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A meaningful topic that needs to be explored in the field of nonlinear waves is whether a neural network
can reveal the phase transition of different types of waves and novel dynamical properties. In this paper, a
physics-informed neural network (PINN) with parameters is used to explore the phase transition and time-
varying dynamics of nonlinear waves of the (2 + 1)-dimensional Boussinesq equation describing the propagation
of gravity waves on the surface of water. We embed the physical parameters into the neural network for this
purpose. Via such algorithm, we find the exact boundary of the phase transition that distinguishes the periodic
lump chain and transformed wave, and the inexact boundaries of the phase transition for various transformed
waves are detected through PINNs with phase domain decomposition. In particular, based only on the simple
soliton solution, we discover types of nonlinear waves as well as their interesting time-varying properties for
the (2 + 1)-dimensional Boussinesq equation. We further investigate the stability by adding noise to the initial
data. Finally, we perform the parameters discovery of the equation in the case of data with and without noise,
respectively. Our paper introduces deep learning into the study of the phase transition of nonlinear waves and
paves the way for intelligent explorations of the unknown properties of waves by means of the PINN technique
with a simple solution and small data set.
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I. INTRODUCTION

The investigation of nonlinear waves is a significant topic
in soliton theory [1]. These wave phenomena exist in na-
ture, experimental observations, and engineering applications
widely. The field is broad and encompasses such areas as
fluids [2], Bose-Einstein condensation [3–5], plasmas [6,7],
nonlinear optics [8,9], superfluid [10,11], and magnetics [12].
A variety of nonlinear waves to date have been discovered,
for example, solitons, breathers, and rogue waves, to name
a few. A soliton is a localized wave produced by a balance
between dispersion and nonlinearity, and their interactions are
usually characterized by elastic collisions [13]. A breather on
a constant background is an oscillating localized structure,
appearing not only in conservative systems but also in dis-
sipative ones [14–16]. The breather family mainly consists of
two members, namely, the Akhmediev breathers [14,15] and
Kuznetsov-Ma breathers [16]. An Akhmediev breather is peri-
odic in the transverse direction [14,15], while a Kuznetsov-Ma
breather is periodic in the propagation direction [16]. If the
period in either time or space approaches infinity, then the
limit case of each wave is a Peregrine soliton [17–19]. Such
wave is localized both in time and in space and thus de-
scribes a rogue wave [20] (which “appears from nowhere and
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disappears without a trace” [21]). These nonlinear waves
were first studied in low-dimensional models, such as the
Korteweg–de Vries equation [22], nonlinear Schrödinger
equation [23], and Boussinesq equations [24]. As the dimen-
sion increases the waves may show new properties different
from low-dimensional cases. For instance, the rogue waves
in the Davey-Stewartson equation appear in the form of line
rogue waves which “arise from the constant background with
a line profile and then disappear into the constant background
again” [25]. As the limiting case of the periodic lump chain,
the single lump solution is another type of high-dimensional
rational one and localized in space in all directions [26–32].
It is generally not a short-lived structure, unlike the Peregrine
soliton. These findings show that high-dimensional models,
indeed, exhibit some interesting nonlinear phenomena that do
not exist in low-dimensional ones.

In addition to the above waves, other types of nonlinear
waves converted from these basic ones were also reported
[33–40]. In particular, the phase transition of waves has at-
tracted considerable interest in recent years [33–40]. In such
context, a breather can be seen as a nonlinear superposi-
tion of two different types of wave components. One is the
solitary wave component and the other is the periodic wave
one, the characteristic directions of which are usually differ-
ent. When both components have the same direction, then
types of transformed waves can be observed, including the
bell-shaped soliton, multipeak soliton, periodic wave, and
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FIG. 1. The structure of the PINN with a single parameter for the (2 + 1)-dimensional Boussinesq equation. It is divided into two parts,
namely, the neural network and physical information. The neural network part includes the input layer, hidden layers, and output layer. The
mapping relationship is shown in the dashed red box. In the part of physical information, the residual of the equation is added to the loss
function as a physical constraint, which constitutes the loss function together with the loss of initial and boundary conditions. The parameter
(q) is embedded in the input layer, which provides the neural network with the ability of exploring the phase transition between the periodic
lump chain and transformed wave.

rational W-shaped soliton [33–39]. In the low-dimensional
case, the transformed waves appear as a result of higher-
order effects [33–38]. Such systems include the Hirota
equation [35], Lakshmanan-Porsezian-Daniel equation [37],
Sasa-Satsuma equation [41], nonautonomous Hirota equa-
tion [38], and so on. Note that there is no an analog in the
standard nonlinear Schrödinger equation. In addition, trans-
formed waves also exist in such coupled systems as the
coupled Hirota system [36], nonlinear Schrödinger-Maxwell-
Bloch system [42], and multicomponent AB systems [43–45].
As mentioned above, types of nonlinear waves show dif-
ferent physical properties in the high-dimensional case. The
same situation holds for transformed waves. In the (2 + 1)-
dimensional Ito equation, the multipeak soliton exhibits an
obvious shape-changed characteristic during its propagation,
also known as time-varying dynamics [46]. This is mainly
due to the fact that different kinds of wave components have
different velocities, which leads to the dynamic change of the
superposition region with time.

The neural network is one of the main application models
of deep learning, which has achieved great success in many
fields, such as speech recognition [47], image recognition
[48], and cognitive science [49]. In recent years, the deep
neural network (DNN) has been applied to solve important
practical problems due to its excellent ability [50]. However,
when faced with complex problems, a large amount of data
is difficult to obtain and this method lacks prior informa-
tion of the corresponding problems such as physical law and
professional knowledge. In view of the above issues, the

physics-informed neural network (PINN), which is a neural
network with physical laws, is used to explore the forward
and inverse problems of some fundamental partial differential
equations (PDEs) [51]. Such technique is also extended to
solve fractional differential equations [52], integrodifferential
equations [53], and stochastic differential equations [54]. No-
tably, domain decomposition approaches based on the PINN
framework have been developed in order to solve certain com-
plex PDEs [55,56]. In addition, the PINN method is devoted
to investigate integrable (1 + 1)-dimensional PDEs [57–62].
Recently, Ref. [63] revealed the distortion of the Peregrine
soliton when a Gaussian-type perturbation is added to the
initial condition. We note that the PINN algorithm is rarely
used to study the mechanism of the phase transition of non-
linear waves and to predict unknown dynamics. In particular,
there are few investigations on time-varying dynamics via
such technique.

