
sign equilibrium lattice points to particles and then use
the deviations of particle positions from the lattice points.
This definition, however, misses the vacancy diffusion mode,
which is present in crystals at finite temperatures [17,18].
In this paper, we instead define the displacement field
microscopically using the number density field without re-
lying on the equilibrium lattice points, following Ref. [21].
Let D = {∑3

a=1 mala f̄ a : m ∈ Z3} and G = {∑3
a=1 naḡa/la :

n ∈ Z3} be a direct and reciprocal lattices with the lattice
spacing {la}3

a=1, respectively. We suppose that the translational
invariance is spontaneously broken at a sufficiently low tem-
perature and the system is in a crystalline phase corresponding
to the lattice D. The order parameter for the crystalline order
is the set of Fourier components of the number density field in
G\{0}, {n̂g : g ∈ G\{0}}. To obtain a microscopic expression
of the displacement field, we use a property in continuum
mechanics that the displacement field must satisfy. For a
macroscopic vector field u characterizing the displacement
from the equilibrium state, the number density field n of the
deformed crystal is

n(r) = neq(r − u(r)) det[δab − ∂aub], (6)

where neq (r) = ∑
g∈G neq,geig·r is the equilibrium number

density field. This relation follows simply from the conser-
vation of the particle number under the transformation r �→
r − u(r). We remark that neq is not invariant under translations
and rotations. We require the relation (6) to hold between the
microscopic displacement field û and the number density fluc-
tuation δn̂ = n̂ − neq. Since we study the fluctuations around
the equilibrium state in this paper, the displacement field is
assumed to be small. By expanding this relation with respect
to u, we obtain

ûa,k = û0
a,k +

∑
q∈BZ1

û0
a,qi(kb − qb)û0

b,k−q + O((û0)3), (7)

with the linear displacement field

û0
a,k := (N−1)ab

∑
g∈G

igbn∗
eq,gδn̂k+g. (8)

Here, δn̂k and ûa,k are, respectively, the Fourier components
of the number density deviation and the displacement field,
BZ1 is the first Brillouin zone, and Nab = ∑

g∈G gagb|neq,g|2.
The derivation of Eq. (7) is presented in Appendix B. Thus,
the microscopic displacement field can be expressed in terms
of short-wavelength fluctuations in number density around the
reciprocal lattice points without assigning equilibrium points
to particles. The displacement field (7) actually exhibits long-
range order, and its long-wavelength components should be
included in slow variables [21]. We remark that Refs. [21–24]
used only the first term in Eq. (7) as the displacement field,
but the second term is needed to retain the nonlinear elastic
properties as we will see later. The time evolution equation for
the displacement field is expressed as

∂t ûa,k (�t ) = − ĵu
a,k (�t ), (9)

where ĵu
a,k characterizes the decay rate of the displacement

field. The microscopic expression of ĵu
a,k is presented in

Appendix B.
We finally define a set of slow variables. There is a mi-

croscopic length scale l , which is of the order of the range of
interaction and the lattice constants {la}, and the macroscopic
length scale L, which characterizes the system size. Assuming
that these two length scales are well separated, we can take an
intermediate length scale �−1 satisfying l � �−1 � L. We
expect that the fluctuating hydrodynamic description holds at
this intermediate scale and that the form of the hydrodynamic
equation is insensitive to the particular choice of �. With this
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in mind, we choose α̂ = (n̂k, π̂k, êk, ûk : k ∈ R�
L ) as a set of

relevant slow variables, where R�
L := RL ∩ {|k| < �}. We use

both i and α̂i to designate an element in α̂, e.g., π̂1,k . Hereafter,
the summation in Eq. (7) is restricted to R�

L for consistency.
We make a remark on the choice of slow variables in

crystals. Reference [23] used the Fourier components {δn̂k+g :
g ∈ F, k ∈ R�

L } of the density fluctuations, instead of the dis-
placement field, as the additional slow variables. However, as
we show later, simply adding the displacement field is suffi-
cient to obtain the hydrodynamic equation consistent with the
phenomenological theory. Therefore, in this paper, we do not
include all the Fourier components of the density fluctuations
as slow variables.

C. Projection operator method

Dynamical fluctuations of the set of slow variables α̂ in
equilibrium are characterized by the time evolution equa-
tion for the probability density of α̂. The probability density
of α̂ is obtained by marginalizing the probability density func-
tion ρ̂t at time t on the phase space. That is, the marginal
probability density pt at time t for the slow variables is defined
as

pt (α) := Tr[δ(α − α̂)ρ̂t ], (10)

where Tr[·] = ∑
N̂ (N̂!)−1

∫
d�(·) with N̂ = V n̂0, and

δ(α − α̂) =
∏

k∈R�
L

δ(nk − n̂k )δ(ek − êk )

×
3∏

a=1

δ(πa,k − π̂a,k )δ(ua,k − ûa,k ). (11)

