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Computing the diffusivity of a particle subject to dry friction with colored noise
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This paper considers the motion of an object subjected to a dry friction and an external random force. The
objective is to characterize the role of the correlation time of the external random force. We develop efficient
stochastic simulation methods for computing the diffusivity (the linear growth rate of the variance of the
displacement) and other related quantities of interest when the external random force is white or colored. These
methods are based on original representation formulas for the quantities of interest, which make it possible
to build unbiased and consistent estimators. The numerical results obtained with these original methods are in
perfect agreement with known closed-form formulas valid in the white-noise regime. In the colored-noise regime,
the numerical results show that the predictions obtained from the white-noise approximation are reasonable
for quantities such as the histograms of the stationary velocity but can be wrong for the diffusivity unless the
correlation time is extremely small.
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I. INTRODUCTION

The present work is motivated by the study of the motion
of an object subjected to a dry friction and an external random
force. The dry friction model in our paper is the standard
model to study macroscopic systems involving solid-solid
friction [1,2].

This dry friction model is rather well understood when the
external random force is a white noise [3–5]. The probability
distribution of functionals of the velocity or the position can
then be studied in detail [6,7]. Different generalizations have
been considered, such as the motion of a particle bound to
a spring being pulled at a definite speed, moving on a sur-
face with dry friction in a noisy environment [8]. Moreover,
emerging applications are found for biological systems. The
effects of diffusion on the dynamics of a single focal adhesion
at the leading edge of a crawling cell are investigated in [9] by
considering a simplified model of sliding friction. To under-
stand the stick-slip dynamics of migrating cells on viscoelastic
substrates, a theoretical model of the leading edge dynamics
of crawling cells is introduced in [10].

In our paper we address the role of the correlation time
of the external force when it is a colored noise. No explicit
formula is available, and therefore the analysis goes through
numerical simulations. Nonetheless, it should be pointed out
that an approximate expression of the stationary probability
density function of the velocity has been proposed in [11].
Our goal is to present appropriate stochastic algorithms to es-
timate the quantities of interest and to discuss the relationships
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between the quantities of interest such as the displacement
mobility and diffusivity and the input parameters such as the
noise strength and correlation time.

We consider the one-dimensional displacement U of an
object (with unit mass) lying on a motionless surface. The
velocity is denoted by V and thus V = U̇ , where the dot stands
for time derivative throughout the paper. As shown schemat-
ically in Fig. 1, Newton’s law of motion implies V̇ + F = f ,
where F corresponds to the dry friction force and f represents
all the other external and internal forces, including random
perturbations. The force F cannot be expressed in terms of a
standard function but as follows:

F =
{

f , when V = 0 and | f | � �,

σ�, when V �= 0 or (V = 0 and | f | > �),

where σ = sgn(V ) when V �= 0, otherwise σ = sgn( f ). The
coefficient � > 0 is the coefficient of dry friction. The ran-
dom perturbation induces a random displacement, and thus
we can define the diffusivity of the displacement U as

D = lim
t→+∞ Dt where Dt = var(U (t ))

t
. (1)

Such a friction model has been discussed by de Gennes [3].
When f = √

�Ẇ , where Ẇ is a white noise (i.e., the time
derivative of Brownian motion W ) and � > 0 is the noise
strength, he formally proposed an expansion of the transition
probability density of V in terms of eigenmodes related to
a one-dimensional Schrödinger equation where the potential
contains an attractive delta function. As a consequence, he
obtained an approximate formula for the correlation function
of the velocity. From this formula he suggested that the dif-
fusivity scales as D ∼ �3/�4. A similar scaling was already
proposed in a much earlier work by Caughey and Dienes
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FIG. 1. Schematic of a solid object drifting downwards on a flat
inclined support by overcoming the forces of dry friction F .

[12]. The diffusivity is more sensitive to the noise power, in
contrast to the case where dry friction is replaced by viscous
friction, that is, � = 0 and f = −τ−1

L V + √
�Ẇ with τL > 0

a relaxation time. Indeed, in this case D = τ 2
L �.

Touchette et al. [4,5] extended de Gennes’ work and ob-
tained without any approximation both the time-dependent
transition probability density function and the correlation
function of the velocity by solving the associated time-
dependent Fokker-Planck equation. Touchette’s results are
exact when f = √

�Ẇ or based on series representation when
f = −τ−1

L V + √
�Ẇ , but they do not cover the case of col-

ored noise. These results, however, will be important to us,
because the stochastic simulation methods that we propose in
our paper can be applied in particular to Touchette’s config-
urations, and the results deduced from our simulations can,
therefore, be tested against exact formulas for these configu-
rations. Our simulation methods, however, can be applied to
more general configurations and will unravel behaviors not
covered by the previously known formulas.

Goohpattader et al. [13] have experimentally investigated
physical friction problems that can be modeled using the
aforementioned framework. They considered a forcing of the
form f = −τ−1

L V + γ̄ + √
�Ẇ , where γ̄ is a constant related

to gravity and the inclination of the surface on which the
system is installed. They also proposed numerical simulations.
They observed experimentally and by simulation that the vari-
ance of the object displacement grows linearly with time, and
they also observed scaling laws for the diffusivity that we will
challenge in our paper.

Recently, some of the authors of the present paper have
considered the case where f = b(V ) + √

�X , where b(.) is a
general function with appropriate conditions, and X is a pure
jump noise (i.e., a piecewise constant random process). In
[14] they proposed a piecewise deterministic Markov process
(PDMP) to model the pair (X,V ). This framework makes it
possible to use the theory and simulation methods of PDMPs
[15,16]. They derived the Kolmogorov equations for the pair
(X,V ). When b(.) is an odd function, they showed ergodicity
and provided a representation formula of the stationary state in
terms of a portion of the trajectory called short excursion. Es-
sentially, a short excursion contains only one dynamic phase, a
time interval on which V �= 0 or | f | > �, and only one static
phase, a time interval on which V = 0 and | f | � �.

We develop our present article on the basis of the PDMP
framework mentioned above and introduce new stopping
times which identify independent components in the dynam-

ics. These components are different from the short excursions.
We call them long excursions. Having identified this type
of trajectory portion we can express the diffusivity (or any
related quantity) as an expectation of a functional of a long
excursion, and we can, therefore, estimate these quantities by
sampling long excursions directly, instead of sampling long-
time period integrals on the original PDMP. We finally extend
the notion of long excursion together with the corresponding
sampling method to the limiting system case when the time
step of the PDMP goes to zero. The latter is formulated using
a differential inclusion [17,18] forced by a colored noise. The
estimators based on our stochastic simulation methods are
unbiased, contrarily to the standard estimation methods that
consist in taking long but fixed-length trajectories. They are
consistent and asymptotically normal. Their accuracies are
sufficient to be used to discuss quantitative relations between
the diffusivity and the noise strength and correlation time. In
particular, they show that the predictions for the values of the
diffusivity obtained from the white-noise approximation can
be wrong when the correlation time of the noise is moderately
small.