In this paper, we consider the (2 + 1)-dimensional
Boussinesq equation. In shallow water, it is well known
that the Korteweg–de Vries equation is a model of a uni-
directional moving wave [22]. Instead, in the context of a
deep water wave, the counterpart is known as the nonlinear
Schrödinger equation [23]. Further, if oblique interactions
or slightly curved wave fronts exist, then the governing
equation becomes the Kadomtsev-Petviashvili equation [64].
Such equation serves as a model for long waves with weak
nonlinear restoring force and frequency dispersion [26,65].
Unlike the above models, the Boussinesq equation describes
the propagation of long waves in shallow water in opposite
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FIG. 2. The structure of the PINN with two parameters. The overall structure is the same as in Fig. 1. Unlike Fig. 1, the parameter q is
replaced by m and n that are responsible for classifying different types of transformed waves.

directions [24]. Similar to the Kadomtsev-Petviashvili equa-
tion, the (2 + 1)-dimensional Boussinesq equation is also
obtained in the two-dimensional case. It has weak dependence
on the second spatial variable, and it reads as [66]

utt − αuxx − βuyy − γ (u2)xx − δuxxxx = 0, (1)

in which u(x, y, t ) is a real-valued function with time variable
t and space variables x and y, the subscripts are represented
as partial differentials, and the parameters α, β, γ , and δ

are nonzero constants. Equation (1) can be used to describe
the propagation of gravity waves over water, in particular
the head-on collision of oblique waves [66]. Johnson et al.
obtained the exact and general solitary-wave, two-soliton, and

10-1

FIG. 3. Phase transition prediction. The orange dots describe the
training data required by the neural network. The star and triangles
stand for the predicted points. The transformed wave is denoted as
TW, and the periodic lump chain is expressed as PLC. By the PINN
method with a single phase transition parameter, it can be found that
the position of the red star is responsible for the phase transition
boundary, that is, the state transition will appear under this condition.
The value of the parameter q represents the wave number of the
direction y in the (2 + 1)-dimensional Boussinesq equation.

resonant solutions of Eq. (1) by the Hirota bilinear method,
and also have proved that it does not belong to the class of
completely integrable equations [66].

Here, we consider the PINN with physical parameters for
studying Eq. (1). By such neural network, we first give the
boundary of the phase transition which can distinguish be-
tween transformed and nontransformed waves. Subsequently,
we predict a series of transformed waves on the parameter
lines. In particular, we explore two approximate boundaries of
the phase transition in the parameter phase plane through the
parametrized PINN with phase domain decomposition. Fur-
ther, according to data derived solely from the soliton solution
[66], we show types of solutions and a dynamical property
of Eq. (1), namely, the time-varying dynamics. It should be
pointed out that all the data used in this paper are obtained
by auxiliary processing of the soliton solution in Ref. [66].
This shows that the PINN technique can discover solutions
and physical mechanisms with only a simple known solution
and a small amount of simple data.

II. METHOD

In this section, we first review the DNN and PINN
methods. Then we put forward the PINN algorithm with phys-
ical parameters and phase domain decomposition for studying
the transition mechanism of Eq. (1).

In general, the feed-forward neural network can complete
complex mapping from input space to output space through
the actions of multiple nonlinear functions [67]. If the feed-
forward neural network has D layers, it includes an input
layer, D − 1 hidden layers, and an output layer, and each layer
is assumed to have nd neurons (d = 0, 1, . . . , D). The neural
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FIG. 4. Prediction of the waves under different values of the parameter q via the PINN and DNN methods at time t = 0. The value of q in
each column corresponds to the triangles and star in Fig. 3, respectively. The plots in the first three rows describe the results from the analytical,
PINN, and DNN methods, respectively. In the last two rows, Error 1 is the absolute errors between the PINN and exact results, and Error 2 is
the absolute errors between the DNN and exact results. The areas outside the red boxes represent the results and errors of the extrapolation,
respectively. From the evolution of the four plots in the second row, the PINN method can explore the phase transition point effectively, i.e.,
q = 0. The parameters are α = −1, β = −1, γ = 3, and δ = 1.

network can be expressed as follows:

�d+1(xd ) = Wd+1xd + bd+1, d = 0, 1, . . . , D − 1,

u(x0; θ ) = (�D ◦ σ ◦ �D−1 ◦ · · · ◦ σ ◦ �1)(x0), (2)

where � is the affine transformation, ◦ is the composition
operator, σ is the activation function, θ = {Wd , bd}D

d=1 repre-
sents the set of all trainable parameters, and Wd and bd stand

for the weights matrix and biases from the (d − 1)th layer to
the dth layer. The output value of the dth layer is expressed
as xd . It is worth noting that the input value of each layer is
the output value of the previous layer. u(x0; θ ) is the predicted
solution, which is the output of the last layer of the neural
network.

For the DNN method, the loss function, namely, the mean
square error (MSE) of the predicted and exact solutions, is
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TABLE I. Comparison of the relative L2 errors of the PINN and DNN methods under different values of the parameter q at time t = 0.

�����������Methods
Types

The relative L2 error

q = 0.8 q = −0.5 q = 0.1 q = 0

PINN 2.321429×10−1 4.240088×10−2 7.849895×10−2 7.235301×10−2

DNN 1.261558×10−1 3.323374×10−2 1.013984×10−1 1.005916×10−1

defined in the following form:

Loss = 1

Nu

Nu∑

i=1

∣∣ui(x0; θ ) − ui
E

∣∣2
, (3)

where Nu is the number of the training data points, u(x0; θ )
is the predicted solution, and uE is the exact solution. By
optimizing the parameters in the neural network, the value of
the loss function can be minimized.

Next, we aim to review the PINN algorithm [51]. We define
the residual of Eq. (1) as

f := utt − αuxx − βuyy − γ (u2)xx − δuxxxx, (4)

where u is the real-valued solution. The residual f can be
regarded as a physical constraint to be added to the neural
network. The corresponding partial derivatives are obtained
by the automatic differentiation [68]. The loss function is
defined as

Loss = MSE0 + MSEb + MSE f , (5)

where

MSE0 = 1

N0

N0∑

i=1

∣∣ui
0

(
x0

0; θ
) − ui

E0

∣∣2
,

MSEb = 1

Nb

Nb∑

i=1

∣∣ui
b

(
x0

b; θ
) − ui

Eb

∣∣2
,

MSE f = 1

Nf

Nf∑

i=1

∣∣ f
(
xi

f , yi
f , t i

f

)∣∣2
. (6)

N0, Nb, and Nf stand for the number of samples selected from
the initial, boundary, and internal data, respectively. u0(x0

0; θ )
and uE0 represent the predicted and exact solutions of the
sample points that satisfy the initial condition. ub(x0

b; θ ) and
uEb are responsible for the predicted and exact solutions on
the boundary. The loss function consists of the errors on the
initial, boundary, and internal data, i.e., MSE0, MSEb, and
MSE f .