The time evolution of ρ̂t is described by the Liouville equation

∂t ρ̂t = −Lρ̂t = {Ĥ , ρ̂t }, (12)

where we have introduced the Liouville generator L = {·, Ĥ}.
Our purpose is to obtain the closed form of the time evolution
equation for pt from the Liouville equation (12). Following
Ref. [27], we introduce the projection operator P acting on
phase space functions as

(P f̂ )(�) := Tr

[
f̂
δ(α̂(�) − α̂)

�(α̂(�))

]
, (13)

where �(α) := Tr[δ(α − α̂(�))] is the phase space volume of
the set of configurations satisfying α̂ = α. Correspondingly,
we define Q := 1 − P . The operator P is the projection onto
the space of functions that depends on microscopic configu-
rations only through the slow variables. If f̂ is expressed as
f̂ (�) = f (α̂(�)) for some function f , P f̂ = f̂ and Q f̂ = 0.
For simplicity, the initial probability density ρ̂0 is assumed to
depend on � only through α̂, i.e., Qρ̂0 = 0. This assumption
eliminates the effect of the relaxation of the fast degrees of
freedom at the initial stage. Using the standard procedure in
the projection operator method and assuming the Markovian
approximation, we obtain the Fokker–Planck equation de-
scribing the equilibrium dynamics for the slow variables,

∂t pt = −
∑
l∈α̂

∂

∂αl
(Fl pt ) +

∑
l,m∈α̂

∂

∂αl

∂

∂αm

(
L(s)

lm pt
)

(14)

with the drift term

Fl = Vl +
∑

m

Llm
∂S
∂αm

+
∑

m

∂Llm

∂αm
. (15)

Here, we have defined the local equilibrium velocity Vl (α) :=
〈Lα̂l〉LM

α . The average is taken with respect to the local
microcanonical density ρ̂LM

α := δ(α − α̂)/�(α), i.e., 〈·〉LM
α =

Tr[(·)ρ̂LM
α ]. We also define S (α) := ln �(α), the bare Onsager

matrix

Llm(α) :=
∫ ∞

0
〈(eQLtQLα̂l )(QLα̂m)〉LM

α dt, (16)

and its symmetric part L(s)
lm (α) = (Llm(α) + Lml (α))/2. Thus,

the short-time diffusion of slow variables is characterized by a
certain type of time correlation function between fast-varying
components of velocities {QLα̂l = Lα̂l − Vl (α̂)}. The re-
versibility of the underlying dynamics leads to the reciprocal
relation Llm(α) = εlεmLml (εα), where εl = +1 or −1 accord-
ing to the time-reversal symmetry of αl and εα = (εlαl )l .
The Langevin equation corresponding to the Fokker–Planck
equation (14) is

dtαl (t ) = Fl (α(t )) + νl (t ) (17)

with the white Gaussian noise

〈νl (t )〉 = 0, 〈νl (t )νm(s)〉 = 2L(s)
lmδ(t − s), (18)

where the brackets 〈·〉 denote the average over the noise.
We remark that the projection operator introduced here

is different from that in [21–23]. References [21–23] used
the projection onto the linear functions of slow variables.
With this choice of the projection, we can obtain only the
hydrodynamic equation where the drift term Fl in Eq. (17)
is linear with respect to α. On the other hand, the projection
operator (13) takes the nonlinear dependence of the phase
space functions on the slow variables into consideration, and
thus it allows us to obtain the nonlinear function Fl .

III. DETERMINATION OF CURRENTS

The drift terms and Onsager matrix in Eq. (14) are ob-
tained in principle from their microscopic expressions, but
their connection with the thermodynamic quantities is not
obvious. In this section, we determine the drift terms in terms
of the thermodynamic quantities and the phenomenological
transport coefficients.

A. Local equilibrium drifts

Although it is generally not easy to compute the local
microcanonical averages, the local Galilean transformation
and the conservation of entropy help us to find the thermo-
dynamic expressions of the local microcanonical averages of
the currents and decay rate in our case [14]. In this section, we
often use the real-space expression of the slow variables, e.g.,
n̂(r) = ∑

k∈R�
L

eik·r n̂k , which should be distinguished from the
fine-grained density field without the cutoff �.

For a slowly varying velocity field v satisfying the peri-
odic boundary condition, the local Galilean transformation
maps a microscopic configuration � = (ri, pi )N

i=1 into �v =
(rv

i , pv
i )N

i=1 with rv
i = ri and pv

i = pi − mv(ri ). We introduce
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f̂ v (�) = f̂ (�v ) for a function f̂ on the phase space. It is easy
to see that in real space,

n̂ = n̂v, (19)

π̂a = π̂v
a + mn̂vva, (20)

ê = êv + π̂ava + m

2
mn̂v|v|2, (21)

ûa = ûv
a, (22)

and

ĵn
a = ĵn,v

a + n̂vva, (23)

ĵπab = ĵπab + π̂v
a vb + π̂v

b va + mn̂vvavb, (24)

