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We present a fine-grained approach to identify clusters and perform percolation analysis in a two-dimensional
(2D) lattice system. In our approach, we develop an algorithm based on the linked-list data structure whereby
the members of a cluster are nodes of a path. This path is mapped to a linked-list. This approach facilitates
unique cluster labeling in a lattice with a single scan. We use the algorithm to determine the critical exponent in
the quench dynamics from the Mott insulator to the superfluid phase of bosons in 2D square optical lattices. The
results obtained are consistent with the Kibble-Zurek mechanism. We also employ the algorithm to compute the
correlation length using definitions based on percolation theory and use it to identify the quantum critical point
of the Bose Glass to superfluid transition in the disordered 2D square optical lattices. In addition, we compute
the critical exponent ν which quantify the divergence of the correlation length ξ across the phase transition and
the fractal dimension of the hulls of the superfluid clusters.
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I. INTRODUCTION

There are strong motivations across research disciplines
to develop novel approaches and computational methods to
study the percolation theory. The percolation theory provides
a simple and unifying framework to understand clustering of
particles in a medium. It has wide applications like the perme-
ation of fluid in porous media [1], spontaneous magnetization
of dilute ferromagnets [2], and polymer gels [3], to mention a
few. The study of the clustering or connectivity of the particles
gains importance as it determines the macroscopic properties
of the system. For example, the electrical conduction through
a composite mixture of conducting and insulating materials
is described by the percolation analysis of the conducting
material in the mixture.

A generic percolation problem consists of an infinite lat-
tice populated with two classes of lattice sites at random.
These are denoted as occupied and unoccupied sites [4,5].
A group of occupied sites connected through bonds forms a
cluster. The probability of a site being occupied determines
the distribution and size of the clusters. The system undergoes
a percolation phase transition when the probability exceeds
a critical value. Then, there exists a spanning cluster which
extends from one edge of the system to the opposite edge.
Although the percolation problem as stated is straightforward,
analytical approaches are limited. It is, however, possible to
gain an understanding of the system using numerical methods.
A prominent algorithm used in percolation analysis is the
Hoshen-Kopelman (HK) cluster multiple labeling algorithm
[6]. The application of the percolation analysis and of the HK
algorithm are in diverse fields like food and chemical engi-
neering [7,8], ecology [9], and biology [10]. The basic essence
of the algorithm is to scan through the lattice and identify the

occupied sites. During the scan, the occupancy of neighboring
sites are also checked and the connected occupied sites are
assigned a cluster label. The key point of the algorithm is that
the neighboring sites are allowed to have different labels, but
with a record that they belong to the same cluster. There are
now several variations of the HK [11–15] including a proposal
to use linked-list to group the clusters belonging to the same
domain [16].

In this work, we present a fine-grained algorithm of cluster
labeling and describe its application in the percolation analy-
sis of two-dimensional (2D) lattices. The algorithm employs
the linked-list data structure and we refer to it as domain
counting (DC) algorithm. Using which we can define a path
connecting all the sites belonging to a cluster. This facilitates
the scanning of the lattice in a single scan. The path con-
structed is fine-grained as it links the sites. Such an approach
facilitates the analysis of cluster properties. This is in contrast
to the HK algorithm, where the equivalence class built links
different cluster labels of the same underlying cluster, and is
a coarse-grained linking. Different studies that can be done
with this algorithm include determination of boundaries, easy
identification of spanning cluster, and calculation of various
cluster properties like center of mass, radius of gyration, and
correlation length. Our approach is well suited for detailed
analysis of results encountered in the studies of optical lattices
where we obtain a set of configurations and wish to examine
it using the tools from percolation theory. However, it must
be emphasized that to simulate percolation the Newman-Ziff
algorithm [17] is the method of choice.

We address two important problems in the physics of
ultracold bosonic atoms in optical lattices using the algorithm.
First, we study the quantum quench dynamics of bosons in
the optical lattices from the Mott insulator (MI) to the
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superfluid (SF) phase employing the time-dependent
Gutzwiller mean-field theory. Using our method we identify
the clusters or domains and show that the number of domains
follows a power-law dependence on the quench rate. This is
consistent with the Kibble-Zurek mechanism (KZM) [18–22].
It is to be mentioned that recent works on ultracold atoms have
reported similar results in quantum quenches across different
quantum phases [23–26]. Further, as to be expected, we show
that the dependence of the defect density on the quench rate
has the same power-law exponent as the number of domains.
The second study pertains to the critical properties of the Bose
glass (BG) to SF transition of bosons in disordered optical
lattices. The BG phase is insulating yet compressible and it
is characterized by the SF puddles with an MI background
[27–30]. Using our method we compute the geometrical
properties of the SF clusters. As mentioned, our fine-grained
method stores locations of all the sites of a cluster. From this
information, we calculate the percolation correlation length
of the system across the BG-to-SF transition. As expected,
the correlation length peaks at the transition point and has
power-law dependence on the reduced hopping strength. The
critical exponent ν which quantifies the power law reveals
that the BG-to-SF transition belongs to the universality class
of 2D random percolation. We also compute the fractal
dimension of the hulls of SF clusters near the transition point.

The remainder of this article is organized as follows. We
first introduce linked-lists and discuss mapping of the domains
to a linked-list in Sec. II. We then discuss the algorithm of
our method in the Sec. III. We describe the identification of
the boundary of the cluster in Sec. IV. In Sec. V, we discuss
the comparison of the presented algorithm with other standard
algorithms in the percolation theory. In Sec. VI, we discuss
the application of our method to the MI-SF quench dynamics.
Then, in the Sec. VII, we present the study of the BG-to-SF
transition from the perspective of percolation theory. We sum-
marize our main results and present discussions in Sec. VIII.

II. MAPPING DOMAIN TO A LINKED-LIST

For a better description of our method, we consider a
2D square lattice and each of the lattice sites are labeled at
random with either 0 or −1. In the percolation theory, the
site labeled 0 (−1) corresponds to occupied (unoccupied) site.
Accordingly, we may assume that the label 0 (−1) occurs with
the probability p (1 − p). As mentioned earlier, the task at
hand is to identify and enumerate the domains with either
of the two labels. For illustration let us take the domains of
sites with the label 0. The lattice sites are denoted by (i, j),
where i is the column index and j is the row index. These
correspond to the x- and y-axis coordinates, respectively, in
the xy plane. The central idea of our approach is to use the
concept of linked-list data structure [31] to describe a domain.
It stores a data sequence in noncontiguous memory locations.
Each element of the sequence is stored in a node of the list and
each node has a reference or a link to the memory location of
the next element in the sequence. This continues until the last
element of the sequence. The advantage of using linked-list
is the ease of updating it to insert a new node or merging
multiple linked-lists. In the present work, to define a domain,
each lattice site of the system is uniquely mapped to the
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FIG. 1. A schematic diagram to illustrate the paths defining a
cluster in a 2D lattice. The arrows indicate the links between sites
constituting a domain. Here distinct domains are identified with
different colors which are representative of domain labels, while
the gray-shaded lattice sites are of label −1. The numbers over the
arrows represent the chronological sequence in linking the sites.

node of a unidirectional linked-list. The node is then linked
to another lattice site which belongs to the same domain. This
way each domain is represented by one linked-list. Thus, once
we know the starting node of a linked-list, we can traverse
through all the lattice sites belonging to a domain. For this
reason, the linked-list associated with a domain can also be
thought of as a path traversing through it. Here after, we use
path to refer to the linked-list. Such a path passes through each
lattice site in the domain once. Our main objective is, then, to
enumerate the number of such distinct paths corresponding to
the domains of lattice sites with the label 0. Then the number
of such paths is the number of domains.