In order to study the phase transition of nonlinear waves,
we embed a physical parameter q into the neural network,
which can distinguish between the periodic lump chain and
transformed waves. The introduction of physical parameters
into neural networks can increase the generalization ability
in terms of the corresponding mechanisms, especially for the

FIG. 5. Prediction of the waves under different values of the parameter q with the initial data doped with 10% noise. The value of the
parameter q in each column corresponds to the triangles and star in Fig. 3, respectively. The plots describe the exact and the predicted results
of the PINN method, respectively. The areas outside the red boxes are the results of the extrapolation. Although the initial data are doped with
noise, the PINN method can still explore effectively the position of the phase transition, i.e., q = 0. The parameters are α = −1, β = −1, γ =
3, and δ = 1.
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TABLE II. The relative L2 errors of the PINN method under different values of the parameter q. The initial data are doped with 10% noise.

�����������Method
Types

The relative L2 error

q = 0.8 q = −0.5 q = 0.1 q = 0

PINN 2.245922×10−1 2.786054×10−2 1.023077×10−1 9.893663×10−2

ability to predict new wave phenomena. Figure 1 shows the
structure diagram of the PINN with the parameter q for Eq. (1)
clearly. The predicted solution can be described by a nonlinear
function that depends on the temporal and spatial variables
and the parameter q. This means that PINN can not only pre-
dict the evolution information of the solution in the temporal
and spatial domain, but also detect the variation of the param-
eter domain. When the neural network is trained successfully,
we enter each value of the parameter q, and the profile of
the corresponding wave can be observed. By utilizing such
technique, we can detect the type and shape of a nonlinear
wave at any position on the parameter line. However, the
above algorithm with single parameter q is insufficient to
detect the phase transition for different types of transformed
waves. In that regard, the other two parameters m and n, which
determine the phase transition for various transformed waves,
are embedded in the neural network. This is shown in the
framework of Fig. 2. These two physical parameters provide
the neural network the ability to distinguish the localization
and oscillation of different types of transformed waves. How-
ever, there are some challenges for exploring phase transition
on the whole parameter plane. We here adopt the PINN with
phase domain decomposition (pPINN), that is, the phase space
is decomposed into several subdomains, and each subdomain
has a respective neural network with the parameters m and n.
This detailed exploration will be presented in Sec. IV.

In all experiments in this paper, we choose the tanh func-
tion as the activation function, and the network structure,
collocation points, and spatiotemporal domain for each ex-
periment are listed in Table VII in Appendix A. In addition,
for several experiments, to facilitate the comparison of the
performance of the PINN and DNN methods, we construct
the same neural network structure and the number of training
points. Before training, we need to initialize the parameters
of the network, using the Xavier initialization method [69]
for weights and setting the initial values of the biases to
zero. Accordingly, Adam [70] and L-BFGS algorithms [71]
are used to optimize the parameters. In addition, we use the
relative L2 error (ε1) and absolute error (ε2) to evaluate the
performance of the algorithms, as follows:

ε1 = ‖uexact − upred‖2

‖uexact‖2
, (7)

ε2 = |upred − uexact|, (8)

where uexact and upred are the exact and predicted solutions,
respectively.

Moreover, for the following experiments, we obtain the re-
quired label data after auxiliary processing through the simple
soliton solution, which is produced in Ref. [66]. The analytical

expression of the second-order solution of Eq. (1) reads as

u = −2
∂2

∂x2
log f , f = 1 + eθ1 + eθ2 + A12eθ1+θ2 , (9)

where

θi = kix + liy − ωit + αi, i = 1, 2,

ωi = εi
(
k2

i + k4
i + l2

i

) 1
2 , εi = ±1,

A12 = D − 6k2
1k2

2

D
,

D = k1k2 + l1l2 − ω1ω2 + k1k2
(
2k2

1 + 3k1k2 + 2k2
2

)
, (10)

and ki, li, and αi (i = 1, 2) are free constants. In Ref. [66],
the specific values of the parameters for the solution are,
respectively, taken as α = 1, β = 1, γ = −3, and δ = 1.

FIG. 6. Parameter plane of phase transition for transformed
waves. The five different lines in the (m, n) plane represent different
sets of experiments with a single parameter. The dots stand for the
training data required by different neural networks. The stars are the
predicted points. Through the following experiments, we can predict
the structure of the wave at each star. “SW,” “MW,” and “PW” stand
for the solitary wave, W- and M-shaped soliton, and periodic wave,
respectively. The five lines n = 0.2, n = 0.7, m = 0.2, m = 0.6,
and m2 + n2 = 0.36 are depicted by the dashed green line, densely
dashed purple line, solid red line, dash-dotted blue line, and dotted
orange line, respectively.
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FIG. 7. Prediction of transformed waves on the whole parameter plane by means of the PINN method with two phase transition parameters.
We hereby present three different results at the corresponding phase space coordinates.

III. PREDICTION OF THE PHASE
TRANSITION BOUNDARY

In this section, we reveal the exact boundary of the phase
transition for the periodic lump chain and transformed wave
based on the above neural network. Such boundary can tell us
under what conditions the waves undergo the transitions and
the corresponding types of waves that can be observed. Here,
we mainly use the PINN with a single phase transition param-
eter to achieve this. The input value of the neural network is
set to x0 = {x, y, t, q}, where the value of the parameter q is
the wave number of the direction y in the equation.

As indicated in Fig. 3, the periodic lump chains are formed
at the orange dots, which are used as the training data of the
neural network. The points of other styles are the ones that
need to be predicted. The green triangle represents q = −0.5,
the red star is the case in which the value of parameter q is
equal to zero, the purple triangle marks the position where
q = 0.1, and the pink triangle stands for q = 0.8. In particular,
we can obtain the dynamical solution corresponding to any
value of the parameter q by using the algorithm.