ĵe
a = ĵe,v

a + ĵπ,v
ab vb + π̂v

a

|v|2
2

+
[

êv + π̂v
a va + m

2
n̂v|v|2

]
va + O((�l )2), (25)

ĵu
a = ĵu,v

a − va + (v · ∇)ûa + O(û2v). (26)

For a set of values of slow variables α = (nk, πk, ek, uk : k ∈
R�

L ), we define the coarse-grained velocity field v through the
relation πa,k = (mnva)k with the constraint va,k = 0 for k �∈
R�

L . Hereafter, we use the velocity field defined this way and
omit the dependence of v on α from the notation. Eqs. (19)–
(22) imply ρ̂LM

α (�) = ρ̂LM
ᾱ (�v ) and 〈 f̂ v〉LM

α = 〈 f̂ 〉LM
ᾱ for ᾱ =

(nk, 0, ek − m(n|v|2)k/2, uk : k ∈ R�
L ). Using the latter rela-

tion with Eqs. (23)–(26) and the time-reversal symmetry, we
obtain

〈
ĵn
a

〉LM

α
= πa

m
, (27)

〈
ĵπab

〉LM

α
= pab + mnvavb, (28)〈

ĵe
a

〉LM

α
= pabvb + eva + O((�l )2), (29)〈

ĵu
a

〉LM

α
= −va + (v · ∇)ua + O(u2v), (30)

with pab := 〈 ĵπab〉LM
ᾱ .

To connect the local microcanonical average of the mo-
mentum current density pab with the thermodynamic quantity,
we use the equality

∑
l∈α̂

(
∂Vl

∂αl
+ Vl

∂S
∂αl

)
= 0, (31)

which is equivalent to the stationarity condition for � of the
Fokker–Planck equation (14). The proof of Eq. (31) is in
Appendix C 2. Because S (α) is the logarithm of the phase
space volume corresponding to the state specified by the long-
wavelength components of the slow variables, we expect that
S can be approximated by the integral of the thermodynamic
entropy density,

S (α) = S0(α) + O((�l )2), (32)

with

S0(α) =
∫

BL

s

(
e(r) − |π (r)|2

2mn(r)
, n(r), ε(r)

)
d3r. (33)

Here, ε is the strain field defined by

εab = 1
2 (∂aub + ∂bua − ∂auc∂buc), (34)

and s(e∗, n, ε) is the thermodynamic entropy density as a
function of the internal energy e∗ = e − |π |2/2mn, number
density n, and strain ε. Because S0 is of the order O((L/l )d ) in
the thermodynamic limit L/l → ∞, the first term in Eq. (31)
can be neglected in this limit. The resulting equality is exactly
the same as Eq. (7) in Ref. [14] if the local microcanonical
average is replaced by the local Gibbs average. Equation (31)
means that no entropy production dissipates if the slow vari-
ables evolve in time according to the drifts given by the local
microcanonical averages of their velocities.

The thermodynamic relation in the crystalline phase is
expressed as

ds = βde − βμdn − βvadπa − φabdεab, (35)

where β is the inverse temperature, μ is the chemical po-
tential, and φab is the conjugate variable of the strain εab.
In this paper, the pressure function p is defined through the
Euler relation βp = s − βe + βπava + βμn + βφabεab. After
substituting Eqs. (27)–(30) into the stationarity condition (31)
with (32) and some manipulation, we obtain∫

BL

[−β(r)(δpab(r))(∂avb)(r) + O((δα)4)] = 0 (36)

with

δpab := pab − pδab + φab + φcdεcdδab − 1
2 (φacεbc + φbcεac).

(37)

The term O((δα)4) represents the fourth-order correction with
respect to the deviations of the slow variables from the equi-
librium values. The fields of thermodynamically conjugate
variables in Eq. (36) are given through the set of thermo-
dynamic relations, e.g., β(r) = β(e∗(r), n(r), ε(r)). Because
δpab depends on the velocity field only though its norm
|v|, Eq. (36) implies δpab = 0 + O((δα)3). Thus, the station-
arity condition, which is equivalent to the conservation of
entropy for the local equilibrium velocities, determines the
thermodynamic expression of the local microcanonical aver-
age of the momentum current density up to the second-order
fluctuations.

We remark that the linear displacement field (8) used in
the previous studies [21–24] does not produce the correct
expression of the decay rate of the displacement field (30)
beyond the linear response regime. Indeed, if we take Eq. (8)
as the displacement field, the local equilibrium average of the
decay rate is〈

ĵu0

a

〉LM

α
= −va + (∇ · v)ua + (∇ · u)va + (v · ∇)ua, (38)

where ĵu0

a is the decay rate associated with the linear displace-
ment field û0. The explicit definition of ĵu0

a is presented in

054101-4



MICROSCOPIC DERIVATION OF NONLINEAR … PHYSICAL REVIEW E 108, 054101 (2023)

Appendix B. As we show in Appendix A 1, this expression
for the decay rate is not consistent with the phenomenological
result (A9) contrary to Eq. (30). This inconsistency comes
from the fact that the linear displacement field captures only
the linear fluctuations of the number density, as suggested by
Eq. (8).