To define the link in the node corresponding to the (i, j)
lattice site, we introduce two variables xi, j and yi, j . The vari-
able xi, j (yi, j) is the location along the x (y) direction of
the next lattice site in the path. These variables should have
well-defined values for the lattice sites at the beginning and
intermediate nodes of a path. But this is not required for the
last node of a path. To distinguish the end node we assign
negative integers to these two variables for this node. Since
we use unidirectional linked-list it is essential to define the
location of the first lattice site in a path or the first node of
the path. For this we introduce two variables for each path αk

and βk ; these are the x and y locations of the first lattice site
of the kth path, respectively. To facilitate further analysis of
the domains, we denote the total number of nodes or lattices
sites in the kth domain by N k . The two variables γ k and
δk are introduced to define the x and y location of the site
corresponding to the last node of the path. Suppose {xk

i, j, yk
i, j}

is the set of the links of the kth path, then the set of variables{
αk, βk, xk

i, j, yk
i, j, γ

k, δk,N k
}

(1)

defines the kth path or the domain uniquely. The schematic
diagram of typical paths defining clusters on a 2D square
lattice are shown in Fig. 1.

III. DOMAIN IDENTIFICATION

To identify the domains, we check the label at each lattice
site columnwise. We start the scan from the left edge. That is,
the column scanning is done left to right or in an increasing
order of the lattice site index along the x direction. During
the scan, we check the label at a lattice site, say, (i, j). If
the label of the site is 0, then the variable k is incremented
by 1, and the site is relabeled as k. This identifies the lattice
site as a member of the kth domain and the site is linked to
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the path. This number, following earlier description, is also
the sequence number of the domain. There is no change in the
label if the lattice site is already identified as the member of a
domain. Then, we scan the label of the right nearest-neighbor
lattice site (i + 1, j). If the label of this site is also 0, then it
is relabeled as k. This identifies the lattice site (i + 1, j) as a
member of the same domain. Accordingly, we update the path
to include the site. Then the scan is continued to the lattice
site (i, j + 1), the nearest neighbor above (i, j). In case the
label of the lattice site (i, j) is −1, then the scan proceeds to
(i, j + 1). That is, the label of the right nearest neighbor is
not checked. This process is repeated until the topmost lattice
site of the column is reached. Then we move to the next
column and continue this process until the entire system is
covered. Two distinct cases arise. First, the left edge column,
the column scanned first. Since, this is the starting column,
domains are yet to be identified. The second case concerns
the columns in the bulk and the right edge column. To record
the number of domains identified we use the counter κ .

A. Left edge column

At the beginning of the scan, we initialize the variable
κ to zero. It is incremented by one when a new domain is
encountered. For example, assume that the lattice site (0,3)
is the first lattice site along the column which has label 0.
During the scan, on reaching this lattice site, we increment
κ to 1 and relabel the lattice site (0,3) as 1. This is a newly
identified domain; hence, it is the first and the last node of
the path for the domain with k = 1. Accordingly, set the first
node variables α1 = 0 and β1 = 3 and the last node variables
γ 1 = 0 and δ1 = 3. In addition, the counter for the number
of the nodes in the domain is updated as N 1 = 1. Since this
is the last node of a path we set x1

0,3 = −2 and y1
0,3 = −2.

The choice of −2 is arbitrary. It is a number which is not
assigned to any of the variables. Then we check the label
of the right nearest-neighbor lattice site (1,3). There are four
possible outcomes as follows:

Case A: If this lattice site has 0 label, then it is relabeled
as 1. The end node of the path is shifted to (1,3) by assigning
x1

1,3 = x1
0,3 and y1

1,3 = y1
0,3. Accordingly, update the last node

variables to γ 1 = 1 and δ1 = 3. The path is then updated by
linking the lattice site (0,3) to (1,3) by setting x1

0,3 = 1 and
y1

0,3 = 3. Then we continue the scan along the column to the
lattice site (0,4) located above (0,3). If this too is 0, then we
extend the path to this lattice site by making this the end node
with the assignment x1

0,4 = x1
1,3 and y1

0,4 = y1
1,3 and update the

end node variables to γ 1 = 0 and δ1 = 4. Then connect it to
the lattice site (1,3) by redefining x1

1,3 = 0 and y1
1,3 = 4. This

possibility is schematically shown in Fig. 2(a).
Case B: The lattice site (1,3) is labeled zero but not (0,4).

This possibility is depicted schematically in Fig. 2(b). Then
the last step of variable assignments in Case A is not required.

Case C: The lattice site (1,3) is labeled −1, but (0,4) is
labeled 0. This is similar to Case A, but without the inter-
mediate step of linking the lattice site (1,3). The situation is
schematically shown in Fig. 2(c).

Case D: This is the last case and corresponds to the situa-
tion when both the lattice sites (1,3) and (0,4) are −1. Then
the (0,3) is an isolated domain as shown in Fig. 2(d).
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FIG. 2. A schematic diagram to illustrate of the possibilities aris-
ing in the scan along the lattice sites of the leftmost column. The red
arrows indicate the scanning direction, and the blue arrows represent
the intersite links. The sites are represented by circles and the labels
are shown within the circles. Panels (a)–(c) represent different cases
of linking the site (0,3) with its right and/or upper neighbors. Panel
(d) represents the possibility of a domain constituting a single site.

B. Column in the bulk and right edge

The general steps of scanning the remaining columns of the
system are the same. For illustration, as a general case, let us
consider the scanning of the ith column and assume that we
have reached the jth row in the column. That is, the lattice site
to be scanned is (i, j). If the label of the lattice site is −1, then
this is a trivial case and the site does not belong to any domain.
The scan can continue to the next lattice site (i, j + 1) in the
column. In case the label of the lattice site (i, j) is not −1,
then there are three possible outcomes of the scan.