To observe the performance of the PINN method for ex-
ploring the transition mechanism, we show patterns of waves
with different values of the parameter q at fixed time in Fig. 4.
The value of the parameter q in each column corresponds to
the pink triangle, green triangle, purple triangle, and red star
in Fig. 3, respectively, and the dynamical solutions with these
wave numbers do not serve as the training data. The plots in
the first row demonstrate the structures of the exact solutions
with different values of the parameter q, from a periodic lump
chain to a quasisoliton to a soliton. The plots in the second
and third rows show the predicted results of the PINN and
DNN methods, respectively. In the last two lines, the absolute
errors between the exact and predicted solutions from both

techniques are exhibited, respectively. We should point out, as
shown in Fig. 4, that the prediction in the red boxes cannot

Subdomain 1

Subdomain 2

Subdomain 3

FIG. 8. Prediction of phase transition for transformed waves.
The (m, n) plane is divided into three domains. The dots stand for
the training data required by different neural networks in the do-
mains. The stars represent the predicted positions. At the positions
of the squares or triangles, the transformed waves exhibit roughly
the same locality and oscillation, respectively. By using the pPINNs
method, two approximate boundaries can be obtained in the (m, n)
plane, which are responsible for distinguishing different types of
transformed waves. The waves generated in subdomain 1 are the
quasisolitary waves, the waves in subdomain 2 show the W- and
M-shaped profiles, and the multipeak solitons appear in subdomain
3. In general, it is a continuous state of the evolution for transformed
waves. Therefore, whether it is based on the analytical or PINN
methods, we can only give approximate phase transition boundaries.
The values of the parameters m and n represent the wave numbers of
the solitary wave and periodic wave components, respectively.
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FIG. 9. Prediction of transformed waves under different sets of the parameters m and n based on the PINN and DNN methods with
two parameters at time t = 0. The values of the parameters m and n in each column correspond to the stars in Fig. 8. The plots in the
first three rows are responsible for the exact solutions, and predicted results of both methods, respectively. In the last two rows, Error 1 is
the absolute errors between the exact and predicted results of the PINN method, and Error 2 is the absolute errors between the exact and
predicted results of the DNN method. According to the changes of three plots in the second row, the approximate phase transition boundaries
can be found. In subdomain 1, the parameters are α = −8, β = 1, γ = 3, and δ = 1. In subdomain 2 and subdomain 3, the parameters are
α = −1, β = −1, γ = 3, and δ = 1.
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TABLE III. Comparison of the relative L2 errors of the PINN and DNN methods under different sets of parameters m and n at t = 0.

��������������Methods
Types

The relative L2 error

m = 0.8, n = 0.01 m = 0.6, n = 0.6 m = 0.1, n = 0.6

PINN 2.824649×10−2 3.377881×10−2 3.036418×10−2

DNN 8.593180×10−2 1.629850×10−1 3.570560×10−2

cover completely the pattern of such wave. Fortunately, it is
not a difficult problem to fix. By extrapolating the domain, a
complete periodic lump chain can be observed in the second
column. Notably, the extrapolation on the domains is just
to describe the complete characteristics of the wave, instead
of the abilities of the algorithms. From the first and second
columns in Fig. 4, one can observe that the periodic lump
chains are displayed when the value of the parameter q goes
from 0.8 to −0.5. Further, we find that a quasisoliton state
is shown when the value of the parameter q is equal to 0.1,
while here it remains essentially the behavior of the periodic
lump chain. Interestingly, if the value of the parameter q is
equal to zero, the soliton state appears in the fourth column.
In the second row in Fig. 4, we discover the critical point of
the phase transition which can distinguish the periodic lump
chain and transformed wave. Therefore, we can conclude that
the PINN method with a single phase transition parameter has
a good prediction and ability for studying the state transition
of waves. It is obvious in Fig. 4 that the absolute error of
the PINN method is smaller than that of the DNN method.

Moreover, Table I shows the comparison between both meth-
ods more intuitively in terms of the relative L2 error. When the
value of the parameter q is equal to 0.8 or −0.5, the prediction
accuracy of the DNN method is slightly better than that of
the PINN algorithm. However, with the parameter q = 0.1 or
0, the PINN method displays its superiority. By considering
the overall factors (the cost of acquiring data, the relative
L2 error, and extrapolation performance), we believe that the
PINN is a better choice for prediction of the phase transition
for nonlinear waves.

Based on the above results, we conclude that the PINN
method with a physical parameter can even replace analyt-
ical techniques for the investigation of the phase transition
of waves, such as the Hirota method [72] and Darboux
transformation [73]. We here discuss the difference and rela-
tion between both methods. For the analytical technique, the
N-soliton solution can be converted into the periodic lump
chain via the complexification technique. Such solution con-
sists of the hyperbolic and trigonometric functions, which
describe the locality and periodicity, respectively. Further,

FIG. 10. Stability based on the W-shaped soliton. Top: The density plots of the predicted solution at different times. Bottom: The
comparison between the predicted and exact solutions denoted by the dashed black lines. The solid blue line is the predicted solution,
and the dashed red line is the exact one. Even if the initial data are doped with noise, the PINN method works well. The parameters are
α = −1, β = −1, γ = 3, and δ = 1.
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FIG. 11. Prediction of the M-shaped soliton. The plots in the first and second rows represent the density plots and comparison of the
predicted result by training with noisy data based on the learned parameters α, β, and δ. Similarly, the third and fourth rows describe the
density plots of the predicted result and comparison based on the learned parameter γ . The solid blue line is the exact solution, and the dashed
red line is the predicted one. Obviously, the predicted results with noisy data are accurate based on the PINN method.

based on the analysis of characteristic lines, the mechanism
of the phase transition can be revealed. If the characteristic
lines for both wave components are parallel, the periodic lump
chain can be transformed into various transformed waves,
such as the solitary wave, multipeak soliton, and periodic
wave. For the PINN algorithm, we only embed the physical
parameter in the neural network as a substitute solution for the
former. Based on highly accurate data (e.g., the exact solution

or numerical data), the trained neural network serves as a
study of the mechanism of phase transition.

