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Calculation of phonons in real-space density functional theory
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We present an accurate and efficient formulation for the calculation of phonons in real-space Kohn-Sham
density functional theory. Specifically, employing a local exchange-correlation functional, norm-conserving
pseudopotential in the Kleinman-Bylander representation, and local form for the electrostatics, we derive
expressions for the dynamical matrix and associated Sternheimer equation that are particularly amenable to the
real-space finite-difference method, within the framework of density functional perturbation theory. In particular,
the formulation is applicable to insulating as well as metallic systems of any dimensionality, enabling the efficient
and accurate treatment of semi-infinite and bulk systems alike, for both orthogonal and nonorthogonal cells. We
also develop an implementation of the proposed formulation within the high-order finite-difference method.
Through representative examples, we verify the accuracy of the computed phonon dispersion curves and density
of states, demonstrating excellent agreement with established plane-wave results.

DOI: 10.1103/PhysRevE.108.045302

I. INTRODUCTION

Kohn-Sham density functional theory (DFT) [1,2] has
firmly established itself as one of the cornerstones of materials
and chemical sciences research, providing a framework for
understanding and predicting materials properties from the
first principles of quantum mechanics, without any empirical
or ad hoc parameters, all at an affordable computational cost
for small to moderate sized systems. However, since the so-
lution of the Kohn-Sham problem scales cubically with the
number of atoms, accompanied by a large prefactor, the sys-
tem sizes that can be accessed are still limited. This bottleneck
becomes particularly severe in the study of perturbations that
break the translational symmetry or periodicity of the lattice,
particularly those that are of long wavelength.

Phonons describe the vibrational or dynamic behavior of
the crystal within the adiabatic harmonic approximation [3].
Mathematically, they can be described by the eigenproblem in
terms of the dynamical matrix—Hessian or second derivative
of the energy with respect to atomic positions, appropriately
scaled by the square root of the atomic masses—with the
corresponding eigenvalues and eigenvectors representing the
phonon frequencies and modes, respectively. Phonons play a
significant role in determining a number of material properties
or behavior that cannot be described by static models, in-
cluding structural stability [4,5], elastic moduli [6,7], thermal
conductivity [8], heat capacity [9,10], coefficients of thermal
expansion [11,12], and superconductivity [8]. This motivates
the development of approaches that can calculate the phonon
spectra for materials systems from first principles, the focus
of the current paper.

The calculation of phonons in DFT has its origins in
Ref. [13], where a dielectric approach for the calculation of
the Born–von Kármán force constants was proposed. How-
ever, this approach is limited to local perturbations and
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requires the inversion of large matrices. Thereafter, the frozen-
phonon method was introduced [14], wherein the dynamical
matrix elements are computed using numerical approxima-
tions to the derivatives, i.e., energy or force differences
between perturbed and equilibrium atomic configurations.
However, this method is particularly expensive, requiring
large supercells to capture the low frequency vibrations. As
an alternative to static methods, the vibrational properties can
also be extracted from molecular dynamics simulations [15],
wherein time averages over the atomic trajectories are used to
compute the phonon spectra. However, this approach is also
very expensive, requiring not only large supercells to capture
low frequency vibrations, but also a large numbers of time
steps. This has motivated the development of perturbative ap-
proaches [16–18]—representing some of the first instances of
density functional perturbation theory (DFPT) [3,16,17,19],
which has subsequently found a number of other applications,
including the calculation of elastic moduli [6,7], flexoelec-
tric coefficients [20,21], Raman spectra [22,23], electro-optic
coupling [24,25], and ferroelectric as well as ferroelastic tran-
sitions [26,27]—wherein the phonons of any wavelength can
be computed on the unit cell. However, even with these signif-
icant advances, phonon calculations are extremely expensive,
typically scaling quartically with system size, accompanied
with a very large prefactor.