B. Gradient drift

We next simplify the drift terms that are proportional to
the thermodynamic forces. This simplification is achieved by
expansion around the equilibrium state and long-wavelength
expansion. First, because we consider dynamical fluctuations
around equilibrium, the local microcanonical averages for the
bare Onsager coefficients (16) are replaced by the equilibrium
averages,

Llm(α) �
∫ ∞

0
〈(eQLtQLα̂l )(QLα̂m)〉eq dt . (39)

The brackets 〈·〉eq denote the average with respect to the
grand-canonical distribution. Within this approximation, the
bare Onsager coefficients are determined only by the envi-
ronmental condition, and therefore the derivatives of the bare
Onsager coefficients in Eq. (14) vanish. Second, we take the
long-wavelength limit of the bare Onsager coefficients. In
this limit, the bare Onsager coefficient associated with the
energy-energy coupling becomes

V Lêk ,ê−k � kakbLee
ab. (40)

Here, we have defined the wavenumber-independent Onsager
coefficient

Lee
ab := lim

V →∞
1

V

∫ ∞

0

〈(
eQLtQĴe

a

)(
QĴe

b

)〉
eq (41)

with the spatial integral of the energy current density Ĵe
a =

V ĵe
a,0. From Eq. (29), the projected energy current QĴe

a is
given by

QĴe
a = 1

V

∫ (
ĵe
a − pab(ê∗, n̂, ε̂)v̂b − êv̂a

)
d3r. (42)

Using ∂S/∂αm = ∂S0/∂αm + O((�l )2), we conclude that the
gradient term is

Lêk ,ê−k

∂S
∂e−k

� kakbLee
abβk, (43)

where βk is the Fourier component of the inverse tempera-
ture field. The conventional choice of the transport coefficient
in the energy-energy coupling is the heat conductivity κ

defined by

κab := Lee
ab

T 2
eq

, (44)

where Teq is the equilibrium temperature. With this
choice, the gradient term of the energy-energy coupling
reproduces the conventional dissipative term, −∂a(κab∂bT ),
in real-space representation if we neglect O((δα)2) terms.
Thus, Eq. (41) gives the Green–Kubo formula connecting the
bare transport coefficient with the time correlation function

between the projected currents. Other Onsager coefficients
are also approximated by their long-wavelength limits:
V Lπ̂a,k ,π̂b,−k � kckd Lπaπb

cd , V Lêk ,ûa,−k � ikbLeua
b∗ , V Lûa,k ,ê−k �

−ikbLuae
∗b , V Lûa,k ,ûb,−k � Luaub∗∗ ,V Lêk ,π̂a,−k � kbkcLeπa

bc ,V Lπ̂a,k ,ê−k

� kbkcLπae
bc , V Lûa,k ,π̂b,−k � −ikcLuaπb∗c , and V Lπ̂a,k ,ûb,−k �

ikcLπaub
c∗ , where

Lπaπb
cd := lim

V →∞
1

V

∫ ∞

0

〈(
eQLtQĴπ

ac

)(
QĴπ

bd

)〉
eq dt, (45)

Leua
b∗ := lim

V →∞
1

V

∫ ∞

0

〈(
eQLtQĴe

b

)(
QĴu

a

)〉
eq dt, (46)

Luae
∗b := lim

V →∞
1

V

∫ ∞

0

〈(
eQLtQĴu

a

)(
QĴe

b

)〉
eq dt, (47)

Luaub∗∗ := lim
V →∞

1

V

∫ ∞

0

〈(
eQLtQĴu

a

)(
QĴu

b

)〉
eq dt, (48)

Leπa
bc := lim

V →∞
1

V

∫ ∞

0

〈(
eQLtQĴe

b

)(
QĴπ

ac

)〉
eq dt, (49)

Lπae
bc := lim

V →∞
1

V

∫ ∞

0

〈(
eQLtQĴπ

ab

)(
QĴe

c

)〉
eq dt, (50)

Luaπb∗c := lim
V →∞

1

V

∫ ∞

0

〈(
eQLtQĴu

a

)(
QĴπ

bc

)〉
eq dt, (51)