This paper is organized as follows: Section II proposes a
dimensional analysis of the system in order to identify its
effective parameters. Section III describes the PDMP frame-
work modeling the friction problem and defines the original
notion of long excursion. Section IV presents our characteri-
zation of the displacement diffusivity using long excursions.
The resulting algorithm and an ad hoc Monte Carlo estima-
tor are proposed in Sec. V. In Sec. VI, the notion of long
excursion and the resulting numerical approach are extended
from the PDMP case to the limiting differential inclusion
case. Numerical simulations for the relation between the noise
strength and correlation time and the diffusivity are studied in
Sec. VII. Finally, we conclude in Sec. VIII.

II. EFFECTIVE PARAMETERS AND
NONDIMENSIONAL SYSTEM

The driving noise with a correlation time τ > 0 is repre-
sented by X , and the resulting velocity V satisfies, using the
notation f = b(V ) + √

�X with b(v), a Lipschitz continuous
function,
V̇ = f − σ�, when V �= 0 or | f | > � (dynamic phase),
V̇ = 0, when V = 0 and | f | � � (static phase),

(2)

where we have denoted σ = sgn(V ) when V �= 0, other-
wise σ = sgn( f ). Equation (2) can equivalently be written
in the form of a multivalued stochastic differential equa-
tion (MSDE):

V̇ + ∂ϕ(V ) � b(V ) +
√

�X. (3)

Here ϕ(v) = �|v|, and its subdifferential ∂ϕ is the set-valued
map given by ∂ϕ(0) = [−�,�] (interval) and ∂ϕ(V ) =
{sgn(V )�} (singleton) when V �= 0. The MSDE is a concise
and rigorous way to formulate the transition between static
and dynamic phases. A gentle introduction to MSDEs can be
found in Chap. 4 of [17].

Below we derive the effective parameters and the cor-
responding nondimensional system. We remark that the
physical parameters � and � are expressed in m s−2 and in
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m2 s−3, respectively. We can then introduce the reference time
and space units τ0 = ��−2 (in s) and u0 = �2�−3 (in m). We
deduce the nondimensional variables

t ′ = t/τ0, V ′(t ′) = V (t ′τ0)τ0/u0, X ′(t ′) = X (t ′τ0)τ 1/2
0 .

(4)

When b(v) = −v/τL + γ̄ , we can recast Eq. (3) into the
nondimensional form

V̇ ′ + ∂|V ′| � −V ′/τ ′
L + γ̄ ′ + X ′, (5)

where τ ′
L = τL/τ0, γ̄ ′ = γ̄ /(u0/τ

2
0 ) = γ̄ /�, and the dot

stands for the derivative with respect to t ′. Moreover, the effec-
tive noise correlation time from the nondimensional dynamics
is τ ′ = τ/τ0. We will discuss the impact of τ ′ on the statistics
of the system.

III. THE PDMP SYSTEM

In this section we present the system that describes the mo-
tion driven by a dry friction and an external random, stepwise
constant force.

A. Description of the pure jump noise

We first define the driving colored noise X as a Markov
jump process. Let δ > 0 be a grid step (for the noise). The
process X takes values in the finite state space Sδ = δZ ∩
[−Lδ

X , Lδ
X ], with Lδ

X ↑ +∞ as δ ↓ 0. Thus Sδ is a finite set
of equally δ-spaced points denoted by {x−N , . . . , xN }, where
N = [Lδ

X δ−1]. We also introduce the nondimensional spacing
δ′ = δτ

1/2
0 = δ�−1

√
�.

The process X is stepwise constant over time inter-
vals whose durations are independent and identically dis-
tributed with the exponential distribution with parameter 
 =
2τ−2δ−2. At the jump times the process randomly jumps to
one of its nearest neighbors. If it is at position x, then the
process jumps to the right neighbor x + δ with probability
αx = 1

2 (1 − τδx
2 ) and it jumps to the left neighbor x − δ with

probability 1 − αx (except when it is at the boundaries of its
state space where it deterministically jumps to its unique near-
est neighbor). The stochastic simulation method to generate
trajectories of X is described in Appendix A.

The process X can be seen as a discretization of an
Ornstein-Uhlenbeck (OU) process with correlation time τ >

0. In [14] it is proved that the process X converges in distribu-
tion to X � as δ → 0, where X � is an OU process, which is the
solution of the stochastic differential equation

τ Ẋ � = −X � +
√

2Ẇ , (6)

with Ẇ a white noise. The OU process X � is a station-
ary zero-mean Gaussian process with correlation function
E[X �(0)X �(t )] = (1/τ ) exp(−|t |/τ ). From the dimensional
analysis of Sec. II and the expression of the nondimensional
spacing δ′, we can actually approximate the distribution of X
by the distribution of X � when δ′ is much smaller than 1. This
means that X is indeed a discretization of the OU process X �

with correlation time τ . Additionally, when τ ′ is much smaller
than 1, then X � behaves like the white noise

√
2Ẇ .

B. Description of the PDMP

We now define the PDMP modeling dry friction driven by
the noise X . The PDMP is the process Z = (X,Y,V ). The
coordinate X is the jump process modeling the driving force
described above. The coordinate V is the continuous process
defined by (2) or (3). The coordinate Y is the jump process
determined by Y = 
(X,V ), with


(x, v) =

⎧⎪⎨
⎪⎩

1 if v > 0 or if v = 0,
√

�x > −b(0) + �,

−1 if v < 0 or if v = 0,
√

�x < −b(0) − �,

0 if v = 0,
√

�x ∈ [−b(0) − �,−b(0) + �].
(7)

The marker Y indicates whether the process is in a dynamic
phase (|Y | = 1) or in a static phase (Y = 0). The introduction
of the marker Y makes it possible to adopt the formalism
of PDMPs, with smooth flows for the continuous process V
and jumps of the mode (X,Y ) that occur at random times
when X jumps and when the dynamics for V changes from
the static to the dynamic phases. We give details on the
definition of the PDMP Z in Appendix B. This formalism
allows us to use the theory and simulation methods developed
for PDMPs described in Refs. [15,16], and it will allow us
to introduce representation formulas for quantities of interest
using a strong Markov property.

It is proved in [14] that the random process (X,V ) con-
verges in distribution to the Markov process (X �,V �), which
is solution of (6)–(3). So we can consider the process (X,V )
as a discretization of the process (X �,V �).