The calculation of phonons using DFPT has generally been
restricted to the plane-wave method [16,28–37], which is
among the most widely used techniques for the solution of
the Kohn-Sham problem [35–42]. However, the Fourier basis
is global, which limits scalability on parallel machines; it is
also periodic, whereby lower-dimensional systems such as
surfaces and nanowires require the introduction of artificial
periodicity, which can necessitate the use of large vacuum
regions and/or specialized corrections, e.g., phonon calcula-
tions in two-dimensional (2D) materials that are polar [43]
and/or have external electric fields in the finite direction [44].
The limitations of the plane-wave method have motivated
the development of a number of alternate techniques using
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systematically improvable, localized representations [45–65],
among which real-space finite-difference methods [66,67]
are likely the most mature and widely used. In particu-
lar, real-space methods can efficiently leverage large-scale
parallel computational resources [50,61,68–70], resulting in
substantially reduced solution times compared to established
plane-wave codes [62,70], and can naturally accommodate
periodic as well as Dirichlet boundary conditions, and combi-
nations thereof, enabling the efficient and accurate treatment
of semi-infinite and bulk systems alike. However, a real-space
formulation for phonons using DFPT, which can naturally
handle systems of any dimensionality, with the potential
to enable significantly faster and larger simulations, is not
available. Though a real-space formulation in the context of
numeric atom-centered orbitals and all-electron calculations
has recently been developed [71], it is restricted to insulators
and differs significantly in its formulation or implementation
(e.g., presence of Pulay terms, due to the atom-dependent
basis) relative to the real-space finite-difference method for
pseudopotential calculations, which is the focus here.

In this paper, we present an accurate and efficient
formulation for the calculation of phonons in real-space
Kohn-Sham DFT. Specifically, employing a local exchange-
correlation functional [2], norm-conserving pseudopotential
in the Kleinman-Bylander [72] representation, and local form
for the electrostatics [73–75], we derive expressions for the
dynamical matrix and associated Sternheimer equation that
are particularly amenable to the real-space finite-difference
method, within the framework of DFPT. In particular, the
formulation is applicable to both insulating and metallic sys-
tems, irrespective of dimensionality, enabling the efficient and
accurate treatment of semi-infinite and bulk systems alike, for
orthogonal as well as nonorthogonal cells. We also develop
a high-order finite-difference implementation of the proposed
formulation. Using representative systems, we verify the ac-
curacy of the computed phonon dispersion curves and density
of states, demonstrating excellent agreement with established
plane-wave results.

The remainder of this paper is organized as follows. In
Sec. II, we review the real-space formulation for Kohn-Sham
DFT. In Sec. III, we discuss the formulation for phonons in
real-space DFT, within the framework of DFPT. In Sec. IV,
we describe the implementation of the proposed formulation
and verify its accuracy. Finally, we provide concluding re-
marks in Sec. V.

II. REAL-SPACE DFT

Consider a large supercell �̃ that is formed by the periodic
repetition of a unit cell or fundamental domain �. Neglecting
spin and adopting a local real-space formulation for the elec-
trostatics [73–75], local density approximation (LDA) [2] for
the exchange correlation, and frozen-core pseudopotential ap-
proximation [76] with the Kleinman-Bylander representation
for the nonlocal projectors [72], the governing equations on
�̃ for the electronic ground state in the finite-temperature
version [77] of Kohn-Sham DFT [1,2] take the form [62,73](

H := −1

2
∇2 + VXC + φ + VNL

)
ψn,k(x)

= λn,kψn,k(x), (1a)

gn,k =
[

1 + exp

(
λn,k − μ

σ

)]−1

,

μ is s.t.
2

Nc

∑
k

Ns∑
n=1

gn,k = Ne, (1b)

ρ(x) = 2

Nc

∑
k

Ns∑
n=1

gn,k|ψn,k(x)|2, (1c)

− 1

4π
∇2φ(x) = ρ(x) + b(x), (1d)

where H is the Hamiltonian, VXC is the exchange-correlation
potential, φ is the electrostatic potential, and VNL is the nonlo-
cal pseudopotential operator:

VNL =
Na∑

J=1

∑
a

PJ∑
p=1

γJ,p

∣∣χa
J,p

〉〈
χa

J,p

∣∣. (2)

Above, Nc is the number of unit cells in �̃; Na is the number
of atoms in �; ψn,k are the Kohn-Sham orbitals (normalized
on �) with eigenvalues λn,k and occupations gn,k, where k
denotes the wave vector that serves as an additional index,
the number of such electron wave vectors being Nc; σ is
the smearing; μ is the Fermi level, required to satisfy the
constraint of Ne electrons in �; ρ is the electron density;
a := {a1, a2, a3} is a set of integers used to index the unit
cells, whose locations are described by the vectors La =∑3

j=1 a jL j , where L1, L2, and L3 are the lattice vectors

corresponding to �; b = ∑Na
J=1

∑
a ba

J is the total ionic pseu-
docharge density, where ba

J = − 1
4π

∇2V a
J are the individual

spherically symmetric pseudocharge densities corresponding
to the local part of the pseudopotentials V a

J ; and χa
J,p are

the nonlocal pseudopotential projectors with normalization
constants γ a

J,p.