1. New domain

Consider that the label of the lattice site (i, j) is 0, then
the current value of κ is incremented by one. The new value
of κ is taken as the value of k, and the lattice site (i, j) is
relabeled with this value. Like in the case of the left edge,
set xk

i, j = −2 and yk
i, j = −2 for the path and N k = 1 for the

number of members. The first (last) node variables of the path
are set as αk = i (γ k = i) and βk = j (δk = j). We then scan
the lattice site (i + 1, j) and followed by (i, j + 1). Similar
to the case of the left edge column, discussed earlier, we can
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FIG. 3. A schematic diagram to illustrate the formation of a new
domain comprising of sites in the bulk. The site (i, j), labeled 0, is
the starting node of the path. The steps of scanning and linking the
sites in the path are similar to that in Fig. 2.

have four possible outcomes. The only difference is, in each
of the cases the lattice site (0,3) is replaced by (i, j). The four
cases are schematically shown in Fig. 3.

2. Old domain

Consider that the label of the lattice site is a positive integer
l , indicating that (i, j) is already identified as a member of the
lth domain. In this case, no modification of the variables of
the lattice site are required. We then check the label of the
right nearest-neighbor lattice site (i + 1, j). If the label is −1,
then the scan continues to the upper nearest-neighbor lattice
site (i, j + 1). On the other hand, if the label is 0, then the
lattice site belongs to the lth domain. So we have to update
the domain and path variables to include (i + 1, j) as a part
of this domain. For this, we change the label of (i + 1, j) to
l and link the end node of the lth path to the (i + 1, j) by
setting xl

γ l ,δl = i + 1 and yl
γ l ,δl = j. Then (i + 1, j) is made

the end node by assigning xl
i+1, j = −2 and yl

i+1, j = −2 and
then, update the end node variables to γ l = i + 1 and δl = j.
The modifications associated with the addition of a node is
complete by incrementing the node count N l by one. The
schematic diagram of this possibility is shown in the Fig. 4.
For illustration, the path identified in the previous column
scanning is shown in light red. In general, except for the label l
of site (i, j), the three cases (A, B, and C) discussed earlier are
applicable in the present case as well. Case D is not applicable,
as it corresponds to a domain of isolated site. Like the earlier
cases, the next step is to consider the possibility of linking
the upper neighbor lattice site (i, j + 1). It is to be noted
that the four cases shown in Fig. 3 and the case of the old

−1 −1

l 0

0 −1

−1

l

−1

(i, j − 1)

(i, j) (i + 1, j)

(i, j + 1)

(i − 1, j)

FIG. 4. A schematic diagram to illustrate the case when lattice
site being scanned is already labeled with a domain label. As shown,
the site (i, j) that is being scanned is labeled with label l . In this case,
the right and upper neighbors are checked for label 0 and are added
to the path of label l .

domain discussed covers the possibilities encountered during
the scanning of the sites.

Based on the discussions, in general, appending of a site
(i, j) as a new node to a path consists of three steps. First, the
site (i, j) is linked to the current end node of the path. Second,
the site (i, j) is identified as the end node. The addition of
the node is completed by updating the end node variables and
node count variable. These steps are common to all the cases.

3. Domain merging

Merging of two domains occurs when the labels of the
neighboring lattice sites along the column (i, j) and (i, j + 1)
are positive integers but different. As an example, consider
the labels of these sites are l and m, respectively, and as-
sume l < m. A representative case of such a situation is
shown in Fig. 5. Following the conventions adopted, the do-
main variables of the two are {αl , β l , xl

i, j, yl
i, j, γ

l , δl ,N l} and
{αm, βm, xm

i, j, ym
i, j, γ

m, δm,Nm}. To merge the two domains,
the first step is to link the two corresponding paths and con-
solidate the two into a single one. For this the last node of the
lth domain is linked to the first node of the mth node. It is
done by setting xl

γ l ,δl = αm and yl
γ l ,δl = βm. As a convention,

we tag the merged domain with the variables corresponding to
the one with the lower label value, in this case l . The merger is
complete by updating the last node variables as γ l = γ m and
δl = δm, and the total number of lattice sites in the domain
N l = N l + Nm. As a last step, the mth domain is effectively
nullified by setting Nm = 0.

IV. CHARTING THE BOUNDARY

After we identify the domains, the next step is to map their
boundaries. The boundary here means the outer edge of the
domain. It defines the geometry of the domain. It excludes
the internal boundaries associated with voids within the do-
mains. Determining the boundary is essential to investigate
the properties of the domains and to apply the methods rooted
in the percolation theory. The algorithms for determining the
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FIG. 5. A schematic diagram to show the possibility of domain
merging. The neighboring sites (i, j) and (i, j + 1) obtain different
labels during the scan. In this case, the two domains need to be
merged, and a single label is to be retained.

boundary are referred as the hull generating algorithms in
the percolation theory [32,33]. To identify the boundary, we
march along it in the clockwise direction, one bond at a time.
For a domain, the starting site of the march (xs, ys) is identified
as the leftmost site along one of the rows. Then the march is
initiated after identifying the hop along the boundary to reach
(xs, ys). We refer to this as the prior hop.

A. Identifying the prior hop

The starting point (xs, ys), as mentioned earlier, is the left-
most site of the domain along a row. Let the domain be labeled
with m. Hence, there are only two possibilities of the prior hop
through which it can reach the site. These are as shown in the
Figs. 6(a) and 6(b). Thus, it is sufficient to check the label
at the two lattice sites (xs+1, ys) and (xs, ys−1). The one with
label m defines the originating site of the prior hop. With this
information we can initiate the march. At the later hops too,
the determination of the next hop requires the identification
of the previous hop and this information is at hand once the
march begins.

B. Clockwise scan

After the identification of the prior hop, we scan the other
three nearest neighbors of the site (xs, ys) to identify the next
site on the boundary. The scanning is done in the clockwise
direction with respect to the orientation of the prior hop. This
is schematically shown in Figs. 6(c) and 6(d). The scan is
terminated when we encounter a neighbor with label m. Let
this neighbor be identified as (xs′ , ys′ ) and it is the next site on
the boundary. If all the three neighbors have label −1, then the
march proceeds by retracing along the prior hop and origin of

m

m−1

m

m

−1

−1

−1

−1

(xs, ys)

(a)

−1

m

m

m−1

−1

−1

−1

−1

(xs, ys)

(b)

m

m

m

m−1

−1

−1

−1

−1

(c)

(xs, ys)

−1

m

m

m−1

−1

−1

−1

−1

(xs, ys)

(d)

FIG. 6. A schematic diagram to illustrate the prior hop and the
clockwise scanning for the boundary march. The march is started
from the leftmost site (xs, ys ) as highlighted by the peach color. The
black arrow represents the prior hop to reach the site (xs, ys ). As
illustrated in text, this prior hop can be either in upward direction
[panel (a)] or leftward direction [panel (b)]. Panels (c) and (d), the
blue dashed arrow indicates the scanning of the neighbors of (xs, ys )
in a clockwise manner with respect to the orientation of the prior
hop. The neighbor with label m first encountered in this clockwise
scan then becomes next site on the boundary.

the prior hop is identified as the lattice site (x′
s, y′

s). The bond
connecting the two lattice sites (xs, ys) and (xs′ , ys′ ) defines
the orientation of the prior hop to scan for the next lattice site
on the boundary after (xs′ , ys′ ). This process of scanning is
repeated until we return to the starting site (xs, ys).