The analytical method mainly depends on the integrability
of the model and the corresponding analytical tools. The cru-
cial issue is to derive the solution as well as its mathematical
analysis (as described above, the wave components, charac-
teristic line, and phase shift analysis). For the PINN approach,
we simply train a neural network with a phase transition
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FIG. 12. Prediction of transformed waves on the dashed green line. The value of the parameter m in each column corresponds to the green
star in Fig. 6. Each row of the plots is responsible for the exact and predicted results, respectively. The parameters are α = −1, β = −1, γ = 3,
and δ = 1.

parameter to replace the complex mathematical analysis (the
exact solution can be approximated by the neural network).
Both can reveal the mechanism of the phase transition. How-
ever, in practical fields such as fluids, plasma, and nonlinear
optics, numerous models are not integrable, in which case
the analytical method fails. In contrast, the PINN technique
shows its superiority. Notably, in the case where the training
data are doped with noise or inaccurate (that is, without the
exact solution), the PINN algorithm can still work well, which
is impossible for the analytical methods relying heavily on
integrability. Here, we verify the performance of the PINN
technique by adding 10% noise to the initial data. From the
experimental results in Fig. 5, even if the initial data are
inaccurate, the PINN with a physical parameter still performs
well in the prediction of the phase transition mechanism.
Table II shows the relative L2 errors for the above case, all
of which are within the acceptable range.

IV. PREDICTION OF THE PHASE TRANSITION FOR
TRANSFORMED WAVES

In the above section, we presented the exact boundary of
the phase transition (q = 0). However, such network with a
single parameter cannot distinguish the types of transformed
waves. Thus, more physical parameters should be consid-
ered to address this issue, including the wave numbers of
the solitary wave and periodic wave components (m and n).
By adding these two parameters, the neural network has the
intelligence to distinguish the localization and oscillation of
the transformed waves, as we will see later.

To begin with, we train the PINN method with a single
parameter (m or n) on the five different colors and styles

of lines. In Fig. 6, the dots and stars are the training and
prediction points in five experiments, respectively. The pre-
dicted results and accuracy of these experiments are shown
in Figs. 12–16 and Table VIII in Appendix B. When the
value of the parameter n is set to 0.2 (the dashed green line),
Fig. 12 exhibits the state that changes with the increase of
the value of m, from a periodic wave to a W- or M-shaped
soliton and then to a solitary wave. When the wave number
of the periodic wave component is selected as n = 0.7 (the

FIG. 13. Prediction of transformed waves on the densely dashed
purple line. The value of the parameter m in each column corresponds
to the purple star in Fig. 6. Each row of the plots is responsible for
the exact and predicted results, respectively.
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FIG. 14. Prediction of transformed waves on the solid red line. The value of the parameter n in each column corresponds to the red star in
Fig. 6. Each row of the plots is responsible for the exact and predicted results, respectively.

densely dashed purple line), the transformed waves undergo
a phase transition with the change of the parameter m, from
a periodic wave to a W- or M-shaped soliton in Fig. 13. In
addition, in the case where the wave number of the solitary
wave component is fixed at m = 0.2 (the solid red line), it can
be seen from the results in Fig. 14 that, when the value of pa-
rameter n varies, the transformed waves change accordingly,
from a solitary wave to a W- or M-shaped soliton and then to
a periodic wave. Similarly, if the value of m is equal to 0.6
(the dash-dotted blue line), we observe from Fig. 15 that, as

FIG. 15. Prediction of transformed waves on the dash-dotted
blue line. The value of the parameter n in each column corresponds
to the blue star in Fig. 6. Each row of the plots is responsible for the
exact and predicted results, respectively.

the wave number n increases, nonlinear waves are converted
from a solitary wave to a W- or M-shaped soliton. Finally, we
consider the dotted orange line in Fig. 6 that satisfies the con-
dition m2 + n2 = 0.36. According to the experimental result
in Fig. 16, when the ratio of the parameters m and n gradually
decreases, that is, the value of the parameter m decreases,
the transformed waves produce several states from a solitary
wave to a W- or M-shaped soliton and then to a periodic
wave.

From the results with a single parameter above, we note
that the parameters m and n are responsible for the state of
transformed waves. When the value of parameter n changes
from 0.2 to 0.7, as shown in Figs. 12 and 13, the solitary waves
disappear. As the value of the parameter m increases from 0.2
to 0.6, taking into account Figs. 14 and 15, the periodic waves
are hard to observe. Based on these five experimental results,
we speculate that when the ratio of the parameters m and n is
large (m � n), the solitary waves exist in the corresponding
region. If the ratio is close to 1 (m ≈ n), the transformed
waves appear in the W- and M-shaped states, and there exist
periodic waves in the region where the ratio is small (m � n).
Naturally, it is necessary to use the PINN method with two
phase transition parameters to study such mechanism on the
whole plane. However, the result obtained by the neural net-
work learning data for a small number of locations (16 points)
on the parameter plane is disappointing. We also tried to train
the neural network with more location information, and finally
found that the results are relatively satisfactory with the initial
and boundary information of 49 points on the parameter plane
(Fig. 7), but the cost of data from such a large amount of
locations is too high. The previous experimental results on the
lines suggest to us to consider the domain decomposition to
tackle this issue.
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FIG. 16. Prediction of transformed waves on the dotted orange line. The value of the parameter m in each column corresponds to the orange
star in Fig. 6. Each row of the plots is responsible for the exact and predicted results, respectively.

Fortunately, a previous study has addressed a similar issue.
The extended PINN (decomposition of the space-time domain

for the solution) was proposed for PDEs in the complex-
geometry domain to reduce the training cost [56]. It enables

FIG. 17. Prediction of time-varying dynamics of the W-shaped soliton. Top: The density plots of the predicted solution at different times.
Bottom: The comparison between the predicted and exact solutions denoted by the dashed black lines. The solid blue line is the predicted
solution, and the dashed red line is the exact one. The PINN method has the ability to detect a new dynamical property, which successfully
discovers the time-varying dynamics of Eq. (1). The parameters are α = −1, β = −1, γ = 3, and δ = 1.
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FIG. 18. Prediction of time-varying dynamics of the M-shaped soliton. Top: The density plots of the predicted solution at different times.
Bottom: The comparison between the predicted and exact solutions denoted by the dashed black lines. The solid blue line is the predicted
solution, and the dashed red line is the exact one. The parameters are α = −1, β = −1, γ = 3, and δ = 1.