C. Definition of long excursions

A long excursion is composed of two parts which we call
half-long excursions (HLEs). We define the two integers k−
and k+ by

√
�xk+ � −b(0) + � <

√
�xk++1 and

√
�xk−−1 <

−b(0) − � �
√

�xk− . The two integers k− and k+ play im-
portant roles because a transition from a static phase to a
dynamic phase occurs when Z jumps from (xk+ , 0, 0) to
(xk++1, 1, 0) or from (xk− , 0, 0) to (xk−−1,−1, 0). We can
define the first HLE originating from (xk++1, 1, 0) as a por-
tion of trajectory of the process Z starting from (xk++1, 1, 0)
at time 0 and ending in (xk−−1,−1, 0) at time t 1

2
= inf{t �

0, V (t ) = 0 and X (t ) = xk−−1}. The second HLE starts from
(xk−−1,−1, 0) at time t 1

2
and ends in (xk++1, 1, 0) at the

time t1 = inf{t � t 1
2
, V (t ) = 0 and X (t ) = xk++1}. We use

the notation ±-HLE for a half-long excursion originating from
(xk±±1,±1, 0) (see Fig. 2). In general, a long excursion is de-
fined as the concatenation of a ±-HLE followed by a ∓-HLE.
It is worth noting that it is possible that such an HLE evolves
only in a dynamic phase. Long excursions are building blocks
for the forthcoming representation formulas for quantities of
interest such as the diffusivity.

IV. MOBILITY AND DIFFUSIVITY

In this section we propose original representation formulas
for the displacement mobility and diffusivity in terms of a
long excursion. These formulas will then be used to build
efficient estimators of the diffusivity in the next section. We
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FIG. 2. Numerical simulation of a long excursion of (X,V ) en-
closed by the random time interval [0, t1]. The first HLE in black
is followed by the second HLE in red. Top left: Noise X vs time
t . Top right: Velocity V vs time t . Bottom left: Displacement U
vs time t . Bottom right: Velocity V vs noise X . Here b(v) =
−v/τL + γ̄ , τ = 0.5 s, τL = 0.067 s, � = 3.84 m s−2, � = 5 m2 s−3,
and γ̄ = 0.342 m s−2. This sample is produced by Algorithm 1 with
δ = 0.125 s−1/2.

consider the displacement U (t ). It satisfies the two following
properties:

(1) U (t )/t converges in probability as t → +∞ to

M0 = Es+ [U (t1)]

Es+ [t1]
, (8)

where Es+ stands for the expectation with respect to the dis-
tribution of the PDMP starting from s+ = (xk++1, 1, 0).

(2)
√

t[U (t )/t − M0] converges in distribution as t → +∞
to a Gaussian variable with mean zero and variance

D = Vars+ [U (t1)]

Es+ [t1]
. (9)

We will show in the following sections that the two represen-
tation formulas (8) and (9) make it possible to build unbiased
and consistent Monte Carlo estimators. The remainder of this
section is devoted to the proof of (8) and (9), which is based
on standard limit theorems (law of large numbers and central
limit theorem) and a strong Markov property.

Proof of (8) and (9). We introduce s− =
(xk−−1,−1, 0), t0 = 0, and for j � 0: t j+1 = inf{t �
t j+1/2, [X (t ),Y (t ),V (t )] = s+}, t j+1/2 = inf{t � t j, [X (t ),
Y (t ),V (t )] = s−},

Jt = inf{ j � 1, t j � t}, jt =
⌊

t

Es+ [t1]

⌋
,

where �·� stands for the integer part. The random variables

X j =
∫ t j+1

t j

V (s)ds

are independent and identically distributed as X0 = U (t1)
under Es+ by the strong Markov property. If b is an odd

function, then Es+[X0] = 0 (this can be shown by a symmetry
argument, because (Xt ,Vt )t�0 has then the same distribution
as (−Xt ,−Vt )t�0), but in general it is not zero.

We have

1

t
U (t ) = jt

t

[
1

jt

jt −1∑
j=0

X j + Rt

]
,

with

Rt = 1

jt

∫ t

t jt

V (s)ds.

We show in Appendix C that
√

tRt , and hence Rt , converges
in probability to zero as t → +∞. Moreover, jt → ∞ as
t → +∞, so we obtain from the law of large numbers that
jt −1 ∑ jt −1

j=0 X j converges in probability to Es+[X0]. We also
observe that jt/t → 1/Es+ [t1]. Therefore we obtain

1

t
U (t )

proba.−→ M0 = Es+ [X0]

Es+ [t1]
, (10)

which gives (8). In order to show (9), we write

√
t

(
U (t )

t
− M0

)
=

√
jt√
t

[
1√
jt

jt −1∑
j=0

X̃ j + R̃t

]
+ r̃t ,

with X̃ j = X j − Es+ [X0],

R̃t = √
tRt = 1√

jt

∫ t

t jt

V (s)ds,

r̃t = jt√
t
Es+ [X0] − √

tM0.

We show in Appendix C that R̃t converges in probability to
zero as t → +∞. The quantity r̃t = Es+ [X0](�t/Es+ [t1]� −
t/Es+ [t1])/

√
t is such that |r̃t | � |Es+[X0]|/√t so it also

converges to zero as t → +∞. Since X̃ j are independent
and identically distributed with mean zero, we obtain from
the central limit theorem that jt −1/2 ∑ jt −1

j=0 X̃ j converges in
distribution to a zero-mean Gaussian variable with variance
Vars+ (X0). We also observe that

√
jt/

√
t → 1/

√
Es+[t1]. By

Slutsky’s theorem we obtain

√
t

(
U (t )

t
− M0

)
dist .−→ N (0, D), D = Vars+ (X0)

Es+ [t1]
, (11)

which completes the proof of the desired result. �

V. MONTE CARLO ESTIMATION OF THE DIFFUSIVITY

A. Monte Carlo estimator based on long excursions

Consider a long excursion as defined in Sec. III C. It is
composed of two HLEs. We can now introduce an original
Monte Carlo method for the estimation of D. Let (U (k)

le , t (k)
le ),

k = 1, . . . , N , be N independent and identically distributed
(i.i.d.) pairs of displacement U (t1) and duration t1, both re-
sulting from a long excursion. We introduce a Monte Carlo
estimator based on long excursions as follows:

D̂N =
∑N

k=1

(
U (k)

le

)2 − 1
N

(∑N
k=1 U (k)

le

)2∑N
k=1 t (k)

le

. (12)
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Algorithm 1. PDMP simulation for the first HLE from
(xk++1, 1, 0) to (xk−−1, −1, 0).

Result: Simulation of {(X,Y,V )Tj where j � 0 and Tj � t 1
2
}.

T = 0, X = xk++1, Y = 1, V = 0, U = 0, A = TRUE;
while A do

δT = interjump(X,Y,V );
U = U+displacement(X,Y,V, T, T + δT );
(X,Y,V ) = jump(X,Y ; flow(X,Y,V ; δT ));
T = T + δT ;
A = (X �= xk−−1) or (Y �= −1) or (V �= 0) ;

end

The sample {(U (k)
le , t (k)

le )}N
k=1 is produced by using

Algorithm 1. The estimator D̂N is consistent by the law
of large numbers. Beyond the estimator D̂N , it is possible
to build from the sample {(U (k)

le , t (k)
le )}N

k=1 a confidence
interval with prescribed asymptotic confidence level α (see
Appendix D).

To simulate the other HLE, we can swap xk++1 with xk−−1,
(Y = 1) with (Y = −1), and vice versa in Algorithm 1. The
functions interjump (X,Y,V ), displacement (X,Y,V ), flow
(X,Y,V, δT ) (which is used in displacement (X,Y,V )) and
jump(X,Y ;V ) are described in Appendix E.