As a representative case, we show the path along the
boundary of a cluster in Fig. 7. The starting site (xs, ys) is
the leftmost site of the bottom row and is highlighted in green
color. The prior hop to reach (xs, ys) is leftward in this case
and shown by a gray arrow. Once the starting site and the prior
hop are identified, the scanning of nearest neighbors proceeds
to identify the next site on the boundary. As explained, the
march is completed when we return to the initial starting site
(xs, ys). An important prerequisite for the boundary march is
thus the identification of the starting site and the prior hop.

V. COMPARISON OF THE ALGORITHM
WITH OTHER METHODS

As mentioned in the Introduction, there are other well-
known algorithms to identify domains in the percolation
analysis. In this section, we compare the proposed algorithm
with two of the standard algorithms; these are the HK and
the recursive neighbor search algorithms. The comparisons
are based on two parameters, the compute time and memory
required. To get the general trends, the system size is varied
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FIG. 7. A schematic illustration of the march along the boundary
of a cluster of label m. The leftmost site (xs, ys ) in the bottom row
is the starting site of the march. The prior hop along the boundary
to reach (xs, ys ) is the site (xs+1, ys ), thereby this is leftward prior
hop. This is shown by the gray colored arrow. The red arrows denote
the directionality of the boundary march of the cluster shown in the
figure.

over four orders of magnitude from 104 to 108. And for each
system size the runtime is taken as the average of 40 con-
figurations. The configurations are generated using univariate
random numbers generated using the Marsenne twister pseu-
dorandom number generator.

A. Hoshen-Kopelman algorithm

It is a multiple cluster labeling algorithm widely used in
clustering and percolation studies. In this algorithm, the lattice
sites and their neighbors are scanned systematically, and the
sites are labeled according to the occupancy. So in this method
a cluster may comprise smaller clusters or subclusters with
different labels. An equivalence class of the different labels
of the subclusters identify a cluster. Thus, the HK algorithm
constructs a coarse-grained linking between the cluster labels.
On the contrary, the DC algorithm is fine-grained in charac-
ter as it creates intersite links. Such a fine-grained approach
may be better suited for the characterization and properties
calculations using percolation theory. In the HK framework,
additional lattice scan is required while computing cluster
properties. However, in the DC algorithm, the linked-list iden-
tifies members of a cluster and traverse through the cluster
with a unique path. Additional scans are not required. Thus,
the DC algorithm is suitable for percolation problems that rely
on identifying and analyzing the cluster properties.

Furthermore, an additional scan after the first lattice scan
is required in the HK algorithm to label the clusters with
a unique cluster label. This postprocessing step in the HK

FIG. 8. The runtime of the HK (solid blue circles), the proposed
DC algorithm (solid red triangles), and recursive neighbor search
algorithms (solid black squares) for different lattice sizes Ns. The
main panel shows total time required for the first scan and the
postprocessing in the HK and the DC algorithms. For comparison
of all the three methods, the inset plot shows the time required for
the first scan in the three algorithms.

algorithm makes it slower than the DC algorithm, as shown
in Fig. 8 (main panel). The details of the comparative studies
related to the Fig. 8 are given in Appendix A.

The memory required in the DC algorithm is about three
times larger than the HK algorithm. This is expected as the DC
method needs memory to construct the linked lists. Consider-
ing the recent advances in memory hardware technology this
is not a significant limitation. However, a decade ago, when
very large memory configurations were not possible, it would
have made a huge difference. In summary, the fine-grained
linking of the DC algorithm offers an advantage and renders
it suitable for the cluster characterization and properties cal-
culations.

B. Recursive neighbor search algorithm

The recursive neighbor search algorithm involves scanning
and labeling the neighbors of the occupied sites recursively.
In this method, if an occupied site is found during the scan,
then it is relabeled and the neighbors of this site are scanned.
This process is continued recursively until all the sites of
the cluster are identified. The method is implemented with
relative ease using recursive function call. The key advantage
of this approach is only the required cluster can be identified
without the need to identify other clusters. However, as shown
in the inset of Fig. 8 and discussed in Appendix A, this
algorithm is slower than the DC and the HK algorithms. In
addition, studies have shown that the number of the recursive
functions becomes very large for larger system sizes [34]. This
limitation does not apply to the DC algorithm as it is not based
on recursion. Further, the recursive neighbor search is also not
efficient for properties calculations as the domain information
is not stored and each cluster characterization requires a lattice
scan. It is to be noted that the problems studied in the per-
colation theory are not restricted to cluster identification and
their characterizations. The choice of the numerical approach
to study the percolation problems should therefore be based
on the nature and complexity of the problem of interest.
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VI. MI-SF QUENCH DYNAMICS

The MI phase to the SF phase quench dynamics of the
Bose-Hubbard model [27], a model which describes the
physics of ultracold bosons in optical lattices [35], has been
experimentally realized [36]. During the quench, as the sys-
tem crosses the critical point, SF domains are formed within
MI as a background. We quantify the number of the SF do-
mains using our domain counting algorithm. To discuss the
dynamics, we first introduce the BHM Hamiltonian.

A. BHM Hamiltonian

The BHM Hamiltonian which describes the physics of
ultracold bosonic atoms loaded in a 2D square optical lattice
is [27,35]

Ĥ = −
∑
〈i, j〉

J (b̂†
i b̂ j + H.c.) +

∑
i

n̂i

[
U

2
(n̂i − 1) − μ

]
, (2)

where i ≡ (p, q) represent the lattice indexes, j ≡ (p′, q′) are
the indexes of its neighboring lattice site, b̂†

i (b̂i) are the
creation (annihilation) operators, n̂i is the bosonic occupation
number operator, and the summation indexes within 〈· · · 〉
denote the sum over the nearest neighbors. Further, J is the
hopping strength, U > 0 is the on-site interatomic interaction
strength, and μ is the chemical potential.

The incompressible MI state and the compressible SF
state are the two ground states of the BHM Hamiltonian in
the strongly interacting (J/U � 1) and weakly interacting
(J/U � 1) domains, respectively [27,35]. The quantum phase
transition between these two phases has been observed ex-
perimentally [37,38]. The MI state has integer commensurate
lattice site occupancies, and the bosons are pinned to the
lattice sites. The SF state, on the other hand, features a real
valued occupancy, and it is a conducting phase. The two
phases are identified based on the SF order parameter

φp,q = 〈b̂p,q〉. (3)

It is zero in the MI phase and nonzero in the SF phase. For
a homogeneous lattice system, φp,q is uniform throughout
the lattice. For our studies, we use the single-site Gutzwiller
mean-field (SGMF) method to obtain the ground state of the
model and phase diagram. In this method, the annihilation
(creation) operators in Eq. (2) are separated into a mean-field
φ (φ∗) and a fluctuation operator [39,40]. The Hamiltonian in
Eq. (2) can then be approximated as the mean-field Hamil-
tonian which is a sum of single site Hamiltonians ĤMF =∑

p,q ĥp,q. We perform self-consistent calculation of φp,q until
the desired convergence is obtained. The details of using this
method in our computations are given in our previous works
[30,41–46].