FIG. 19. Prediction of time-varying dynamics of the multipeak soliton. Top: The density plots of the predicted solution at different times.
Bottom: The comparison between the predicted and exact solutions denoted by the dashed black lines. The solid blue line is the predicted
solution, and the dashed red line is the exact one. The parameters are α = −1, β = −1, γ = 3 and δ = 1.
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FIG. 20. Prediction of time-varying dynamics of the dark quasi-bell-shaped solitary wave. Top: The density plots of the predicted solution
at different times. Bottom: The comparison between the predicted and exact solutions denoted by the dashed black lines. The solid blue line
is the predicted solution, and the dashed red line is the exact one. The amplitude of the wave slightly changes, which indicates that the PINN
method predicts the evolution of the dark solution well. The parameters are α = −8, β = 1, γ = −3, and δ = 1.

us to explore the boundaries of all kinds of transformed
waves via the PINN method. Consequently, this problem
may be solved effectively by designing the corresponding
subdomains in different phase planes of the wave number.
We hereby decompose the (m, n) plane into three subdo-
mains in Fig. 8, namely, the blue domain (subdomain 1, m �
n), green domain (subdomain 2, m ≈ n), and pink domain
(subdomain 3, m � n). Each one has a respective PINN with
two phase transition parameters. We should point out that
these boundaries are not strictly defined. In fact, it is a contin-
uous state of the evolution for the transformed waves. Thus,
whether it is based on the analytical methods or deep learning,
we can only give the approximate boundaries of the phase
transition.

As depicted in Fig. 8, we decompose the phase space into
three subdomains. The data described by the dots are used to
train the neural networks. The predicted solutions are gener-
ated from the data marked by the stars. At the location of the
blue star in subdomain 1, the values of the parameters m and n
are equal to 0.8 and 0.01 (m � n), respectively. The position
where the values of the parameters both equal 0.6 (m ≈ n) is
marked by the green star in subdomain 2. The red star in sub-
domain 3 stands for the case that the values of the parameters
m and n are equal to 0.1 and 0.6 (m � n), respectively. Based
on the neural networks, the dynamical process of the point in
the (m, n) plane can be predicted. We build a separate PINN
framework with two phase transition parameters in different
regions. Specifically, x0 = {x, y, t, m, n} is the input of the
neural networks. The values of the parameters m and n are

responsible for the wave numbers of the solitary wave and
periodic wave components, respectively.

In order to confirm the practicability of the pPINN method,
we display the states of transformed waves with different
values of the parameters m and n at a fixed time, shown
in Fig. 9. The coordinates of the blue star, green star, and
red star in Fig. 8 correspond to the values of the parame-
ters m and n in each column, respectively. In particular, the
dynamical solutions with these groups of parameters are not
used to train the networks in the corresponding regions. As
shown in the first row, the patterns of exact solutions with
different groups of parameters m and n are described. We
find that the state of transformed waves appears to change
from a quasisolitary wave to a M-shaped soliton and then to
a multipeak soliton. The plots in the second and third rows
depict the predicted results of the PINN and DNN algorithms,
respectively. Further, we give the absolute errors between the
exact and predicted solutions from both algorithms in the last
two lines. In addition, the plots in the first column in Fig. 9
show the pattern of the quasisolitary wave when the value of
the parameter m is much larger than that of the parameter
n. In the second column, it can be found that the M-shaped
soliton state appears if the value of the parameter m approx-
imates that of the parameter n. Furthermore, when the value
of the parameter m is much smaller than that of the parameter
n, the multipeak soliton is depicted in the third column. In
addition, from the absolute error analysis, the PINN method
is better than the DNN for predicting the quasisolitary wave
and M-shaped soliton. In order to more clearly compare the
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TABLE IV. The relative L2 errors of the predicted result under initial data with noise.

�����������
Types

t = −1 t = 0 t = 1

The relative L2 error 4.37477×10−3 1.504691×10−3 1.122544×10−2

predicted results of both methods, Table III is presented. We
find that the relative L2 errors of the PINN method are smaller
than those of the DNN method for the predicted results of
dynamical solutions marked by star points. Hence, for the
phase transition of transformed waves, the predicted results
of the PINN are superior to the DNN.

Finally, we discuss the boundaries of the phase transition
based on the pPINN algorithm. In fact, we can predict similar
patterns of nonlinear waves in the neighborhood of each star
point in the (m, n) plane, such as the quasisolitary wave,
W- or M-shaped soliton, and multipeak soliton. According to
the above results, we find that the PINN method can provide a
reasonable explanation for analysis of the wave components
behind the transformed wave. Under the condition that the
value of the parameter m is larger than that of n, the pattern
of the wave exhibits a stronger solitary state and a weaker
periodic state. If the condition becomes the opposite of the
above, the wave with a weaker solitary state and a stronger
periodic state is characterized. In addition, when the value of
the parameter m is not equal to zero and that of n is equal
to zero, the solitary wave will appear. When the above case
is reversed, we can observe the periodic wave, and in the
neighborhood of the origin in the (m, n) plane a line rogue
wave will be gradually generated. Here, we can divide the
approximate boundaries of the phase transition of different
types of transformed waves in the (m, n) plane by the pPINN
method with two parameters.

Moreover, based on the experiments on the lines, we sim-
ulate and analyze the locality and oscillation of transformed
waves. Further, we can observe two transformed waves (the
positions of the triangles in Fig. 8) with approximately the
same such physical characteristics (locality and oscillation).
According to the coordinates of two triangles, the bound-
ary between the W- or M-shaped soliton and periodic wave
can be divided approximately. If characteristics (locality and
oscillation) at two positions are distinctively different, we
will continue to explore other transformed waves on the

line, until we find a suitable one. In fact, the boundary be-
tween the solitary wave and W- or M-shaped soliton can
be also defined in the same way as above (the positions of
the squares in Fig. 8). In particular, we need to point out
that because the transformed wave is a continuous state of
the evolution, whether using the PINN or analytical meth-
ods, the results obtained are the inexact boundaries. Thus,
the PINN method can serve as an effective technique for
studying the phase transition of different types of transformed
waves.

V. PREDICTION OF THE TIME-VARYING PROPERTY

In this section, according to the predicted results of
the phase transition above and the data derived from the
soliton solution [66], we explore a dynamics characteristic
of the (2 + 1)-dimensional Boussinesq equation. Here, we
are mainly interested to understand the predictive ability of
the PINN in the evolutionary dynamics of phase transition
solutions. In particular, for several experiments in this part, we
select the internal collocation points using the latin hypercube
sampling (LHS) strategy [74]. The experimental results are
exhibited in Figs. 17–20 and Table IX in Appendix C.