Lπaub
c∗ := lim

V →∞
1

V

∫ ∞

0

〈(
eQLtQĴπ

ac

)(
QĴu

b

)〉
eq dt, (52)

with Ĵπ
ab := V ĵπab,0 and Ĵu

a := V ĵu
a,0. The reciprocal rela-

tions are expressed as Lee
ab = Lee

ba, Lπaπb
cd = Lπbπa

dc , Leua
b∗ = Luae

∗b ,
Luaub∗∗ = Lubua∗∗ , Lπae

bc = −Leπa
cb , and Lπaub

c∗ = −Luaπa∗a . Therefore,
the independent transport coefficients are given by κab,
ηacbd := Lπaπb

cd /Teq, ξab := Leub
a∗ /Teq, ζab := Luaub∗∗ /Teq, χabc :=

Leπc
ab /Teq, and θabc := Lπbuc

a∗ /Teq with κab = κba, ηabcd = ηcdab,

and ζab = ζba. We remark that Ln̂k ,α̂l = Lα̂l ,n̂k = 0 for any
l ∈ α̂ because QLn̂k = 0. Consequently, the gradient terms∑

m Llm∂S/∂αm for the energy ek , the momentum πa,k , and
the displacement ua,k are given by, respectively,

kakbκabT 2
eqβk − kakbχabcvc,k − kakcξabφbc,k, (53)

kbkcχcbaTeqβk − kbkcηabdcvd,k − kbkdθbacφcd,k, (54)

− ikbξbaTeqβk − ikcθcbavb,k + ikcζabφbc,k, (55)

if O((δα)2) terms are neglected. Here, φab,k is the Fourier
component of φab. Among these terms, the energy–
momentum coupling and momentum-displacement coupling
terms are reversible in that they do not contribute to the
entropy production because they have the same time-reversal
symmetry as that of the currents in which they appear. The
orders of these reversible gradient terms with respect to the
wavenumbers are higher than those of the local equilibrium
velocities in Eqs. (27)–(30), which are all reversible. There-
fore, these terms are often neglected [23,25]. We follow
that approximation in this paper. Furthermore, the associ-
ated Onsager coefficients have only the antisymmetric parts,
and therefore they do not appear in the noise amplitudes in
Eq. (18).

The remaining terms are all irreversible and have only
symmetric parts. Consequently, the covariances of the noises
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{νl} in Eq. (18) are given by

〈
νêk νêq

〉 = 2kakbT 2
eqκab

δk+q,0

V
δ(t − s), (56)〈

νêk νπ̂a,q

〉 = 0, (57)

〈
νêk νûa,q

〉 = 2ikbTeq ξba
δk+q,0

V
δ(t − s), (58)

〈
νπ̂a,k νπ̂b,q

〉 = 2kckd Teq ηacbd
δk+q,0

V
δ(t − s), (59)〈

νπ̂a,k νûb,q

〉 = 0, (60)

〈
νûa,k νûb,q

〉 = 2Teq ζab
δk+q,0

V
δ(t − s). (61)

C. Summary of hydrodynamic equation

We summarize the nonlinear fluctuating hydrodynamics
for crystals. The Langevin equation (17) becomes

∂t nk + ika
πa,k

m
= 0, (62)

∂tπa,k + ikb

( ∑
q∈R�

L

πa,qvb,k−q + pab,k − ηabdcikcvd,k

)
= νπ̂a,k ,

(63)

∂t ek + ika

( ∑
a∈R�

L

(eqva,k−q + pab,qvb,k−q )

+ ikbκabT 2
eqβk − ξabikcφbc,k

)
= νπ̂a,k , (64)

∂t ua,k +
∑
q∈R�

L

vb,k−qiqbua,q

= va,k − ikbξbaTeqβk + ζabikcφbc,k + νûa,k , (65)

where pab,k is the Fourier component of

pab = (p − φcdεcd )δab − φab + 1
2 (φacεbc + φbcεac). (66)

For completeness, we rewrite Eqs. (62)–(65) in real-space
representation:

∂t n + ∂a(nva) = 0, (67)

∂tπa + ∂b
(
πavb + pab − ηabdc∂cvd + Nπa

b

) = 0, (68)

∂t e + ∂a
(
eva + pabvb − κab∂bT − ξab∂cφbc + Ne

a

) = 0, (69)

∂t ua + vb∂bua = va + ξba

T
∂bT + ζab∂cφbc + Nua , (70)

with the white Gaussian noises obeying〈
Ne

a (r, t )Ne
b (r′, t ′)

〉 = 2T 2
eqκabδ�(r − r′)δ(t − t ′), (71)〈

Ne
a (r, t )Nπa

b (r′, t ′)
〉 = 0, (72)〈

Ne
a (r, t )Nub (r′, t ′)

〉 = 2Teq ξabδ�(r − r′)δ(t − t ′), (73)〈
Nπa

c (r, t )Nπb
d (r′, t ′)

〉 = 2Teq ηacbdδ�(r − r′)δ(t − t ′), (74)〈
Nπa

c (r, t )Nub (r′, t ′)
〉 = 0, (75)

〈Nua (r, t )Nub (r′, t ′)〉 = 2Teq ζabδ�(r − r′)δ(t − t ′). (76)

Here, δ� is the mollified delta function defined by

δ�(r) := 1

V

∑
k∈R�

L

eik·r, (77)

which recovers the standard delta function in the limit
V → ∞ and � → ∞. The main results of this paper,
Eqs. (67)–(70), are exactly the same as the hydrodynamic
equation phenomenologically derived, except for the presence
of the noises. See Appendix A 1 for the phenomenological
derivation of the hydrodynamic equation.