B. Quench dynamics

To study the MI-SF quench dynamics of the system, the
hopping amplitude J is ramped from an initial value Ji to a
final value Jf . These are chosen such that Ji and Jf correspond
to the MI and SF phases, respectively. The remaining parame-
ters of the system are held fixed. Then the temporal evolution
of the system during the quench and afterwards is described

by the time-dependent Schrödinger equation,

ih̄∂t |ψ〉p,q = ĥp,q|ψ〉p,q, (4)

where |ψ〉p,q is the wave function at site (p, q). Due to the
intersite coupling through the order parameter φ, we ob-
tain a set of coupled partial differential equations. These are
solved using the fourth-order Runge-Kutta method. To start
the quench, we obtain the equilibrium wave function with the
J = Ji and introduce phase and density fluctuations to it [46].
These fluctuations simulate the quantum fluctuations essential
to drive the quantum phase transition. To calculate system
properties we take the ensemble average of a set consisting
of 80 such randomized initial states.

We examine the nonequilibrium dynamics of the system
during the quench from the KZM perspective. It categorizes
the quench dynamics into three temporal regimes [47,48],
corresponding to the adiabatic, impulse, and adiabatic regime.
These temporal regimes arise due to the critical slowing down
near the quantum critical point (QCP). It predicts the rate
of the topological defects formation during the course of the
quench dynamics [18–22]. These defects are generated at the
meeting points of the domains of the symmetry broken phase.
This is is due to the local gauge choices of the order parameter
associated with the domains. For point defects like vortices,
the density of defects is hence proportional to the number of
domains. It is to be mentioned that the transition from MI
to SF phase breaks the global U (1) symmetry spontaneously.
Then number of the domains ND satisfies the scaling law

ND ∝ τ−d
Q , (5)

where 1/τQ is the quench rate and exponent d = 2ν/(1 + νz).
Here ν is the critical exponent of the equilibrium correlation
length and z is the dynamical critical exponent. It is to be noted
that these scaling laws are applicable at t̂ , which is the time at
which the system transits from the impulse to the adiabatic
domain. The details of locating t̂ are given in our previous
work [46]. The same scaling law is also applicable to the
defect density Nv . For the MI-SF transition the defects are the
vortices and their density is given by [23–25,46]

Nv =
∑
p,q

|p,q|, (6)

with

p,q = 1
4 [sin(θp+1,q − θp,q ) + sin(θp+1,q+1 − θp+1,q )

− sin(θp+1,q+1 − θp,q+1) − sin(θp,q+1 − θp,q )], (7)

where θp,q is the phase of φp,q. In the results section, we first
calculate the critical exponent d from the defect density Nv .
Then we use our method to calculate ND and show that we get
similar value of the critical exponent based on ND. This serves
as an excellent cross checking of two different approaches to
estimate the same critical exponent.

C. Results

To study the MI-SF nonequilibrium quench dynamics, we
consider a system of size of 100 × 100. The Hamiltonian is
scaled with U and time is defined in the units of h̄/U . The
hopping amplitude J is evolved using the following quench
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FIG. 9. The time evolution of the vortex density Nv (red) and
|�| (blue) as a function of time, for τQ = 100. The QCP is crossed
at t = 0, and the dashed gray line indicates the time t̂ . The order
parameter |�| rises exponentially after t̂ , as shown in the inset. The
vortex density Nv exhibits a steep decrease after crossing the QCP
due to the annihilation of the vortex-antivortex pairs.

protocol:

J (t ) = Ji + (Jc − Ji )

τQ
(t + τQ). (8)

With this protocol, we have J (−τQ) = Ji and J (0) = Jc is the
QCP of the MI-SF phase transition. For our study we take
Ji = 0.0U and Jf = 0.08U and fix the chemical potential μ =
0.41U . The value of the μ is chosen so that it corresponds to
the tip of the MI(1) lobe and Jc = 0.042U . Thus, at t = −τQ,
the system is in the MI(1) phase, and at t = t f , it is in the SF
phase when the quantum quench ends.

1. Transition from MI to SF phase

As an indicator of the quench dynamics, the temporal evo-
lution of |�| = ∑

p,q |φp,q|/Ns and Nv during the quench, for
τQ = 100 are shown in Fig. 9. Here Ns denotes the number
of lattice sites. In the initial stages of the quench dynamics,
|�| is close to zero (∼10−3) and remains so until t̂ . In the
equilibrium MI state, |�| is zero, but in the quench dynamics
it is finite due to the fluctuations added in the initial-state
preparation. As the QCP is crossed at t = 0, the system ought
to evolve into SF phase (t > 0) and acquire a larger |�|. But,
as the system is still in the impulse domain, the |�| remains
small until it ends at t̂ . Post t̂ , there is an exponential increase
of |�|, which is discernible from the plot in Fig. 9. After the
exponential increase, the |�| settles to a steady-state value.

The snapshots of |φp,q| at different times are shown in
Fig. 10. The small values of |φp,q| at initial time t = −τQ is
as shown in Fig. 10(a). The figure also indicates the fluctu-
ations present in the values of |φp,q|. The Fig. 10(b) shows
the formation SF domains at t̂ when the system re-enter the
adiabatic domain. The domains can be easily counted using
our method. When J/U is further increased, these domains
grow in size, and merge through the phase ordering process.
This is visible from the Figs. 10(c) and 10(d), in these figures
|φp,q| is almost uniform.

The evolution of defect density Nv is complimentary to that
of |�|. At the initial stages of the quench, Nv is high (≈2200),
this is due to the large phase fluctuations added to the initial
state. It decrease after the system crosses QCP. This happens
as the SF domains begin to form and phase coherence within

FIG. 10. Snapshots of |φp,q| at certain time instants for τQ = 100.
At initial time t = −τQ, |φp,q| is small as shown in (a). After t̂ , the
|φp,q| increases and domains of SF are formed. This is shown in panel
(b) which is at t = t̂ . These domains disappear due to the merging as
time progresses and the system becomes homogeneous, as shown in
panels (c) and (d).

the domains prevent the presence of a vortex inside a domain.
As time progresses, the phase ordering takes places, and these
domains merge. The domain merger results in the annihilation
of the vortex-antivortex pairs, further reducing Nv . This is
discernible from Fig. 9.