B. Brute force Monte Carlo estimator

For comparison, we also consider the brute force Monte
Carlo estimator for D, that is

D̂t
N ′ = 1

t

[
1

N ′

N ′∑
k=1

U (k)(t )2 −
(

1

N ′

N ′∑
k=1

U (k)(t )

)2]
, (13)

where the sample {U (k)(t )}N ′
k=1 is composed of N ′ i.i.d. realiza-

tions of the displacement at time t and is produced by using
Algorithm 2. Note that D̂t

N ′ is actually a consistent estimator
of Dt . This means that t should be chosen large enough so that
the bias (the difference between Dt and D) is negligible. We
discuss this point in detail in Sec. V C.

C. Asymptotic efficiencies of the estimators

In this section we show that the mean square error of the
estimator D̂N based on long excursions is much smaller than
that of the brute force Monte Carlo estimator D̂t

N , even when
tuning the parameter t optimally.

Algorithm 2. PDMP simulation on [0, t].

Result: Simulation of {(X,Y,V )Tj where j � 0 and Tj � t}.
T = 0, X = xk++1, Y = 0, V = 0, U = 0;
while (T < t ) do

δT = interjump(X,Y,V );
U = U+ interjump(X,Y,V );
(X,Y,V ) =jump(X,Y ;flow(X,Y,V ; δT ));
T = T + δT ;
if (T � t) then U = U+ displacement(X,Y,V, T − δT, t );

end

From the delta method (described in Appendix D), the
mean square error of the estimator D̂N satisfies

Es+
[
(D̂N − D)2

] ∼ σ 2

N
, (14)

as N → +∞, where the variance σ 2 = ∇�(S)T C∇�(S)
involves S = Es+ [X ], C = (Cjl )3

j,l=1, Cjl = Es+[XjXl ] −
Es+ [Xj]Es+[Xl ], �(x) = x2−x2

1
x3

with X = (Xj )3
j=1, X1 = Ule =

U (t1), X2 = Ule
2 = U (t1)2, X3 = tle = t1.

The mean square error of the estimator D̂t
N ′ satisfies

Es+
[(

D̂t
N ′ − D

)2] ∼ (σ t )2

N ′ + (Dt − D)2, (15)

as N ′ → ∞, where (σ t )2 = ∇�(R)T �∇�(R) involves R =
Es+ [Y ], � = (� jl )2

j,l=1, � jl = Es+ [YjYl ] − Es+ [Yj]Es+[Yl ],

�(y) = y2 − y2
1 with Y = (Yj )2

j=1, Y1 = U (t )/
√

t ,
Y2 = U (t )2/t . Note that the mean square error is the sum
of a variance term and a squared bias term. The latter turns
out to have a dramatic effect.

Denoting t1 = Es+ (t1), it takes
∑N

k=1 t (k)
le ≈ Nt1 compu-

tational time units to produce the sample {(U (k)
le , t (k)

le )}N
k=1

and N ′t computational time units to produce the sample
{(U (k)(t )}N ′

k=1. Therefore, when t = αt1, we consider the rela-
tion N ′α = N in order to compare D̂N and D̂t

N ′(which becomes
D̂αt1

N/α) with identical computational cost. With t = αt1, the

mean square error of the estimator D̂αt1
N/α satisfies

Es+
[(

D̂αt1
N/α − D

)2] ∼ α(σαt1 )2

N
+ (Dαt1 − D)2,

as N → ∞. We want to compare the mean square errors of the
estimators D̂N and D̂t

N . First, we need to tune the parameter t
to get the minimal error.

We first consider the case when M0 = 0. When α becomes
large, (σαt1 )2 converges to 2D2. When α becomes large, we
have Dαt1 = D + O(α−1). Indeed,

Dt = 2

t

∫ t

0

∫ t−s

0
Covs+ (V (s),V (s + s′))ds′ds,

Covs+ (V (s),V (s + s′)) converges exponentially as s → +∞
to an integrable function φ(s′), which is the stationary co-
variance function of V (see Fig. 5) and D = limt→+∞ Dt =
2

∫ ∞
0 φ(s′)ds′ so that

t

2
(Dt − D)

=
∫ t

0

∫ ∞

0
[Covs+ (V (s),V (s + s′))1s′<t−s − φ(s′)]ds′ds

t→+∞−→
∫ ∞

0

∫ ∞

0
[Covs+ (V (s),V (s + s′)) − φ(s′)]ds′ds

−
∫ ∞

0
s′φ(s′)ds′.

For t = αt1 we define α�
N the minimizer of the function

α �→ N−1α(σαt1 )2 + (Dαt1 − D)2. By the two previous obser-
vations about the asymptotic behaviors of σαt1 and Dαt1 − D,
we find that α�

N is of the order of α�
N ∼ N1/3 so that the
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minimal mean square error of D̂αt1
N/α obtained with α�

N is of
order N−2/3. That means that, even when tuning the brute
force Monte Carlo with the optimal t , its mean square error
is larger than the mean square error of D̂N , which is of order
N−1 without any tuning. This shows that the estimator D̂N is
clearly preferable in the regime when N is large.

When M0 �= 0, the situation is even worse for the brute
force Monte Carlo estimator, because (σ t )2 becomes equiv-
alent to M2

0 Dt for large t , so that the optimal α�
N ∼ N1/4 and

the minimal mean square error of D̂αt1
N/α obtained with α�

N is of
order N−1/2.

This is the main output of this paper from the methodologi-
cal point of view: the estimation of the diffusivity (or mobility
or any other asymptotic quantity) should be carried out with
the Monte Carlo method based on long excursions, rather than
the Monte Carlo method based on long fixed-time excursions
that is traditionally used in the literature.

VI. LIMITING DIFFERENTIAL INCLUSION

In this section the notion of long excursion and the cor-
responding sampling approach are extended to the limiting
differential inclusion case.

A. Long excursion of the differential inclusion

From [14], the PDMP (X,V ) converges in distribution as
δ → 0 towards (X �,V �) the solution of the differential inclu-
sion:

V̇ � + ∂ϕ(V �) � b(V �) +
√

�X �, (16)

where τ Ẋ � = −X � + √
2Ẇ and ϕ(v) = �|v|. The process

X � is an OU process, and its invariant density is a Gaussian
distribution with mean zero and variance τ−1.

It is natural to extend the concepts of long excursion to the
limiting differential inclusion case. The definitions of half-
long and long excursions for (X �,V �) are similar to those
of (X,V ) defined in Sec. III C. The first HLE for (X �,V �)
starts at time 0 from (x�, 0) and ends at time t�

1/2 = inf{t �
0, X �(t ) = x−� and V �(t ) = 0}. Then the second HLE for
(X �,V �) starts at time t�

1/2 from (x−�, 0) and ends at time t�
1 =

inf{t � t�
1/2, X �(t ) = x� and V �(t ) = 0}. Here, we have in-

troduced the points x� = ( − b(0) + �)/
√

� and x−� = ( −
b(0) − �)/

√
�.