IV. CONCLUDING REMARKS

In summary, we have proposed a microscopic expression
for the displacement field that correctly produces the nonlin-
ear reversible decay rate and compactly derived the nonlinear
fluctuating hydrodynamic equation for crystalline solids from
the microscopic description of a many-particle system. We
have provided thermodynamic expressions of the reversible
current densities and decay rate that agree with those in the
phenomenological hydrodynamic equation.

As a final remark, we note that the displacement field pro-
posed in this paper describes only small fluctuations around
a homogeneous crystal in equilibrium. This restriction orig-
inates from our method of defining the displacement field.
When we define the displacement field through relation (6),
we choose the homogeneous crystal as the reference state,
i.e., neq(r) = ∑

g∈G neq,geig·r . Therefore, our result may not
be applied to crystals in which the arrangement of particles
is disturbed by dislocations. It would be challenging to de-
termine the stochastic dynamics of crystals with topological
defects from microscopic descriptions. Whether the hydrody-
namic equations, Eqs. (67)–(70), describe the dynamics of
a crystal under nonequilibrium conditions is also far from
obvious because the crystals may exhibit large deformations
even under the infinitesimally small external shear stress [28].
This is in contrast to fluctuating hydrodynamic equations for
fluid systems [7]. Developing the theory of nonequilibrium
stochastic dynamics for crystals is left for future studies.
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APPENDIX A: PRELIMINARIES

1. Local thermodynamics for crystals

We review thermodynamic relations and phenomeno-
logical hydrodynamics for crystals. The contents of this
section are found in many literatures [17,18,29].

By introducing the internal energy density e∗ := e −
mn|v|2/2 and the chemical potential μ∗ := μ + m|v|2/2 in the
rest frame, we can rewrite the thermodynamic relation (35) as

ds = βde∗ − βμ∗dn − βφabdεab. (A1)
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We now suppose that the conserved density fields and the
displacement field obey the equations

∂t n + ∂a jn
a = 0, ∂tπa + ∂b jπab = 0, ∂t e + ∂a je

a = 0
(A2)

and

∂t ua = − ju
a , (A3)

where the specific forms of the conserved current densities
jn
a , jπab, and je

a and the decay rate ju
a will be determined later.

From Eq. (35), the derivatives of the entropy functional (33)
with respect to slow variables are

δS0

δe
= β,

δS0

δπa
= −βva,

δS0

δn
= −βμ (A4)

and

δS0

δua
= ∂b(βφab) − ∂b(βφbc∂cua). (A5)

Using Eq. (35), we find that the entropy production rate for
the solution of Eqs. (A2) and (A3) is

d

dt
S0 =

∫
BL

dx

[
∂a

(
δS0

δe

)(
je
a − eva − pabvb

)

+ ∂b

(
δS0

δπa

)(
jπab − πavb − pab

)

−
(

δS0

δua

)(
ju
a + va − vb∂bua

) + O((δα)4)

]
. (A6)

We decompose the current densities and decay rate into
reversible and irreversible parts: je

a = je,rev
a + je,irr

a , jπab =
jπ,rev
ab + jπ,irr

ab , and ju
a = ju,rev

a + ju,irr
a . If we require the three

terms in Eq. (A6) to be zero for the reversible parts of the
current densities and decay rate, then Eq. (A6) implies that

je,rev
a = eva + pabvb, (A7)

jπ,rev
ab = πavb + pab, (A8)

ju,rev
a = −va + vb∂bua, (A9)

up to O((δα)2). The positivity of the entropy production rate
motivates us to write the irreversible parts as

je,irr
a = Lee

ab∂b

(
δS0

δe

)
− Leub

a∗

(
δS0

δub

)
, (A10)

jπ,irr
ab = Lπaπc

bd ∂c

(
δS0

δπd

)
, (A11)

ju,irr
a = Luae

∗b ∂b

(
δS0

δe

)
− Luaub∗∗

(
δS0

δub

)
, (A12)

where Lee
ab = Lee

ba, Leub
a∗ = Lube

∗a , Lπaπc
bd = Lπcπa

db , and Luaub∗∗ =
Lubub∗∗ are the phenomenological Onsager coefficients. With the
conventional choice of the transport coefficients in the main
text, they are expressed as

je,irr
a = −κab∂bT − ξab∂cφbc, (A13)

jπ,irr
ab = −ηabcd∂cvd , (A14)

ju,irr
a = −ξba

T
∂bT − ζab∂cφbc, (A15)

up to O(δα) [17,18]. Thus, the complete set of hydrodynamic
equations for crystals is determined from a phenomenological
argument.

2. Microscopic expressions for locally conserved currents

For readers’ convenience, we summarize the microscopic
expressions for locally conserved currents:

ĵn
a,k = π̂a,k

m
, (A16)

ĵπab,k = 1

V

N∑
i=1

pia pib

m
e−ik·ri

+ 1

2V

∑
i �= j

Fa(ri − r j )(rib − r jb)
e−ik·ri − e−ik·r j

−ik · (ri − r j )
,

(A17)

ĵe
a,k = 1

V

N∑
i=1

pib

m
hie

−ik·ri

+ 1

2V

∑
i �= j

pia + p ja

2m
Fa(ri − r j )(rib − r jb)

×e−ik·ri − e−ik·r j

−ik · (ri − r j )
, (A18)

where Fa(r) := −∂a�(r).