The Kohn-Sham energy associated with the supercell �̃

can be written as [2,62,76]

EKS = 2

Nc

∑
k

Ns∑
n=1

gn,k〈ψn,k|H|ψn,k〉�̃ + 〈εXC(ρ)|ρ〉�̃

− 〈VXC(ρ)|ρ〉�̃ + 1

2
〈b − ρ|φ〉�̃ + 1

2
〈b + b̃|Vc〉�̃

− 1

2

Na∑
J=1

∑
a

〈b̃a
J |Ṽ a

J 〉�̃ + 2σ
∑

k

Ns∑
n=1

[gn,k log gn,k

+ (1 − gn,k ) log(1 − gn,k )], (3)

where 〈·〉�̃ denotes the inner product over the supercell
�̃; εXC is the exchange-correlation energy per particle; b̃ =∑Na

J=1

∑
a b̃a

J is the total ionic reference pseudocharge density,
with b̃a

J = − 1
4π

∇2Ṽ a
J being the individual spherically sym-

metric reference pseudocharge densities corresponding to the
reference potentials Ṽ a

J ; and Vc = ∑Na
J=1

∑
a(Ṽ a

J − V a
J ).

It is worth noting that the above equations for real-space
DFT have been formulated over the supercell �̃. Indeed, they
can be reduced to the unit cell or fundamental domain � by
taking advantage of the periodicity within the system, i.e.,
the large supercell �̃ is formed from the periodic repetition
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of �. However, we refrain from doing so here, since having
the expressions on �̃ provides a suitable starting point for
the derivation of the dynamical matrix and associated Stern-
heimer equation on the unit cell �, from which the phonon
spectrum corresponding to vibrations of the systems can be
efficiently determined, as described in the next section.

III. PHONONS IN REAL-SPACE DFT

Atomic vibrations or phonons within the adiabatic har-
monic approximation [78] are described by the generalized
eigenproblem in terms of the interatomic force constant and
mass matrices, where the force constant matrix corresponds
to the second-order derivative of the Kohn-Sham energy with
respect to atomic positions, and the diagonal mass matrix
corresponds to the masses of the nuclei. Given the periodic-
ity within �̃, i.e., �̃ is formed by the periodic repetition of
�, it follows that the force constant and mass matrices are
block circulant, whereby they can be block diagonalized by
the block form of the discrete Fourier transform matrix. In
so doing, upon transformation to a standard eigenproblem,
we arrive at Nc smaller Hermitian eigenproblems that can be
indexed by the phonon wave vector q, each of size 3N × 3N :

Dquq = ω2
quq, (4a)

[Dq]IαJβ
= 1√

MI MJ

[
1

Nc

∑
a

∑
b

eiq.(Lb−La ) ∂2EKS

∂Ra
Iα
∂Rb

Jβ

]
,

∀ I, J = 1, 2, . . . , Na, α, β = 1, 2, 3,

(4b)

where Dq is referred to as the dynamical matrix, with ωq and
uq being the corresponding phonon frequencies and modes,
respectively. Here, MJ are the masses of the nuclei in � that
are located at R0

J := (R0
J1
, R0

J2
, R0

J3
) with Ra

J and Rb
J being

their images in the unit cells indexed by a and b, respec-
tively. Zero and nonzero phonon wave vectors correspond to
commensurate and incommensurate vibrations or perturba-
tions, respectively. In what follows, we derive the dynamical
matrix Dq in the context of the real-space Kohn-Sham DFT
formalism outlined in Sec. II, while taking recourse to linear
response in DFPT [3,16,17,19], which is the focus first. In so
doing, we neglect the macroscopic polarization and resulting
homogeneous electric field that are associated with phonons

in the long wavelength limit, i.e., q → 0, for polar semi-
conductors or insulators [79]. In such situations, additional
considerations are required, details for which can be found
in Ref. [3]