The diffusivity D� is defined as in (1) but with U̇ � = V �. It
has the following representation formula in terms of the long
excursion:

D� = Var(x�,0)[U �(t�
1 )]

E(x�,0)[t�
1 ]

. (17)

B. Monte Carlo estimator

In this section we define a Monte Carlo (MC) estimator
D̂�

N of the diffusivity D�. This estimator is based on the repre-
sentation formula (17) in terms of the long excursions of the
differential inclusion (in a similar manner to what was done
for D̂N ).

Algorithm 3. Differential inclusion simulation for the first HLE
from (x�, 0) to (x−�, 0).

Result: (X �,V �) on the interval [0, t �
1/2].

X � = x�, V � = 0, f � = 0, U � = 0, A = TRUE;
while A do

(�̂, X̂ )T ∼ N (X �m(h), �(h));
( f̂ , V̂ ) = ( f �,V �);
f � = V̂ + h(b(V̂ ) + √

��̂);
V � = V̂ − h max ( − �, min(�, f̂ h−1));
X � = X̂ ; U � = U � + hV̂ ;
A = (| f̂ | > �) or (V̂ �= 0) or f � � −�;

end

Let {U �,(k)
le , t�,(k)

le }N
k=1 be N i.i.d. pairs of displacement and

duration resulting from a long excursion. This sample is pro-
duced by Algorithm 3.

Here the notation (�̂, X̂ )T ∼ N (xm(h), �(h)) means that
(�̂, X̂ )T is a realization of a two-dimensional Gaussian vari-
able with expectation xm(h) with

m(h) =
(τ

h

(
1 − e−h/τ

)
, e−h/τ

)T

and with covariance matrix

�(h) =
(

τ
h2

(
2 h

τ
− 3 + 4e−h/τ − e−2h/τ

)
1
h

(
1 − e−h/τ

)2

1
h

(
1 − e−h/τ

)2 1
τ

(
1 − e−2h/τ

)
)

.

In fact, the Gaussian distribution N (xm(h), �(h)), which is
used at every time step, is the law of the two-dimensional
random vector (

1

h

∫ h

0
X �,x

s ds, X �,x
h

)
, (18)

where we use the notation X �,x
h for the state of the OU noise

variable at time h provided that it started from x at time 0.
The MC estimator D̂�

N and a confidence interval for D� are
built from the sample {U �,(k)

le , t�,(k)
le }N

k=1 by using Eq. (12) and
Appendix D.

VII. NUMERICAL RESULTS

This section is devoted to numerical results produced by
the algorithms presented in the previous section. We study the
sensitivity of the diffusivity D with respect to the strength of
the noise � and the correlation time τ .

Simulation parameters. In the results shown below, the
differential inclusion (16) is integrated with a time step of h =
10−4 s. Each Monte Carlo result is produced with N = 105.

A. Comparisons between PDMP
and differential inclusion simulations

In Fig. 3 we present a sample of long excursion related
to the PDMP (X,V ) defined in Sec. III and the solution of
the differential inclusion (X �,V �) defined by Eq. (16) when
b(v) = −v/τL + γ̄ . Here δ = 0.125 s−1/2 and δ′ � 0.073,
which is smaller than 1, so we can expect that the distribution
of the PDMP solution is close to that of the limiting differ-
ential inclusion. Indeed, in Fig. 3 the two trajectories have
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FIG. 3. Numerical stochastic dynamics of a long excursion when
b(v) = −v/τL + γ̄ . Left column: Single long excursion simulation
of the PDMP (X,V ) with δ = 0.125 s−1/2. Right column: Single
long excursion simulation of the solution of the differential inclusion.
Here τ = 0.5 s, τL = 0.067 s, � = 3.84 ms−2 and � = 5 m2 s−3, and
γ̄ = 0.342 ms−2.

similar behaviors to the naked eye. In Fig. 4 we superpose
the computed diffusivity and the mean duration of long ex-
cursions of both (X,V ) and (X �,V �) when � ∈ [1, 10] m2 s−3

and τ = 0.125, 0.25, 0.5, 1 s. Then in Fig. 5 we also com-
pute the empirical covariance for each process. In agreement
with the theory, the statistics of (X,V ) are close to those of
(X �,V �) when δ is small enough (i.e., when δ′ is smaller
than 1).

Comments. The PDMP makes the mathematical frame-
work for the diffusivity very neat. However, one drawback
in simulating the PDMP appears when we consider τ small.
Indeed, the jump frequency of the PDMP becomes very high,
and therefore its dynamics evolves with extremely small time
steps. In this context the CPU time becomes significantly
important. This is the reason why we extend the notion of long
excursion to the limit process in its differential inclusion form.

B. Comparisons between white-noise and colored-noise regimes

Here we assume that b(v) = −v/τL + γ̄ , and we carry
out simulations with the limiting differential inclusion. As
illustrated in Fig. 6 (left), the numerically obtained station-
ary probability for the colored noise with τ = 10−5 s agrees
with the explicit formula (valid for a white noise) of the
theoretical stationary probability [19] of the velocity P(v) =

FIG. 4. Left: Monte Carlo estimation of the diffusivity D as a
function of � ∈ [1, 10] m2 s−3 in loglog scale when b(v) = −v/τL +
γ̄ . The dots correspond to numerical simulations of the MC estimator
D̂N based on the PDMP long excursions when δ = 0.125 s−1/2, and
the solid lines correspond to the MC estimator D̂�

N based on the long
excursions of the limiting differential inclusion as δ → 0. The four
curves from top to bottom correspond to τ = 0.125, 0.25, 0.5, 1 s
and we have τL = 0.067 s, � = 3.84 ms−2, and γ̄ = 0.342 ms−2.
Right: Monte Carlo estimation of the mean duration of a long ex-
cursion as a function of � in loglog scale. The four curves from
bottom to top correspond to τ = 0.125, 0.25, 0.5, 1 s. The parame-
ters remain unchanged compared to the left figure.

P0e−v2/(�τL )−2|v|�/�+2vγ̄ /� , and P0 > 0 is a normalizing con-
stant. The white-noise regime is indeed expected, since τ ′ �
9.2 × 10−4 is much smaller than 1. In addition, some realiza-
tions of the dynamics of U (t ) are shown for τ = 10−5 s in
Fig. 6 (right). We observe an average positive drift due to the
presence of γ̄ . This is a good qualitative agreement with Fig. 2
of [13].