2. Critical exponents and scaling laws

To study the scaling of the Nv with τQ, we compute Nv

over a range of τQ. As mentioned earlier, the scaling laws are
considered at time t̂ . Hence, we compute Nv at t̂ for every
τQ. The log-log plot of the values obtained are shown in
Fig. 11(a). From least-squares fitting, we get the value of the
critical exponent d as 0.41. That is, Nv ∝ τ−0.41

Q .
Following similar analysis, we determine the scaling expo-

nent of the ND with the quench rate. As shown in Fig. 10(b),
SF domains begins to appear at t̂ . These domains are char-
acterized by a finite value of the SF order parameter. Since
the MI regions also have a small nonzero SF order parameter,
owing to the initial fluctuations, we set a threshold ε of the
|φp,q| to distinguish the SF phase from the MI phase. The
value of ε is taken as the average of |φp,q| over the prominent
MI phase regions in the system at t = 0. In our computations,
based on this definition, we get ε ≈ 0.07. We then calculate
the ensemble-averaged value of ND using our method. From
the results, the scaling of ND with τQ is as shown in Fig. 11(b).
We observe a power-law scaling,

ND ∝ τ−0.39
Q , (9)

that is, the critical exponent d = 0.39. This implies that the
scaling of the ND with τQ is approximately same as the scaling
of the Nv with τQ. This is expected from the KZM, as the
density of the topological vortices is used as a proxy for the
number of domains. Thus, the domain counting algorithm
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FIG. 11. Scaling of the vortex density Nv and number of domains
ND, with respect to τQ. From (a), we see that the exponent d = 0.41.
The scaling exponent for ND versus τQ is 0.39, as shown in (b). The
blue error bars represent the standard deviation of the data values.

predicts an exponent that is in a good agreement with the
exponent obtained from the vortex density. Here it is to be
noted that the methods used in computing ND and Nv are
different. One is based on the current distribution and our
method is based on the identification of clusters. The two in
essence serve as independent checks of the KZM scaling of
the MI-SF transition.

VII. DISORDERED BOSE-HUBBARD MODEL

The analysis of the MI-SF quench dynamics utilized the
domain counting aspect of the method we have developed.
The fine-grained nature of the method also makes it suitable
for detailed analysis of the clusters as well. We apply this to
study the critical properties of the BG to SF transition in the
2D square optical lattice with disorder. The system is modeled
with the disordered Bose-Hubbard model (DBHM). Earlier
studies have identified the ground-state phase diagram of the
DBHM and have shown the absence of a direct MI-to-SF
transition [27–30,49–51]. The MI-SF transition is intervened
by the BG phase, which is characterized by nonzero com-
pressibility and zero superfluid stiffness. Structurally, this is
essentially the MI phase inlaid with SF islands and the SF
islands lead to the finite compressibility. However, the super-
fluid stiffness is zero as the islands cannot generate phase
coherence across the system. Thus, in terms of percolation
theory, the SF islands in the BG phase are nonpercolating.
But, the clusters percolate when the BG phase undergoes a
transition to the SF phase. Therefore, the BG-to-SF transition
can be viewed as the percolation analysis of the SF clusters.
Previous works [52–54] have studied the geometric properties
of the SF clusters and compared the onset of superfluidity with
the percolating transition of the system. In this work, we delve
into the cluster properties using our method. In particular, we
study the power-law divergence of the correlation length of the
system near the percolating transition and extract the critical
exponent ν quantifying the divergence. We also compute the
fractal dimension of the hulls of the SF clusters using the
boundary walk algorithm discussed earlier. These studies re-

veal that the BG-to-SF transition falls in the universality class
of 2D random percolation.

A. DBHM Hamiltonian

The DBHM Hamiltonian of the 2D square optical lattice is
[27,30,52]

Ĥ = −
∑
〈i, j〉

J (b̂†
i b̂ j + H.c.) +

∑
i

n̂i

[
U

2
(n̂i − 1) − μ̃i

]
,

(10)

where, except for μ̃i, the model parameters have the same
meaning as the BHM Hamiltonian in Eq. (2). Here the ef-
fective chemical potential μ̃i = μ − εi is site dependent, and
εi ∈ [−�,�] is a univariate random number to simulate di-
agonal disorder. The parameter � denotes the strength of the
disorder. In the experiments, the disordered lattice potential is
generated by shining a speckle beam [55–57].

The ground-state phase diagram of the DBHM exhibits the
quantum phases determined by the competition between the
hopping energy J , the interaction energy U , and the disor-
der strength �. Then, like in the BHM, we use the SGMF
method to obtain the quantum phases and their characteristic
order parameters. For a moderate �, when J/U is small, the
strong onsite repulsion favors the incompressible MI phase
and atoms are pinned to the sites. For large J/U , the large
hopping strength favors the compressible SF phase and atoms
are itinerant. In the intermediate J/U the two phases are sepa-
rated by the BG phase. As mentioned earlier, the BG phase is
characterized by SF islands in the background sea of insulat-
ing MI phase. These islands impart finite number fluctuations
δnp,q to the BG phase. Hence, δnp,q is an order parameter to
distinguish the BG phase from the number coherent MI phase.
For the site (p, q),

δnp,q =
√〈

n̂2
p,q

〉 − 〈n̂p,q〉2, (11)

where the expectation value 〈..〉 is taken with respect to the
ground state. At the BG-SF phase boundary, the SF stiffness
ρs is the relevant order parameter to differentiate the BG
and SF phases. It denotes the finite energy required to alter
the phase of the wave function of the system. Since the SF
phase is phase coherent, it exhibits a stiffness or resistance
for the phase change. So, ρs is nonzero in the SF phase. But,
it is zero in the MI phase and nonzero but small in the BG
phase. To compute ρs, we impose twisted boundary condition.
It modifies the hopping terms by introducing Peierls phase
factors [58–61]. For the DBHM, we impose twisted boundary
condition along the x direction and transform the hopping
terms as [59,61]

J (b̂†
p+1,qb̂p,q + H.c.) → J (b̂†

p+1,qb̂p,qei2πϕ/Lx + H.c.). (12)

The SF stiffness is then defined as

ρs = Lx

8π2

∂2E0

∂ϕ2

∣∣∣∣
ϕ=0

, (13)

where E0 is the ground-state energy with twisted boundary
condition.
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For our studies based on the statistics of the SF clusters in
the BG phase, we choose the system size as 1000 × 1000. The
order parameters δnp,q and ρs are taken as ensemble average
of 60 disorder realizations. Here it is to be added that we
observe finite-size effects for system sizes up to 100 × 100.
We attribute this to the poor statistics as a result of fewer do-
mains in a smaller system size. The remedy is to increase the
number of domains by increasing the system size and improve
the statistics. This reduces the sample to sample variation in
the quantities like the correlation length. The system size of
100 × 100 is, however, suitable for other studies to probe
properties which depend on the average or coarse grained
measures like the determination of the phase diagram and
quench dynamics.