A. Real-space DFPT: Linear response

The calculation of the dynamical matrix requires only up
to the first-order derivative of the real-space DFT variables,
i.e., quantities associated with a variational problem, a con-
sequence of the 2n + 1 theorem [19]. In view of this, we start
by defining the phonon wave-vector dependent derivative with
respect to atomic position:

X (1)
q,Jβ

:=
∑

b

eiq·Lb
∂X

∂Rb
Jβ

, (5)

where X is any quantity in real-space DFT (Sec. II). In the
case that X is a Bloch-periodic function, the values for the
derivative outside the unit cell � can be related to those within
� as

X (1)
k,q,Jβ

(x + La ) =
∑

b

eiq·Lb
∂Xk(x + La )

∂Rb
Jβ

= ei(k+q)·La
∑

b

eiq·Lb−a
∂Xk(x)

∂Rb−a
Jβ

= ei(k+q)·La X (1)
k,q,Jβ

(x), (6)

where the second equality is obtained by using the Bloch-
periodic nature of Xk, i.e., Xk(x + La ) = eik·La Xk(x), in
conjunction with the fact that the periodic part of Xk shares
the translational invariance of the lattice, i.e., derivatives of
lattice periodic functions are identical at all spatial points that
have the same position relative to the atomic position with
respect to which derivative is being taken, provided that the
atoms being considered are periodic images of each other; the
third equality is obtained by using the translational invariance
of the lattice. Indeed, the above relation is also applicable to
periodic functions, obtained by setting k = 0.

We now apply the derivative operator on Eq. (1) to arrive
at the following equations for the derivative of the orbitals,
occupations, electron density, and electrostatic potential, all
written on �:

(Hk+q − λn,kI )ψ (1)
n,k,q,Jβ

(x) = (
λ

(1)
n,k,q,Jβ

I − H(1)
k,q,Jβ

)
ψn,k(x), ψ

(1)
n,k,q,Jβ

(x + L j ) = ei(k+q)·L j ψ
(1)
n,k,q,Jβ

(x), (7a)

g(1)
n,k,q,Jβ

= −gn,k(1 − gn,k )

σ

(
λ

(1)
n,k,q,Jβ

− μ
(1)
q,Jβ

)
, μ

(1)
q,Jβ

=
∑

k

∑Ns
n=1 gn,k(1 − gn,k )λ(1)

n,k,q,Jβ∑
k

∑Ns
n=1 gn,k(1 − gn,k )

, (7b)

ρ
(1)
q,Jβ

(x) = 2

Nc

∑
k

Ns∑
n=1

[
g(1)

n,k,q,Jβ
|ψn,k(x)|2 + gn,kψ

∗
n,k(x)ψ (1)

n,k,q,Jβ
(x) + gn,kψ

(1)
n,−k,q,Jβ

(x)ψn,k(x)
]
, (7c)

− 1

4π
∇2φ

(1)
q,Jβ

(x) = ρ
(1)
q,Jβ

(x) + b(1)
q,Jβ

(x), φ
(1)
q,Jβ

(x + L j ) = eiq·L j φ
(1)
q,Jβ

(x), (7d)
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where I is the identity operator, the boundary conditions follow from the transformation relation in Eq. (6), and

Hk+q := −1

2
∇2 + VXC + φ + VNLk+q, VNLk+q =

Na∑
J=1

PJ∑
p=1

γJ,p

∑
a

∑
b

ei(k+q)·La
∣∣χa

J,p

〉〈
χb

J,p

∣∣e−i(k+q)·Lb , (8a)

λ
(1)
n,k,q,Jβ

= δq0〈ψn,k|H(1)
k,0,Jβ

|ψn,k〉, (8b)

H(1)
k,q,Jβ

= dVXC

dρ
ρ

(1)
q,Jβ

+ φ
(1)
q,Jβ

+ VNL
(1)
k,q,Jβ

,
dVXC

dρ
= 2

dεXC

dρ
+ ρ

d2εXC

dρ2
, (8c)