Here we consider the pure dry friction b(v) = 0, and we
want to compare our numerical results with the theoretical
predictions of [5], valid in the white-noise regime. We here
consider the system in nondimensional variables. The nu-
merically obtained histogram, first moment, and correlation
function for the velocity V̌ �,′(t ′) are shown for several values
of the noise correlation time τ ′ (τ ′ = 0.5 × 10−i, 1 � i � 4)
in Fig. 7, Table I, and Fig. 8, respectively. As τ ′ → 0, all our
simulation results capture the predictions of [5] [see formulas

FIG. 5. h(ρ )/h(0) on a semilog scale where h(ρ ) =
cov(V (t ),V (t + ρ )) when b(v) = −v/τL + γ̄ . The solid lines
stand for the empirical covariances obtained by PDMP simulations.
The dotted lines stand for the empirical covariances obtained
by MSDE simulations. The three curves from bottom to top
correspond to τ = 0.25, 0.5, 1 s (i.e., τ ′ = 0.74, 1.47, 2.95). Here
τL = 0.067 s, � = 3.84 ms−2, � = 5 m2 s−3, γ̄ = 0.342 ms−2, and
δ = 0.125 s−1/2 (for the PDMP).
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FIG. 6. Left: Comparison between the theoretical stationary
probability P(v)�v in solid line and the numerical histogram of
the velocity with bin width �v = 4.8 × 10−4 ms−1 in red triangles
for the colored-noise-driven system when b(v) = −v/τL + γ̄ . Right:
Displacement U (t ) vs t for a colored-noise-driven system. Ten simu-
lations are plotted on t ∈ [0, 2] s. Here τ = 10−5 s, � = 0.16 m2 s−3,
� = 3.84 ms−2, τL = 0.067 s, and γ̄ = 0.342 ms−2.

(2.10), (2.11), and (2.13) therein]. We can see, however, a
significant departure in Fig. 7 for τ ′ = 0.5 × 10−1, which
means that the white-noise approximation is no longer valid
for such a value of the correlation time to give predictions of
the statistics of the velocity.

As shown in the left side of Fig. 9, produced with b(v) = 0,
the diffusivity varies as �3 when τ = 10− j s, j = 4, 5, i.e.,
τ ′ � 2.9 × 10− j , j = 4, 5 (close to white noise). Otherwise
when τ gets larger (τ = 10− j s, j = 2, 3), the relationship in
log-log scale between D and � is not linear and thus there is no
scaling law of the form D ∼ �α with a constant α. This means
that the white-noise approximation is not valid anymore for
τ ′ � 2.9 × 10− j , j = 2, 3 to study the diffusivity. The white-
noise approximation should be used with caution, and even a

FIG. 7. Red curves: Probability density function v′ �→
p(v′, t ′|v′

i, 0) of the velocity at different times t ′ for the
white-noise-driven pure dry friction case with initial condition
v′

i = 1 at time 0 in nondimensional variables (see Formula (2.10)
in [5]). Black curves: Empirical histogram of the velocity for the
colored-noise-driven pure dry friction with the initial condition is
v′

i = 1 and x′
i ∼ N (0, τ ′−1). The four plots are for four different

values of the correlation time τ ′.

TABLE I. First moment of V �,′(t ′) vs t ′ for the pure dry friction
case with initial condition v′

i = 1. The MC line results from our
simulations with τ ′ = 0.5 × 10−5. The EF line is the explicit formula
(2.11) in [5].

t ′ 0.05 0.125 0.25 0.5 1 2.5

MC 0.950 0.876 0.757 0.569 0.337 0.091
EF 0.950 0.875 0.757 0.568 0.336 0.090

small correlation time of the driving force can have a strong
impact. As shown in the right side of Fig. 9 produced with
b(v) = −v/τL + γ̄ , the same comment applies to all the cases
for the relationship in log-log scale between D and �.

While we recover several theoretical results from
Hayakawa [19], de Gennes [3], and Touchette et al. [4,5],
we cannot say the same for the experimental results from
[13]. In their experimental study we have b(v) = −τ−1

L v +
γ̄ , where τL � 0.067 s is the momentum relaxation time,
and γ̄ � 9.8 sin(π/90) � 0.342 ms−2 is a constant related to
gravity and the inclination of the surface on which the system
is installed. The noise in the experiment is assumed to be a
white noise, and the friction coefficient � is estimated to be
3.84 ms−2. The experimentally obtained diffusivity scales as
∼�1.61, which is not too far from their simulations, predicting
a scaling ∼�1.74 where the noise strength � varies between
5 × 10−3 and 5 × 10−1 m2 s−3. When comparing with our re-
sults in Fig. 9 (right) we can observe a discrepancy. We believe
that there are two possible (and related) explanations for such
a discrepancy. First, the experimental and numerical forces are
assumed to be white noises in [13], and we have exhibited
above that the correlation time should be very small to ensure
the validity of the white-noise approximation for the study of
the diffusivity. We do not know the correlation time in the
experiments, and the correlation time in the numerical sim-
ulations in [13] was apparently equal to the integration time
step 10−3 s, which means that the white-noise approximation
does not seem to be valid. Second, we have observed a high
sensitivity of the numerical diffusivity to the integration time
step itself. In our simulations we observed that the computa-

0 1 2 3 4 5
10−2

10−1

t′

〈V
�
,′ (

t′ )
V

�,
′ (
0)
〉

FIG. 8. Correlation function 〈V �,′(t ′)V �,′(0)〉 vs t ′ in semilog
scale for the pure dry friction case under stationarity. The red solid
line is the explicit formula (2.13) in [5] (valid when τ ′ ↓ 0). There
are four curves in black dots from our simulations. The curves as-
sociated with the colored-noise case, where τ ′ = 0.5 × 10−4, τ ′ =
0.5 × 10−3, τ ′ = 0.5 × 10−2, are almost indistinguishable. The re-
maining curve below the red curve is for τ ′ = 0.5 × 10−1, and it is
also very close to the first three ones.
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FIG. 9. Left: Case b(v) = 0. Right: Case b(v) = −v/τL + γ̄

with τL = 0.067 s and γ̄ = 0.342 ms−2. The dots correspond to the
numerical simulation of D̂t,�

N (the MC estimator based on the brute
force simulation of the limiting differential inclusion with t = 10 s).
The solid lines correspond to the numerical simulation of D̂�

N (the
MC estimator based on the long excursion of the limiting differential
inclusion). In both cases, the four curves from top to bottom corre-
spond to τ = 10−i s for i = 5, . . . , 2. Here � = 3.84 ms−2.

tion of the diffusivity in Fig. 9 appears to be more sensitive to
the time step than the computation of the empirical histogram
of the velocity in Fig. 7. Both Figs. 7 and 9 show results
produced with h = 10−4 s. We have observed that the results
do not change when we take a smaller h. We have observed,
however, that the results change when h reaches values of the
order of 10−3 s. More exactly, the results of Fig. 7 do not vary
much, but those of Fig. 9 vary significantly. It turns out that
the acquisition time of the video recording in the experiments
and the time step in the numerical simulations in [13] are both
of this order of magnitude so it may explain the discrepancy.
This observation strengthens the need of accurate simulation
methods and makes the use of efficient Monte Carlo methods
even more important in the context of expensive numerical
simulations.