In Figs. 17 and 18, we demonstrate the evolution of the
W- and M-shaped solitons with time. Obviously, based on
the predicted condition of the phase transition above (namely,
q = 0), we can clearly observe a solitary wave state instead
of a periodic lump chain. Further, according to the results of
Sec. IV, by considering the ratio of the parameters m and n,
we see that the W-shaped soliton appears alternately with the
M-shaped one. The W-shaped soliton has a high main peak
and two valleys. Over time, it becomes the M-shaped soliton
with two peaks. Specifically, the deformation always occurs
during the propagation of the wave. Further, in Fig. 19, the
prediction of propagation of the multipeak soliton is described
in detail. The shape-changed propagation of such wave is
also observed (the peaks as well as their amplitudes of the

TABLE V. The predicted values and the error rates of the parameters α, β, and δ, and the relative L2 errors of the predicted results.

�����������Types
Data

Exact 0% noise 1% noise

α 1 1.0902245 1.089022
Error rate for α 0 9.02245% 8.9022045%
β 1 0.9146659 0.9246567
Error rate for β 0 8.533412% 7.5343313%
δ 1 0.9977599 0.98968667
Error rate for δ 0 0.22401214% 1.03133327%

t = −1 0 4.431319×10−4 1.080991×10−3

The relative L2 error t = 0 0 6.389340×10−4 8.097205×10−4

t = 1 0 1.215457×10−3 1.939527×10−3
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TABLE VI. The predicted value and the error rate of the parameter γ , and the relative L2 errors of the predicted results.

�����������Types
Data

Exact 0% noise 1% noise

γ 3 3.009863 3.000359
Error rate for γ 0 0.3287633% 0.01196861%

t = −1 0 5.152031×10−4 8.157609×10−4

The relative L2 error t = 0 0 6.9918606×10−4 9.019213×10−4

t = 1 0 1.8393467×10−3 3.2545326×10−3

multipeak soliton change dramatically). However, the locality
and oscillation of the wave remain unchanged with time. This
suggests that the PINN algorithm accurately predicts a more
complicated evolution behavior of the wave (the wave with
strong oscillation and multiple peaks). Figure 20 describes the
predicted result of the dark quasi-bell-shaped solitary wave.
We note that the amplitude of the wave changes slightly with
time. Apparently, it resembles the evolution of a soliton, but its
analytical expression consists of both hyperbolic and trigono-
metric functions, so it deforms slightly as it propagates. It can
be confirmed that the PINN method still has a good learning
ability for studying the state of the quasisolution (also a dark
solution).

Notably, by using the data derived from the soliton solution
and the phase transition condition, we successfully use the
PINN to explore the dynamical mechanism for Eq. (1), that
is, the time-varying property. It is indicated that the PINN
method is not only useful in the prediction of phase tran-
sition, but also effective in detecting the mechanism of the
dynamical solution. Thus, we recognize that the PINN method
can predict accurately the dynamical evolution of such waves.
It is worth noting that previous studies have used the PINN
method to predict the evolution of stable soliton states with
unchanged profiles [59,60]. Here, our results show that this

technique can work well for the dynamics of the waves with
the shape-changed propagation.

VI. STABILITY

In the above sections, we studied the phase transition
mechanism of transformed waves as well as their time-varying
dynamics by using the PINN method. Importantly, the stabil-
ity of the technique is also a question that has received much
concern. Next, we will focus on its stability based on the initial
data with noise.

We use the PINN technique to discuss the W-shaped soliton
of Eq. (1) numerically. The internal collocation points are
selected through the LHS strategy [74]. In addition, we add
10% noise to the initial data extracted to observe the influence
of noise.

We depict Fig. 10, which represents the density plots of
the predicted result and the comparison between the exact
and predicted solutions, where the blue solid line is the pre-
dicted solution and the red dotted line is the exact solution.
In addition, in terms of accuracy of the predicted results, we
give the relative L2 errors at different times in Table IV. By
adding noise to the initial data, the PINN method not only
still predicts the soliton state, but also shows the time-varying

TABLE VII. Network structure, training data set, and spatiotemporal domain.

�����Types
Hidden
layers Neurons

Initial
data

Boundary
data

Collocation
points Spatiotemporal domain

Section 3 6 40 4000 8000 10000 [−5, 5] × [−5, 5] × [−0.5, 0.5]
Dashed green line 5 50 4000 8000 10000 [−10, 10] × [−10, 10] × [−0.5, 0.5]

Densely dashed purple
line

5 50 4000 8000 10000 [−10, 10] × [−10, 10] × [−0.5, 0.5]

Solid red line 5 50 4000 8000 10000 [−10, 10] × [−10, 10] × [−0.5, 0.5]
Section 4 Dash-dotted blue line 5 50 4000 8000 10000 [−10, 10] × [−10, 10] × [−0.5, 0.5]

Dotted orange line 5 50 4000 8000 10000 [−10, 10] × [−10, 10] × [−0.5, 0.5]
Subdomain 1 5 50 4000 8000 20000 [−5, 5] × [−5, 5] × [−0.5, 0.5]
Subdomain 2 5 50 4000 8000 40000 [−5, 5] × [−5, 5] × [−0.5, 0.5]
Subdomain 3 5 50 4000 8000 40000 [−10, 10] × [−10, 10] × [−0.5, 0.5]

W-shaped soliton 5 30 1000 4000 2000 [−7, 3] × [−7, 3] × [−2, 1]
M-shaped soliton 5 30 1000 4000 2000 [−5, 5] × [−5, 5] × [−1, 1]
Multipeak soliton 5 30 3000 4000 5000 [−10, 10] × [−10, 10] × [−0.5, 0.5]

Section 5 Dark quasi-bell-shaped
solitary wave

5 30 1000 4000 2000 [−5, 5] × [−5, 5] × [−0.5, 0.5]

Section 6 5 30 1000 4000 2000 [−5, 5] × [−5, 5] × [−1, 1]
Section 7 5 40 2000 4000 5000 [−5, 5] × [−5, 5] × [−1, 1]
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TABLE VIII. The relative L2 errors of the predicted results at t = 0.