VNL
(1)
k,q,Jβ

= −
PJ∑
p=1

γJ,p

∑
a

∑
b

(
ei(k+q)·La

∣∣∇βχa
J,p

〉〈
χb

J,p

∣∣e−ik·Lb + ei(k+q)·La
∣∣χa

J,p

〉〈∇βχb
J,p

∣∣e−ik·Lb
)
, (8d)

b(1)
q,Jβ

(x) = −
∑

b

∇βbb
J (x)eiq·Lb , (8e)

with 〈·〉 denoting the inner product over the unit cell �, and Hk+q being the Hamiltonian corresponding to the wave vector
k + q, the corresponding nonlocal pseudopotential operator being VNL,k+q. Note that it follows from Eq. (7b) that the first-order
change in the occupations is zero for fully occupied or unoccupied states, i.e., no change in occupations for insulators, and only
for partially occupied states in metallic systems. Furthermore, the electronic degeneracies, dispersion curves, and band gap are
unaffected up to the first order by an incommensurate phonon mode, as can be inferred from Eq. (8b).

In arriving at the expression for b(1)
q,Jβ

[Eq. (8e)], the derivative with respect to atomic position has been changed to the
derivative with respect to the space variable, which follows from the spherical symmetry of bJ . In arriving at the expression for
λ

(1)
n,k,q,Jβ

[Eq. (8b)], we have used the relation

λ
(1)
n,k,q,Jβ

=
∑

b

eiq·Lb
∂λn,k

∂Rb
Jβ

= ∂λn,k

∂R0
Jβ

∑
b

eiq·Lb = Ncδq0
∂λn,k

∂R0
Jβ

= δq0λ
(1)
n,k,0,Jβ

= δq0〈ψn,k|H(1)
k,0,Jβ

|ψn,k〉, (9)

where the second equality follows from the translational symmetry of the lattice, and the last equality follows by taking the inner
product with ψn,k on both sides of Eq. (7a). In arriving at the expression for ρ

(1)
q,Jβ

[Eq. (7c)], we have used the following relation

arising from time-reversal symmetry in the absence of magnetic fields: ψ
(1)∗
n,k,−q,Jβ

(x) = ψ
(1)
n,−k,q,Jβ

(x), whereby the dependence
on a different phonon wave vector (i.e., −q) is removed, allowing for the independent solution at different phonon wave vectors.
In arriving at the Sternheimer equation [3,80] for ψ

(1)
n,k,q,Jβ

[Eq. (7a)], we have used the relation

∑
b

eiq·Lb
∂

∂Rb
Jβ

(VNLψn,k(x)) =
∑

b

eiq·Lb
∂

∂Rb
Jβ

Na∑
J=1

∑
a

PJ∑
p=1

γJ,pχ
a
J,p(x)

〈
χa

J,p

∣∣ψn,k
〉
�̃

= −
∑

b

eiq·Lb

PJ∑
p=1

γJ,p
(∇βχb

J,p(x)
〈
χb

J,p

∣∣ψn,k
〉
�̃

+ χb
J,p(x)〈∇βχb

J,p|ψn,k〉�̃
)

+
Na∑

J=1

∑
a

PJ∑
p=1

γJ,pχ
a
J,p(x)

〈
χa

J,p

∣∣ψ (1)
n,k,q,Jβ

〉
�̃

= −
∑

b

ei(k+q)·Lb

PJ∑
p=1

γJ,p

∑
a

e−ik·Lb−a
(∇βχb

J,p(x)
〈
χb−a

J,p

∣∣ψn,k
〉+ χb

J,p(x)
〈∇βχb−a

J,p

∣∣ψn,k
〉)

+
Na∑

J=1

∑
a

PJ∑
p=1

γJ,pχ
a
J,p(x)

∑
b

ei(k+q)·Lb
〈
χa−b

J,p

∣∣ψ (1)
n,k,q,Jβ

〉

= −
PJ∑
p=1

γJ,p

∑
b

ei(k+q)·Lb

(
∇βχb

J;p(x)
∑

a

e−ik·La
〈
χa

J,p

∣∣ψn,k
〉+ χb

J,p(x)
∑

a

e−ik·La
〈∇βχa

J,p

∣∣ψn,k
〉)

+
Na∑

J=1

PJ∑
p=1

γJ,p

∑
a

ei(k+q)·Laχa
J,p(x)

∑
b

e−i(k+q)·Lb
〈
χb

J,p

∣∣ψ (1)
n,k,q,Jβ

〉
= VNL

(1)
k,q,Jβ

ψn,k(x) + VNLk+qψ
(1)
n,k,q,Jβ

(x), (10)