VIII. CONCLUSIONS

In this paper we have introduced a piecewise deterministic
Markov process approach to model the random motion of an
object subject to dry friction in presence of colored noise.
The latter is represented by a pure jump process that is it-
self a δ spatial discretization of an Ornstein-Uhlenbeck noise
with correlation time τ . In this model we have identified an
independent and identically distributed sequence of repeat-
ing patterns or excursions. This excursion is the fundamental
brick of the dynamics, because it encodes all the behavior of
the system. We have shown that the variance of the object
displacement has linear growth in time. We have obtained a
representation formula for the diffusivity (the linear growth
rate) as an expectation of a functional of an excursion. As a
by-product, we have derived a Monte Carlo estimator for the
diffusivity with much better properties that standard Monte
Carlo estimators. The method we have developed can be used
to calculate quantities similar to diffusivity (e.g., mobility etc)
with high accuracy and confidence.

As the PDMP cannot be used for numerical purposes when
τ and δ are small due to high frequency of jumps, we have
extended the notion of excursion to the limit process as δ ↓ 0.
When τ ↓ 0, all our numerical simulations for the stationary
probability density function, the transition probability density
function, the first moment, the correlation, and the diffusivity

are captured by the theoretical predictions of Hayakawa [19],
de Gennes [3], and Touchette et al. [4,5]. We have further
investigated these quantities as functions of the correlation
time τ of the noise. We have shown that the white-noise
approximation gives correct predictions for the distribution of
the velocity for small or moderately small values of the cor-
relation time, but the white-noise approximation requires very
small values of the correlation time to give correct predictions
for the diffusivity.

ACKNOWLEDGMENTS

L.M. is thankful for support through NSFC Grant No.
12271364. The authors would like to thank Carl Xu for useful
discussions.

APPENDIX A: THE DRIVING JUMP PROCESS

The random dynamics of X starting from a state X (0) = ξ0

is as follows:
(1) Generate a random time τ1 with an exponential distri-

bution with parameter 
. Set X (t ) = ξ0 for t ∈ [0, τ1).
(2) If |ξ0| < xN , then with probability αξ0 , set ξ1 = ξ0 + δ

and with probability 1 − αξ0 , set ξ1 = ξ0 − δ.
If ξ0 = xN , then set ξ1 = xN−1.
If ξ0 = x−N , then set ξ1 = x−N+1.
(3) Generate a random time τ2 with an exponential distri-

bution with parameter 
. Set X (t ) = ξ1 for t ∈ [τ1, τ1 + τ2).
(4) Iterate. X is piecewise constant, takes values in Sδ , and

has random jumps at times
∑ j

i=1 τi, j � 1.

APPENDIX B: DESCRIPTION OF THE PDMP

We give details on the definition of the PDMP modeling
dry friction.

The process X defined in Sec. III A is a jump Markov
process with the generator Qδ f (x) = 2τ−2δ−2[αx f (x + δ) −
f (x) + (1 − αx ) f (x − δ)], where αx = 1

2 (1 − τδx
2 ) if |x| <

xN , 0 if x = xN , and 1 if x = x−N . Here we assume τδLδ
X < 2

to guarantee that ∀x ∈ Sδ, αx ∈ [0, 1].
We introduce

B(x, y, v) =

⎧⎪⎨
⎪⎩

� + b(v) + √
�x, if y = −1,

0, if y = 0,

−� + b(v) + √
�x, if y = 1.

(B1)

We define the state space

E =
⋃

(x,y)∈Sδ

Ex,y, Ex,y = {(x, y)} × Hx,y, (B2)

where Sδ = {x−N , . . . , xk−−1} × {−1, 1} ∪ {xk− , . . . , xk+} ×
{−1, 0, 1} ∪ {xk++1, . . . , xN } × {−1, 1}, Hx,y = (−∞, 0)
if (x, y) ∈ {xk−, . . . , xN } × {−1}, Hx,y = (0,+∞) if
(x, y) ∈ {x−N , . . . , xk+} × {1}, and Hx,y = R otherwise.

We can formulate the dynamics of Z starting from a state
z0 = (x, y, z) ∈ E as follows:

(1) Generate a random time T1 = min[τ1, T �(z0)], where
τ1 is a random time with an exponential distribution with
parameter 
 = 2τ−2δ−2, T �(z0) = inf{t � 0, φx,y(t, v) = 0}
(with the convention inf ∅ = +∞), and φx,y(t, v) is the flow
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solution of

∂tφx,y(t, v) = B(x, y, φx,y(t, v)), t > 0,

φx,y(0, v) = v. (B3)

Then define v1 = φx0,y0 (T1, v0) and generate a random state
z1 = (x1, y1, v1) from (x0, y0, v1) using the probability transi-
tion matrix Qv1 (x1, v1; x0, v0) (note that the velocity V does
not jump during this transition):

∀y ∈ {−1, 1}, ∀x ∈ {x−N , . . . , xk−−1},
Q0(x,−1; x, y) = 1, (B4a)

∀y ∈ {−1, 1}, ∀x ∈ {xk++1, . . . , xN },
Q0(x, 1; x, y) = 1, (B4b)

∀y ∈ {−1, 1}, ∀x ∈ {xk− , . . . , xk+},
Q0(x, 0; x, y) = 1, (B4c)

∀x ∈ {xk−+1, . . . , xk+−1},
Q0(x + δ, 0; x, 0) = αx, (B4d)

∀x ∈ {xk−+1, . . . , xk+−1},
Q0(x − δ, 0; x, 0) = 1 − αx, (B4e)

Q0(xk−+1, 0; xk− , 0) = αxk− , (B4f)

Q0(xk+−1, 0; xk+ , 0) = 1 − αxk+ , (B4g)

Q0(xk−−1,−1; xk− , 0) = 1 − αxk− , (B4h)

Q0(xk++1, 1; xk+ , 0) = αxk+ , (B4i)

∀(x, y, v) ∈ E , v �= 0,

Qv (x + δ, y; x, y) = αx, (B4j)

∀(x, y, v) ∈ E , v �= 0,

Qv (x − δ, y; x, y) = 1 − αx. (B4k)

The trajectory of Z for t ∈ [0, T1] is given by

Zt =
{

(x0, y0, φx0,y0 (t, v0)), if 0 � t < T1

(x1, y1, v1), if t = T1.
(B5)

When b(v) = −v/τL + γ̄ with τL ∈ (0,∞), γ̄ ∈ R and due
to the structure of B, explicit formula for φx,y(t, v) and T �(z)
are available. Straightforward calculations give

φx,y(t, v) = |y|[e−t/τL (v − c(x, y)) + c(x, y)],

c(x, y) = τL(γ̄ + √
�x − y�),

and, using the notation � = {(x, y, v) ∈ E , v > 0 and x <

xk+ or v < 0 and x > xk−},

T �(z) =
{

τL log
(
1 − v

c(x,y)

)
, if (x, y, v) ∈ �,

∞, otherwise.

Furthermore, the corresponding displacement on [0, T1]
is U (T1) = ∫ T1

0 φx0,y0 (t, v0)dt = |y0|[c(x0, y0)T1 + τL(v0 −
c(x0, y0))(1 − e−T1/τL )].