B. Percolation analysis

The percolation theory analyzes the statistical and geo-
metrical properties of the clusters of sites on a lattice [4].
Specifically, in the site-percolation problem, every lattice site
is independently and randomly occupied with probability p.
The collection of neighboring occupied sites is termed as
a cluster. For small p, a majority of the clusters constitute
small number of sites and are isolated, while for large p, a
majority of the occupied sites form a percolating cluster which
spans from one edge to the opposite edge. Thus, there exists
a critical threshold probability pc so that for p < pc, there is
no spanning cluster, and for p � pc, there exists at least one
spanning cluster. Such a percolating transition is characterized
by power-law divergences and universal critical exponents.
One property which exhibits divergence at transition is the
correlation length of the system ξ . It can be defined as an
average over the cluster radii in the system

ξ 2 =
∑

s R2
s s2ns∑

s s2ns
, (14)

where Rs is the gyration radius of the cluster of s sites and the
ns denotes the average number of clusters of size s per site. In
the summation, the contribution from the infinite, percolating
clusters is omitted [4,5]. At the percolation transition ξ shows
power-law divergence,

ξ ∝ |p − pc|−ν . (15)

The calculation of Rs involves the evaluation of the distance
of a lattice site from the center of mass of the cluster [4,5]. For
systems with the periodic boundary conditions (PBC), due to
the absence of edges, there are two possible definitions of the
distance between two lattice sites. To resolve this in a consis-
tent way, we unwrap the system. So that the clusters in the
original system are mapped onto a system where dimensions
are doubled. In the larger system, the distance between the
lattice sites in a cluster are defined without ambiguity. The
details of this procedure are given in the Appendix B.

In the BG phase, the sites with nonzero SF order parameter
are considered as occupied sites. Hence, as the critical Jc of the
BG-to-SF transition is approached, we expect the SF clusters
to percolate. So, we can equivalently write the power-law
divergence in terms of reduced hopping strength as

ξ ∝ |J − Jc|−ν . (16)

FIG. 12. Snapshots of |φp,q| at different J/U values. Panels
(a)–(d) correspond to the J/U values as 0.009, 0.017, 0.019, and
0.025 respectively. As the J/U is increased, the SF domains per-
colate and the system undergoes a transition from the BG to SF
phase. The chosen parameters are μ = 0.2U and � = 1.2U . Panel
(b) illustrates the order parameter profile just before the percolation
transition.

To identify the occupied sites we choose a threshold of 10−3

for the SF order parameter.

C. Results of BG-to-SF transition

For the percolation analysis we take � = 1.2U and μ =
0.2U and scan the phases as a function of J/U . The phase
diagram in the J/U − μ/U plane, as reported in Ref. [30],
constitutes the BG and SF phases. The absence of the MI
phase is due to the high disorder strength. The snapshots
of |φp,q| for selected values of J/U are shown in Fig. 12,
for a 100 × 100 system and μ/U = 0.2. In the figure the
rare SF islands in the BG phase are visible in the Fig. 12(a)
for J/U = 0.009. These SF islands are nonpercolating, and
hence the introduction of a phase twist does not cost energy.
The SF islands increase in size as J/U is increased; this is
evident in Fig. 12(b), which shows |φp,q| for J/U = 0.017.
This snapshot illustrates the order parameter profile before
the percolation transition and highlights the large SF islands
in the system. Although the SF islands are large, there is no
spanning cluster. On reaching critical J/U a spanning cluster
emerges and system undergoes percolation transition. This is
illustrated in the Fig. 12(c), the system supports a spanning
cluster for J/U = 0.019. Due to the spanning SF cluster,
introducing a phase twist costs energy and superfluid stiffness
ρs assumes a finite value. On further increase of J/U the
background MI phase region is completely depleted and the
entire system is in the SF phase. This is discernible from the
Fig. 12(d).

In the Fig. 13(a), the correlation length ξ is shown as a
function of J/U . As evident from the figure ξ diverges near
J/U ≈ 0.017 and this signals a percolation transition from the
BG phase to the SF phase. Using the relation in Eq. (16) we
can calculate the exponent ν which quantifies the divergence
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FIG. 13. Plot of the correlation length ξ and the superfluid stiff-
ness ρs as a function of J/U . The chemical potential is μ = 0.2U
and disorder strength is � = 1.2U for these calculations. The results
are obtained by averaging over 60 disorder realizations. In (a), we
observe a divergence of ξ , signaling the percolation transition from
the BG to SF phase, with Jc near 0.017U . The critical exponent is
ν = 1.306 ± 0.036. The standard deviation from the average value
is shown by the blue error bar. Panel (b) illustrates the stiffness
ρs as a function of J/U . There is an increase in the stiffness near
J/U ≈ 0.017 as shown in the inset. For numerical calculations, the
threshold value 0.01 (shown in gray dashed line) is considered to
distinguish between the BG and SF phase.

and obtain ν = 1.306 ± 0.036. This is in excellent agreement
with the value ν = 4/3 corresponding to the universality class
of 2D random percolation model. Previous studies [52,62]
have also computed the exponent ν and the values reported
are in good agreement with our results. To study the BG-to-SF
transition further, we plot ρs as a function of J/U in Fig. 13(b).
The calculation of ρs are performed with a 100 × 100 system,
as the computations with the twisted boundary conditions
are compute intensive and require long execution times for a
1000 × 1000 system. As mentioned earlier, ρs is small in the
BG phase owing to the absence of a global phase coherence
in the system. It shows an increase as the system enters the SF
domain. Based on our previous work [30], we consider ρs ≈
10−2 as a threshold for distinguishing between the BG and
SF phase. The plot shows an increase in ρs at J/U ≈ 0.017,
and the threshold is crossed at J = 0.0174U . This is also the
point where ξ shows divergence. Thus, the identification of
the BG-SF transition with the order parameter ρs matches with
the percolation analysis. Given the fine-grained approach of
our method, the properties of the domain formation and their
dynamical evolution can be analyzed using our method. This
shall be addressed in our future works.

D. Fractal dimension of hulls of SF clusters

The percolating clusters near the percolation transition are
self-similar and can be characterized by a fractal dimen-
sion. In particular, the perimeter of the clusters close to the

FIG. 14. Charted boundary of the SF clusters shown in
Fig. 12(b) after unwrapping the system. The clusters in the original
system are mapped onto the system with double dimensions. The SF
clusters are identified with different colors in the figure.

percolation transition point is similar to a random walk with
many fractured edges and can be characterized by a fractal
dimension D which can be computed using the area-perimeter
relation

H ∝ AD/2, (17)

where H is the perimeter or the hull and A is the area of the
cluster. In this subsection, we investigate the fractal properties
and the compute the fractal dimension of the SF islands close
to the BG-SF transition point.