045302-4



CALCULATION OF PHONONS IN REAL-SPACE DENSITY … PHYSICAL REVIEW E 108, 045302 (2023)

where the second equality is obtained by using the atom-
centered nature of the nonlocal projectors, the third equality is
obtained by using the Bloch-periodic boundary condition on
the orbitals and the relation χb

J,p(x + La ) = χb−a
J,p (x), and the

fourth equality is obtained by using the translational invari-
ance of the lattice. Note again that the Sternheimer equation is
defined over �, i.e., the above approach has essentially re-
duced the problem to the unit cell �. Also note that while
applying each of the derivatives appearing in the derivative
operator [Eq. (5)] on the normalization constraint satisfied by
the orbitals we arrive at

〈
∂ψn,k

∂Rb
Jβ

∣∣∣∣ψn,k

〉
�̃

=
〈
ψn,k

∣∣∣∣∂ψn,k

∂Rb
Jβ

〉
�̃

= 〈
ψ

(1)
n,k,0,Jβ

∣∣ψn,k
〉
�̃

= 〈
ψn,k

∣∣ψ (1)
n,k,0,Jβ

〉
�̃

= 〈
ψn,k

∣∣ψ (1)
n,k,0,Jβ

〉 = 〈
ψ

(1)
n,k,0,Jβ

∣∣ψn,k
〉 = 0,

(11)

where without any loss of generality we have assumed that the
imaginary part of each of the inner products is zero, as is com-
mon in Rayleigh-Schrödinger perturbation theory [81,82].

The derivative of the orbitals ψ
(1)
n,k,q,Jβ

can be determined
by either the minimization of the energy associated with the
Sternheimer equation [83,84] or by the self-consistent solu-
tion of the Sternheimer equation using a fixed-point iteration
with respect to ρ

(1)
q,Jβ

[16]; i.e., for a given ρ
(1)
q,Jβ

, φ
(1)
q,Jβ

is cal-

culated by solving the Poisson problem in Eq. (7d), ψ
(1)
n,k,q,Jβ

is then calculated by solving the linear system arising from
the linearization of the Sternheimer equation in Eq. (7a), and
ρ

(1)
q,Jβ

is then updated using Eq. (7c), after which the above
process is repeated, until a self-consistent solution is obtained.
In so doing, the linearized Sternheimer equation encountered
can be singular, e.g., at q = 0, or very ill conditioned, e.g.,
the common situation of the Hamiltonian’s eigenvalues at the
wave vector k + q being close to those at the wave vector k,
which makes its solution numerically challenging. An estab-
lished approach to overcome this, which will also be used in
the current paper, is through the following reformulation that
makes the linear system positive definite, details of which can
be found in Appendix A [16,18,83]:

(Hk+q + Qk+q − λn,kI )ψ (1)
n,k,q,Jβ

(x) = (Pn,k+q − I )H(1)
k,q,Jβ

ψn,k(x), (12a)

Qk+q =
Ns∑

m=1

γm,k+q|ψm,k+q〉〈ψm,k+q|, Pn,k+q =
Ns∑

m=1

ζn,m,k,q|ψm,k+q〉〈ψm,k+q|, (12b)

ζn,m,k,q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δq0 + (1 − δq0)

[
1 − γm,k+q

( 1−gn,k

2σ

)]
, if m = n, λn,k = λm,k+q,

1 − γm,k+q
( 1−gn,k

2σ

)
, if m 	= n, λn,k = λm,k+q,

γm,k+q

λn,k−λm,k+q
, otherwise,

(12c)

where the coefficients γm,k+q can in principle be arbitrary, but
are chosen in practice so as to remove the singularity and
make the resultant system better conditioned, enabling faster
convergence to the solution. Note that in this reformulation
for the Sternheimer equation, it is assumed that k + q and
−k + q lie in the wave-vector space spanned by k. Though
this is always true in the continuous setting, in practical imple-
mentations or calculations where the k-point sampling may be
shifted and/or incomplete, it needs to be ensured that sampled
wave vectors k and q are such that k + q and −k + q are a
subset of the chosen k wave vectors.