(2) We can now define Z after T1. Starting from ZT1 = z1,
we generate the next jump time T2 = T1 + min (τ2, T �(z1)),
where τ2 is a random time with an exponential distribution
with parameter 
. Define v2 = φx1,y1 (T2 − T1, v1) and the
post-jump location z2 = (x2, y2, v2) from (x1, y1, v2) using

the probability transition matrix Q. The trajectory of Z for
t ∈ [T1, T2] is given by

Zt =
{

(x1, y1, φx1,y1 (t, v1)), if T1 � t < T2,

(x2, y2, v2), if t = T2.
(B6)

When b(v) = −v/τL + γ̄ with τL ∈ (0,∞), γ̄ ∈ R,
the increment of displacement on [T1, T2] is U (T2) −
U (T1) = |y1|[c(x1, y1)(T2 − T1) + τL(v1 − c(x1, y1))(1 −
e−(T2−T1 )/τL )].

(3) Iterate. Z is piecewise deterministic and has random
jumps at times Tj, j � 1.

APPENDIX C: A TECHNICAL PROOF

In order to prove that Rt converges in probability to zero as
t → +∞, we proceed as follows. We can expand

Rt = 1√
jt

Jt −1∑
j= jt

X j + X̃t , with X̃t = 1√
jt

∫ t

t jt

V (s)ds.

The variable X̃t goes to zero in probability as t → +∞ since
Es+[|X̃t |] � j−1/2

t Es+[
∫ t1

0 |V (s)|ds] = O(t−1/2). By introduc-

ing Yj = ∑( j+1)�t1/4�−1
j′= j�t1/4� X jt + j′ :∣∣∣∣∣ 1√
jt

Jt −1∑
j= jt

X j

∣∣∣∣∣ � 1√
jt

Nt∑
j=−Nt

|Yj | + O(t−1/4),

with Nt = |Jt − jt |/�t1/4�. We have Nt � Ñt := t1/4+1/16 with
probability that goes to 1 as t → +∞, because Jt − jt =
O(t1/2); therefore, for any ε > 0, for t large enough,

P

(∣∣∣∣∣ 1√
jt

Jt −1∑
j= jt

X j

∣∣∣∣∣ � ε

)

� P (Nt � Ñt ) + P

(
1√
jt

Ñt∑
j=−Ñt

|Yj | � ε/2

)
.

The variables Yj are zero mean, independent, and identically
distributed, with Es+[|Y1|] � Es+ [Y 2

1 ]1/2 = t1/8Es+[X 2
1 ]1/2.

We then get by Markov inequality that

P

(∣∣∣∣∣ 1√
jt

Jt −1∑
j= jt

X j

∣∣∣∣∣ � ε

)

� P (Nt � Ñt ) +
2√
jt

∑Ñt

j=−Ñt
Es+ [|Yj |]

ε

� P (Nt � Ñt ) + Ct−1/16

ε
,

which shows the desired result:

P (|Rt | � ε)
t→+∞−→ 0.

APPENDIX D: ASYMPTOTIC CONFIDENCE INTERVALS

In this Appendix we show how to build a confidence inter-
val for D defined by (9) from the sample {(U (k)

le , t (k)
le )}N

k=1. We
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remark that

D = �(Es+[X ]),

with X = (Xj )3
j=1, X1 = Ule = U (t1), X2 = Ule

2 = U (t1)2,

X3 = tle = t1, �(x) = x2−x2
1

x3
. We define

ŜN = 1

N

N∑
k=1

X (k),

with X (k) = (X (k)
j )3

j=1, X (k)
1 = U (k)

le , X (k)
2 = U (k)

le

2
, X (k)

3 = t (k)
le .

We have D̂N = �(ŜN ). Since the X (k), k = 1, . . . , N are in-
dependent and identically distributed, we can apply the delta
method [20, p. 79] and we get that the estimator D̂N converges
in distribution:

√
N (D̂N − D)

N→+∞−→ N (0, σ 2),

with σ 2 = ∇�(S)T C∇�(S), S = Es+[X ], C = (Cjl )3
j,l=1,

Cjl = Es+[XjXl ] − Es+[Xj]Es+[Xl ]. Here N (0, σ 2) stands for
the normal distribution with mean 0 and variance σ 2.
Denoting

ĈN, jl = 1

N

N∑
k=1

X (k)
j X (k)

l − ŜN, j ŜN,l ,

the estimator

σ̂ 2
N = ∇�(ŜN )T ĈN∇�(ŜN )

converges to σ 2 in probability. By Slutsky’s theorem we get
that

√
N σ̂−1

N (D̂N − D)
N→+∞−→ N (0, 1)

in distribution. This gives that the interval

(âN , b̂N ) =
(

D̂N − q1−α/2
σ̂N√

N
, D̂N + q1−α/2

σ̂N√
N

)
,

with q1−α/2 the (1 − α/2) quantile of the distribution N (0, 1),
with a confidence interval of asymptotic level 1 − α:

lim
N→+∞

P (D ∈ (âN , b̂N )) = 1 − α.

APPENDIX E: ALGORITHMS RELATED TO THE PDMP

In this Appendix we give the details of the func-
tion’s interjump(X,Y,V ), displacement (X,Y,V ), flow
(X,Y,V, δT ), and jump (X,Y ;V ) for PDMP simulation.
The formulas are valid when b(v) = −v/τL + γ̄ with τL ∈
(0,∞), γ̄ ∈ R.

Algorithm 4. Simulation of an interjump time from (X,Y,V ).

Result: δT = interjump(X,Y,V )
u = uniform();
δT = min(− log(u)



, T �(X,Y,V )).

Algorithm 5. Formula for the increment of displacement from
(X,Y,V ) on the time interval [T, T + δT ].

Result: δU = displacement(X,Y,V, T, T + δT )
δU = |Y |[c(X,Y )δT + τL (V − c(X,Y ))(1 − e−δT/τL )];

Algorithm 6. Formula for the flow from (X,Y,V ) on the time
interval [T, T + δT ].

Result: V̂ = flow(X,Y,V, δT )
c(X,Y ) = τL (γ̄ + √

�X − Y �);
V̂ = |Y |[e−δT/τL (v − c(X,Y )) + c(X,Y )];

Algorithm 7. Simulation of a jump from (X,Y,V ).

Result: (X ′,Y ′,V ) = jump(X,Y ;V )
α = 1

2 (1 − τδX
2 )1{|X |<Lδ

X } + (1 − X −1 max(X, 0))1{|X |=Lδ
X };

A = (|Y | = 1) and (V = 0);
B = (Y = 0) and (V = 0) and ((X = xk− ) or (X = xk+ ));
if A then

Y ′ = −1{X�xk−−1}1{Y =1} + 1{X�xk++1}1{Y =−1}
else

u= uniform()
X ′ = (X + δ)1{u�α} + (X − δ)1{u>α};
if B then
Y ′ = 1{X=xk+ }1{u�α} − 1{X=xk− }1{u>α};

end
end
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