For our studies, we consider J = 0.017U for a 100 ×
100 system and consider 60 disorder realizations. Once we
identify the equilibrium configurations of each of these 60
realizations and identify the SF islands, we use the boundary
walk algorithm to compute the hulls of the clusters. As J
is close to criticality, there are clusters which lie across the
edges along the x and y directions due to the periodic bound-
ary conditions. To simplify the analysis, we unwrapped the
system and mapped the clusters onto a larger system. This
ensures that each cluster forms an island without touching
the edges. Then, the starting site and the prior hop for the
boundary walk can be accomplished without any ambiguity.
As an illustration, we show the unwrapping of the order pa-
rameter profile corresponding to Fig. 12(b) and the charted
boundaries of these clusters in Fig. 14. The hull of all the
clusters in other disorder realizations are computed in same
way. The variation in the hull of these clusters with the cluster
area is shown in Fig. 15. In this plot, the hulls of clusters with
area in the bin [A, A + δA] are averaged to give H (A). We
have chosen δA = 0.3A for our studies. The δA ∝ A assures
uniform spacing in the log A scale. We do a least-squares fit
to the data using the area-perimeter scaling given in Eq. (17)
and the result is shown in Fig. 15. The fractal dimension D
obtained from the results is 1.72 ± 0.02. This value is in good
agreement with the predicted value of the fractal dimension
D = 1.75 in the universality class of 2D random percolation
[33,63,64,65]. Thus the analysis of the fractal dimension of
the SF islands in the BG phase complements or confirms
the earlier conclusion that the BG-SF transition belongs to
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FIG. 15. Power-law scaling of the hulls of the clusters with their
area. The data points are represented by blue color, while the red line
is the best fit to the data. The fractal dimension from this analysis is
D = 1.72.

the universality class of 2D random percolation. This is one
example application of the fine-grained analysis using the DC
algorithm.

VIII. CONCLUSION

To summarize, we have developed an algorithm to identify
clusters or domains and study their percolation properties
on a 2D lattice. The algorithm exploits the structure of the
linked-lists data type and enumerates the clusters on the lattice
with a single scan. Further, the locations of the sites consti-
tuting a cluster are stored, and this facilitates the application
of methods based on percolation theory. Our approach, with
minor modifications in the scanning process, can be adapted
to lattices of higher dimensions. Based on the results, we also
present an algorithm to identify the boundary of the cluster.
Using the algorithm, we compute the number of domains
formed in the MI-SF quench dynamics and calculate the criti-
cal exponent. The critical exponent so obtained is in excellent
agreement with the result from the vortex density. Further,
we also study the BG-SF transition in the DBHM. For this
we calculate the correlation length of the SF clusters and
observe a divergence near the BG-SF transition. In addition,
we have computed the fractal dimension of the SF clusters
near the BG-SF transition. The exponent ν associated with the
divergence of correlation length and the fractal dimension D
suggests that the BG-SF transition belongs to the universality
class of 2D random percolation.
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APPENDIX A: COMPARISON WITH
OTHER ALGORITHMS

We have compared the execution times for the domain
identification required by the HK, DC, and the recursive
neighbor search algorithms. The comparison is based on anal-
ysis of randomly generated 40 lattice configurations. In each
member the sites are randomly labeled with 0 and −1. As
mentioned earlier, the sites labeled 0 are to be identified as a
domain. For comparison, for each member the execution time
using the three algorithms are noted. To remove the effects
of fluctuation on account of system load and other factors,
an average of the results is calculated from the 40 members.
For uniformity and to avoid computational overheads, the
FORTRAN implementation of these algorithms are executed
on a HP EliteDesk PC with Intel i7 processor.

The comparison between the execution times of the HK
and the DC algorithms are shown in Fig. 8. For the HK
algorithm we have used the FORTRAN implementation by
Anders from the GitHub [66]. The results indicate that the
DC algorithm is marginally faster than the HK algorithm. The
least-squares fit of the data gives TDC = 9.58Ns

1.01 nanosec-
onds and THK = 16.05Ns

1.00 nanoseconds, where TDC(THK )
denote the execution time required in the DC (HK) algorithm.
This suggests that both these methods have number of floating
point operations proportional to the number of sites. However,
it is to be noted that the execution time of the DC algorithm
also includes the construction of the linked lists, and these lists
can be utilized for further studies. The main panel in Fig. 8
includes time required for the first scan and the following
postprocessing steps. In the DC algorithm, the postprocessing
step is to reassign the cluster labels in ascending order, as the
cluster labels after the first scan are not in a sequence. This
step is thus to make the labels systematic which helps for
percolation studies. However, post the first scan, the clusters
are identified with unique labels thus completing the domain
identification process. On the contrary, the second scan in
the HK algorithm is necessary to label the clusters with
unique labels. This further adds to the advantages of the DC
algorithm.

The domain mergers are the reason for the postprocessing
required in the DC and HK algorithms. However, there are
no domain mergers in the recursion method, and hence there
is no postprocessing of labels. Therefore we have compared
the run time of the algorithms until the first scan, avoiding
the postprocessing of the data, and the results are shown
in the inset in Fig. 8. We have illustrated the comparison
for a small range of lattice sizes for the readability of the
figure. We notice that the DC algorithm requires extra time,
around 4% more relative to the HK algorithm. This is due
to the construction of the linked-lists. This also suggests that
the postprocessing in the DC algorithm requires lesser time
than that in the HK algorithm. This is to be expected, as
in the DC algorithm, the postprocessing involves transfer of
the linked-lists from the old to new cluster labels, without
involving a second scan. However, for the HK algorithm, the
postprocessing is the secondary lattice scan. It is also evident
that the recursive neighbor search is slower than the DC
and the HK algorithm, which is another disadvantage of this
method.
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APPENDIX B: SYSTEM UNWRAPPING

We describe the unwrapping procedure employed on the
system required to compute the distances within the system.
The aim is to map the system of size Lx × Ly with periodic
boundary conditions onto a larger system of size 2Lx × 2Ly

with open boundary condition. To begin with, we first identify
the clusters on the boundary of the system. For illustration,
consider a cluster that straddles across the left and right edge
of the system. Due to the PBC, the left and right chunks are a
part of same cluster. The chunk of this cluster connected with
the right edge of the system needs a x shift. The x shift implies
that the chunk is translated along the negative x direction by
distance Lx. After this step, the two chunks appear side by side
and the distance between any two points is unique. Similarly

a y shift is assigned to a chunk of the cluster which straddles
along bottom and top edge. In some cases, a cluster may
straddle across both directions. In this case, certain chunks
may require both x shift and y shift. As discussed in the main
text, the unwrapping of the domain configuration of Fig. 12(b)
is shown in Fig. 14. After these steps are performed, we
compute the geometrical properties of the clusters. Here we
mention that these steps are not valid for percolating clusters
as they may be infinite in length and would not accommodate
in a new system of finite size. But as stated in the main text,
the percolation analysis of the system generally ignores the
contribution from the percolating clusters, thereby shifting of
the finite sized nonpercolating clusters suffices to perform the
percolation studies.
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