����������������Types The relative L2 error

Dashed green line (n = 0.2) m = 0.05 6.079395×10−1

m = 0.25 1.816038×10−2

m = 0.45 7.945124×10−3

Densely dashed purple line (n = 0.7) m = 0.05 3.634826×10−2

m = 0.55 7.570973×10−3

Solid red line (m = 0.2) n = 0.05 8.854506×10−3

n = 0.25 6.270758×10−3

n = 0.55 8.264634×10−3

Dash-dotted blue line (m = 0.6) n = 0.05 1.418518×10−3

n = 0.55 3.566368×10−3

Dotted orange line (m2 + n2 = 0.36) m = 0.55 4.919089×10−2

m = 0.45 6.382458×10−2

m = 0.25 6.312821×10−2

dynamics quite well. It is further observed that the algorithm
has robustness for noise.

VII. DATA-DRIVEN PARAMETERS DISCOVERY

Finally, by utilizing the PINN technique, we focus on
the inverse problem of the (2 + 1)-dimensional Boussinesq
equation with the M-shaped soliton, namely, the data-driven
parameters discovery:

utt + αuxx + βuyy − γ (u2)xx − δuxxxx = 0. (11)

Specifically, we mainly study the parameters of the dispersion
and nonlinear terms of Eq. (11), i.e., α, β, γ , and δ. Based on
the PINN algorithm [51], these parameters can be learned by
minimizing the loss function. This loss function is composed
of three components, namely, the initial condition, boundary
condition, and penalty at internal collocation points, which are
the same as in Sec. II.

In order to show the feasibility of this algorithm for
studying the inverse problem of the shallow water wave
equation in the high-dimensional case [i.e., Eq. (11)], we
construct the sample as well as the exact solution correspond-
ing to the parameters α = 1, β = 1, γ = 3, and δ = 1. Zero
initialization is adopted for the unknown parameters to be
learned before training. In addition, the key is optimizing the
weights and biases of the neural network, which is based
on constructing the data set to minimize the loss function
by employing the Adam [70] and L-BFGS [71] optimization
algorithms.

The predicted results of the unknown parameters are dis-
played in Tables V and VI. When the value of the parameter
γ is fixed to 3, the results are shown in Table V. Table VI
displays results for the case in which the values of the pa-
rameters α, β, and δ are equal to 1, 1, and 1, respectively.
Regardless of whether the training data include noise, the
accuracy of the predicted results is within an acceptable range.
In particular, for the data-driven parameters discovery, the
predicted values are as close as possible to the target val-
ues and the error rates are all below 10% (the error rate is
defined as |αpred−αexact |

αexact
× 100%). The relative L2 errors of the

predicted solution are on the order of 10−3 or 10−4 at differ-

ent times (t = −1, 0, and 1). Consequently, we can conclude
that the PINN method can effectively identify the unknown
parameters of Eq. (11) and accurately predict the dynamical
evolution of the M-shaped soliton.

Figure 11 shows the predicted result of the M-shaped soli-
ton solution for Eq. (11). The top part gives the evolution
mechanism of the M-shaped soliton and the comparison be-
tween the predicted and exact solutions (in the case of fixed
variables t and y), based on the learned parameters of the dis-
persion terms. The bottom part depicts the predicted solution
and the comparison for the training data with noise based on
the learned parameter γ . From the perspective of visualiza-
tion, it is proved that the PINN method can effectively capture
the time-varying evolution of the M-shaped soliton and learn
unknown parameters well.

VIII. CONCLUSION

In this paper, we focused on the (2 + 1)-dimensional
Boussinesq equation describing the propagation of waves in
opposite directions on the surface of water. First, based on
the PINN method with a physical parameter, we found the
exact boundary of the phase transition which distinguishes the
periodic lump chain and transformed wave. More specifically,
we suggested that transformed waves appear if and only if
q = 0, while the other points cannot be responsible for such
phenomenon. In addition, the phase transition of different
types of transformed waves was studied on the parameter
lines and (m, n) plane. We discovered that the bell-shaped
solitary waves appear when the value of m is obviously greater
than that of n. Instead, multipeak solitons are generated. Un-
der the case in which both m and n are close in value, the
M- and W-shaped profiles can be observed. By comparing
the predicted results between the PINN and DNN methods,
it can be seen that the former result with a physical constraint
is better than the latter. Further, through the phase transition
condition and the data obtained after assisted processing of the
soliton solution in Ref. [66], we found types of solutions and
a dynamical property of the (2 + 1)-dimensional Boussinesq
equation, namely, time-varying dynamics. We also discussed
stability by adding some noise to the initial data based on the
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TABLE IX. The relative L2 errors of the predicted results at different times.

�����������Types The relative L2 error

W-shaped soliton 3.536170×10−3 1.383507×10−3 1.693224×10−2

M-shaped soliton 6.375637×10−4 8.127553×10−4 3.428113×10−3

Multipeak soliton 2.367967×10−2 7.943103×10−2 1.517877×10−1

Dark quasi-bell-shaped solitary wave 2.588961×10−4 1.021708×10−4 3.463948×10−4

PINN technique. We learn from the results that such method
has a certain robustness for noise. Finally, we investigated the
parameters discovery of the dispersion and nonlinear terms
for Eq. (11) with and without noise, respectively. Our results
showed that the PINN algorithm has a good prediction ability
for studying the high-dimensional water wave equation in op-
posite directions, and the solutions and physical mechanisms
can be predicted with only a small amount of simple data. It
should be noted that an analytical scheme is also being studied
for the state transition mechanism of Eq. (1) [75].

The data that support the findings of this paper are available
from the corresponding author upon reasonable request. The
codes in this paper are available in Ref. [76].
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APPENDIX A: IMPLEMENTATION DETAILS

In this part, we show the details of all experiments in this
paper. In order to deal with the nonlinearity and high-order
dispersion terms of the equation, we adopt the number of
hidden layers of the neural network and neurons in each layer
appropriately. In addition, the configurations of the network
structure and collocation points need to be adjusted, in re-
sponse to the characteristics of the model, the complexity of
nonlinear waves, and the range of the domain. In the follow-
ing, based on certain experiments, we present the network
structure and collocation points that are suitable for Eq. (1),
as shown in Table VII.

APPENDIX B: EXPERIMENTS ON THE LINES

Here, we present the results predicted by the PINN method
with a single parameter and prediction accuracy on five differ-
ent lines in Fig. 6 (see Figs. 12–16 and Table VIII).

APPENDIX C: EXPERIMENTS
ON THE TIME-VARYING WAVES

In this part, the predictions of the time-varying dynamics
of the transformed waves are shown, in Figs. 17–20 and
Table IX.
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