APPENDIX B: IDENTIFICATION OF DISPLACEMENT
FIELD

1. Motivation

Let us consider a crystalline state with the equilibrium den-
sity profile neq. For a small displacement field u, the number
density field n in the deformed crystal is

n(r) = neq(r − u(r)) det[δab − ∂aub]. (B1)

The determinant on the right-hand side represents the change
in the volume element due to the deformation. We require
the microscopic displacement field û to satisfy Eq. (B1) if
we replace n with the microscopic number density field n̂. By
expanding the relation up to O(u2), we obtain

δn̂ = −∂a(neq ûa) + 1
2 (neq ∂aûa∂bûb − neq ∂aûb∂bûa

+ 2ûa∂aneq ∂bûb + ûaûb∂a∂bneq ), (B2)

where δn̂ := n̂ − neq is the deviation of the number density
field from the equilibrium profile. Because we are concerned
with the macroscopic displacement field, û is assumed to have
only the Fourier components in the first Brillouin zone. Then,
the above relation in momentum space becomes

δn̂k+g = −i(ka + ga)neq,gûa,k

+ 1

2

∑
q∈BZ1

neq,g[iqaûa,qi(kb − qb)ûb,k−q

− iqaûb,qi(kb − qb)ûa,k−q + 2igaûa,qi(kb − qb)ûb,k−q

+ igaigbûa,qûb,k−q] (B3)

054101-7



KEN HIURA PHYSICAL REVIEW E 108, 054101 (2023)

for k ∈ BZ1, where we have used neq,k = 0 for k �∈ G. Mul-
tiplying both sides by igcn∗

eq,g and summing over g ∈ G, we
obtain

ûa,k = û0
a,k +

∑
q∈BZ1

ûa,qi(kb − qb)ûb,k−q. (B4)

Here, we have used
∑

g∈G ga|neq,g|2 = 0. The iterative approx-
imation of Eq. (B4) leads to Eq. (7).

2. Microscopic expression for decay rate

The decay rate ĵu0

a,k for the linear displacement field û0
a,k is

defined through the time evolution equation

∂t û
0
a,k = − ĵu0

a,k (�t ). (B5)

From this, we obtain

ĵu0

a,k = −(N−1)ab

∑
g∈G

gb(gc + kc)n∗
eq,g

π̂c,g+k

m
. (B6)

Therefore, the decay rate ĵu
a,k for the displacement field ûa,k

defined in Eq. (7) is

ĵu
a,k = ĵu0

a,k +
∑
q∈R�

L

(
ĵu0

a,k · i(kb − qb)û0
b,k−q

+ û0
a,q · i(kb − qb) ĵu0

b,k−q

)
� ĵu0

a,k +
∑
q∈R�

L

(
ĵu0

a,k · i(kb − qb)ûb,k−q

+ ûa,q · i(kb − qb) ĵu0

b,k−q

)
. (B7)

For simplicity, we have restricted the region of the wavenum-
bers to R�

L . The local Galilean transformation for ĵu0

a,k is
obtained as follows. Using Eqs. (B6) and (21), we find that

ĵu0

a,k = −(N−1)ab

∑
g∈G

gb(gc + kc)n∗
eq,g

π̂v
c,g+k + m(n̂vvc)k+g

m

= ĵu0,v
a,k + (N−1)ab

∑
g∈G

igbn∗
eq,g · i(kc + gc)

∑
q∈R�

L

(neq,k+g−q + δn̂k−q+g)vc,q

= ĵu0,v
a,k − va,k +

∑
q∈R�

L

(N−1)ab

∑
g∈G

igbn∗
eq,gδn̂k−q+g · iqcvc,q +

∑
q∈R�

L

(N−1)ab

∑
g∈G

igb · i(kc − qc + gc)n∗
eq,gδn̂k−q+gvc,q

= ĵu0,v
a,k − va,k +

∑
q∈R�

L

û0
a,k−q · iqcvc,q +

∑
q∈R�

L

(N−1)ab

∑
g∈G

igb · i(kc − qc + gc)n∗
eq,gδn̂k−q+gvc,q. (B8)

Here, we have used neq,k+g−q = neq,gδk,q for k, q ∈ R�
L and∑

g∈G gb|neq|2 = 0 in the third equality. We now recall that

δn̂k+q = −i(ka + ga)neq,gû0
a,k . (B9)