In terms of computational cost, the solution of the Pois-
son equation for φ

(1)
q,Jβ

[Eq. (7d)] scales as O(Nd ) and the

solution of the linearized Sternheimer equation for ψ
(1)
n,k,q,Jβ

[Eq. (12)] scales as O(Nd Ns), where Nd is the number of
grid points used for discretization. Since there are Nq = Nc

phonon wave vectors, Na atoms, Nk = Nc electron wave vec-
tors, and Ns states or orbitals at each electron wave vector,
the total number of Poisson and linearized Sternheimer equa-
tions that need to be solved are O(NqNa) and O(NqNaNkNs),
respectively, whereby the total computational cost associated
with the solution of these equations scales as O(NqNaNd ) +
O(NqNaNkN2

s Nd ), which translates to O(N4
a ) scaling with

system size. Indeed, the scaling reduces to O(NqNaNd ) +
O(NqNaNkNsNd ) ∼ O(N3

a ) when alternate strategies that are
independent of the number of states are used to remove the
singularity in the linearized Sternheimer equation. One such
strategy that has been briefly explored here, and found to
work well in numerical experiments, is to set the coefficients
γm,k+q = 0 when |λn,k − λm,k+q| is greater than some spec-
ified threshold. Indeed, in such a case, the linear system is
no longer positive definite, which prevents the use of efficient
linear solvers that rely on this property, e.g., conjugate gradi-
ents. However, with the advent of robust and efficient linear
solvers that are not restricted by the need for positive defi-
niteness [85,86], this does not present a significant restriction.
In fact, recent solvers like alternating Anderson-Richardson
(AAR) [86,87] are able to outperform the conjugate gradient
method in the context of parallel computing.

The key differences between the current and previous for-
mulations [3,83] for DFPT merit further elaboration. First,
we adopt a local formulation of the electrostatics [73–75],
whereby φ

(1)
q,Jβ

is the solution of a Poisson equation in terms

of ρ
(1)
q,Jβ

and b(1)
q,Jβ

. In particular, the use of pseudocharges
within the current formulation circumvents the need for
techniques such as Ewald summation that are used in the
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plane-wave method for handling the long-ranged Coulomb
potential. Furthermore, it is applicable to systems of any
dimensionality, including surfaces and nanowires, with zero
Dirichlet boundary conditions prescribed along vacuum di-
rections for ψ

(1)
n,k,q,Jβ

[Eq. (7a)] and appropriate Dirichlet
boundary conditions along vacuum directions prescribed for
φ

(1)
q,Jβ

[Eq. (7d)], which can be determined using the procedure
as that adopted for φ within real-space DFT [70]. Since the
plane-wave method is restricted to periodic boundary con-
ditions, large vacuum regions and/or specialized corrections
are required for lower-dimensional systems, e.g., Coulomb
truncation techniques for the calculation of phonons in polar
2D materials [43]. Indeed, such techniques also need to be
adapted to the dimensionality of the system, complicating
implementation and analysis. Second, we have transferred the
derivative on the nonlocal projectors with respect to atomic
position to the derivative with respect to space, allowing for
the application of the finite-difference approximation to the
differential operators, which significantly increases the nu-
merical accuracy of the formalism within real-space DFT, as
observed previously for the Hellmann-Feynman atomic forces
[62,88] and stress tensor [89].

B. Dynamical matrix

We now derive the expression for the dynamical matrix
in the context of real-space DFT, within the framework of
DFPT. Starting from its definition in Eq. (4) and the energy
expression in Eq. (3), after performing a number of steps,
which includes using the Hellmann-Feynman theorem [90],
a result that relies on the orthogonality of the orbitals with
their derivative [Eq. (11)], the equations for the electronic
ground state in Eq. (1), and the expression for the derivative
of the electron density in terms of orbitals, occupations, and
their derivatives, as obtained from Eq. (1c), we arrive at the
following decomposition:

[Dq]IαJβ
= 1√

MI MJ

[[
Cel

q

]
IαJβ

+ [
CNL

q

]
IαJβ

]
, (13)

where each term is as derived below. In so doing, the second-
order derivatives of the orbitals, electrostatic potential, and
occupations vanish, a manifestation of the 2n + 1 theorem
[19].