By multiplying both sides by i(kc + gc) · igbn∗
eq,g and sum-

ming over g ∈ G, we find that

∑
g∈G

igb · i(kc + gc)n∗
eq,gδn̂k+g

= i

⎛
⎝∑

g∈G

gb(kc + gc)(ka + ga)|neq,g|2
⎞
⎠û0

a,k

= i(kaNcb + kcNab)û0
a,k, (B10)

which implies that

(N−1)ab

∑
g∈G

igb · i(kc − qc + gc)n∗
eq,gδn̂k−q+g

= δaci(kb − qb)û0
b,k−q + i(kc − qc)û0

a,k−q. (B11)

Therefore, we get

ĵu0

a,k = ĵu0,v
a,k − va,k +

∑
q∈R�

L

û0
a,k−q · iqbvb,q

+
∑
q∈R�

L

i(kb − qb)û0
b,k−q · va,q +

∑
q∈R�

L

i(kc − qc)û0
a,k−qvc,q

(B12)

in momentum space and

ĵu0

a � ĵu0,v
a − va + (∇ · v)ûa + (∇ · û)va + (v · ∇)ûa (B13)

in real space. By substituting Eq. (B12) into Eq. (B7), we
obtain Eq. (26)

APPENDIX C: REVIEW OF PROJECTION OPERATOR
METHOD

1. Derivation of Fokker–Planck equation

The probability density ρ̂t on the phase space can be de-
composed into a component that depends on the microscopic
configurations through the slow variables and the fast re-
maining components, ρ̂t = P ρ̂t + Qρ̂t . We suppose that the
initial density function satisfies Qρ̂0 = 0. From the Liouville
equation (12) with the decomposition via the projection, we
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can express the time evolution equation for pt as

∂t pt (α) = −
∑

l

∂

∂αl
(Vl (α)pt (α))

+
∑
l,m

∂

∂αl

∫ t

0
ds

∫
dα′√�(α)Llm(α, α′; t − s)

×
√

�(α′)
∂

∂α′
m

ps(α′)
�(α′)

. (C1)

The diffusion kernel is defined as

Llm(α, α′; t ) =
√

�(α)

�(α′)
〈(eQLt [δ(α − α̂)

× QLα̂l ])(QLα̂m)〉LM
α′ . (C2)

Because the projection Q eliminates the fast degrees of
freedom in observables, we expect that Llm(α, α′; t ) decays
quickly with a microscopic time τmicro. During the short time
τmicro, the slow variables α̂ and pt (α) hardly change. Hence,
we can approximate via Llm(α, α′; t ) � Llm(α; t )δ(α − α′)
with Llm(α; t ) := 〈(eQLtQLα̂l )(QLα̂m)〉LM

α , and ps(α′) �
pt (α) in Eq. (C1). Moreover, we can safely extend the upper
limit of the integral in Eq. (C1) to infinity for the same rea-
son. Consequently, we obtain the Markovian Fokker–Planck
equation (14).

2. Detailed balance condition

The time-reversal symmetry of the Hamiltonian dynamics
implies that the diffusion kernel satisfies the reciprocal re-
lations Llm(α, α′; t ) = εlεmLml (εα′, εα; t ). In the Markovian
limit, these are simplified to

Llm(α) = εlεmLml (εα) (C3)

The drift vector of the Fokker–Planck equation (14) is

Fl = Vl +
∑

m

Llm
∂S
∂αm

+
∑

m

∂Llm

∂αm
. (C4)

Its reversible and irreversible parts are, respectively,

F rev
l (α) = 1

2 (Fl (α) − εlFl (εα)) (C5)

= Vl (α) +
∑

m

1

�(α)

∂

∂αm
(L(a)

lm (α)�(α)) (C6)

and

F irr
l (α) = 1

2
(Fl (α) + εlFl (εlα)) (C7)

=
∑

m

L(s)
lm (α)

∂S (α)

∂αm
+

∑
m

∂L(s)
lm (α)

∂αm
, (C8)

where L(a)
lm (α) = (Llm(α) − Lml (α))/2 is the antisymmetric

part of the Onsager matrix. We can prove that the reversible
and irreversible drifts satisfy

F irr
l � −

∑
m

∂

∂αm

(
L(s)

lm�
) = 0 (C9)

and ∑
l

∂

∂αl

(
F rev

l �
) = 0. (C10)

The above two properties and the reciprocal relation (C3) are
equivalent to the detailed balance condition [30]. The second
property (C10) is simply the stationarity condition of the
Fokker–Planck equation for �. Equation (C9) is obvious from
Eq. (C8). The proof of Eq. (C10) is as follows:∑

l

∂

∂αl
(Vl�) =

∑
l

∂

∂αl
Tr[{α̂l , Ĥ}δ(α − α̂)]

= −
∑

l

∂

∂αl
Tr[{α̂l , δ(α − α̂)}Ĥ ]

=
∑
l,m

∂

∂αl

∂

∂αm
Tr[{α̂l , α̂m}δ(α − α̂)Ĥ]

= 0

and ∑
l,m

∂

∂αl

∂

∂αm
(L(a)

lm �) = 0 (C11)

from the antisymmetry of L(a)
lm .
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