The electrostatic contribution to the force constant matrix
is

[
Cel

q

]
IαJβ

= 1

Nc

∑
a

∑
b

eiq.(Lb−La )

(〈
∂2b

∂Ra
Iα
∂Rb

Jβ

∣∣∣∣φ〉
�̃

+
〈

∂b

∂Ra
Iα

∣∣∣∣ ∂φ

∂Rb
Jβ

〉
�̃

+ ∂2

∂Ra
Iα
∂Rb

Jβ

1

2
〈(b + b̃)|Vc〉�̃

− ∂2

∂Ra
Iα
∂Rb

Jβ

1

2

Na∑
J=1

〈b̃J |ṼJ〉�̃
)

=
(

− δIJ
〈∇αb(1)

0,Jβ

∣∣φ〉+ 〈
b(1)

q,Iα

∣∣φ(1)
q,Jβ

〉+ 1

2

〈
b(1)

q,Iα
+ b̃(1)

q,Iα

∣∣Ṽ (1)
q,Jβ

− V (1)
q,Jβ

〉
+ 1

2

〈
Ṽ (1)

q,Iα
− V (1)

q,Iα

∣∣b̃(1)
q,Jβ

+ b(1)
q,Jβ

〉− δIJ

2

〈∇αb(1)
0,Jβ

+ ∇α b̃(1)
0,Jβ

∣∣Vc
〉− δIJ

2

〈
b + b̃

∣∣∇αṼ (1)
0,Jβ

− ∇αV (1)
0,Jβ

〉)

=
(

δIJ
〈
b(1)

0,Jβ

∣∣∇αφ
〉+ 〈

b(1)
q,Iα

∣∣φ(1)
q,Jβ

〉+ 1

2

〈
b(1)

q,Iα
+ b̃(1)

q,Iα

∣∣Ṽ (1)
q,Jβ

− V (1)
q,Jβ

〉
+ 1

2

〈
Ṽ (1)

q,Iα
− V (1)

q,Iα

∣∣b̃(1)
q,Jβ

+ b(1)
q,Jβ

〉+ δIJ

2

〈
b(1)

0,Jβ
+ b̃(1)

0,Jβ

∣∣∇αVc
〉+ δIJ

2

〈∇αb + ∇α b̃
∣∣Ṽ (1)

0,Jβ
− V (1)

0,Jβ

〉)
, (14)

where the second equality is obtained by using the periodicity of the electrostatic potential, pseudocharge density, and
corresponding potential; Bloch periodicity of the derivative of any periodic function [Eq. (6)]; and the fact that the second-order
derivatives of the self-energy associated with the pseudocharges vanish. In arriving at the third equality, the derivatives have been
transferred from atom-centered quantities like the individual pseudocharge density to periodic quantities like the electrostatic
potential, through the use of the divergence theorem and integration by parts. Note that since the Coulomb potential is long
ranged particular care has been taken to ensure the locality of the expressions or computations, by having all contributions
written in terms of quantities with compact support.

The nonlocal pseudopotential contribution to the force constant matrix is

[
CNL

q

]
IαJβ

= 1

Nc

∑
a

∑
b

eiq.(Lb−La )

{
2

Nc

∑
k

Ns∑
n=1

[
∂gn,k

∂Rb
Jβ

〈ψn,k|∂VNL

∂Ra
Iα

|ψn,k〉�̃ + gn,k〈ψn,k| ∂2VNL

∂Ra
Iα
∂Rb

Jβ

|ψn,k〉�̃

+ gn,k

〈
∂ψn,k

∂Rb
Jβ

∣∣∣∣∂VNL

∂Ra
Iα

|ψn,k〉�̃ + gn,k〈ψn,k|∂VNL

∂Ra
Iα

∣∣∣∣∂ψn,k

∂Rb
Jβ

〉
�̃

]}
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= 2

Nc

∑
k

Ns∑
n=1

⎡⎣⎛⎝−g(1)
n,k,q,Jβ

PI∑
p=1

γI,p

∑
a

∑
b

eik·La 〈ψn,k|∇αχa
I,p〉〈χb

I,p|ψn,k〉e−ik·Lb + c.c.

⎞⎠
+ δIJ

⎛⎝gn,k

PJ∑
p=1

γJ,p

∑
a

∑
b

eik·La 〈ψn,k|
(∣∣∇α∇βχa

J,p

〉〈
χb

J,p

∣∣+ ∣∣∇αχa
J,p

〉〈∇βχb
J,p

∣∣)∣∣ψn,k
〉
e−ik·Lb + c.c.

⎞⎠
− gn,k

PI∑
p=1

γI,p

∑
a

∑
b

ei(k−q)·La
〈
ψ

(1)
n,k,−q,Jβ

∣∣(∣∣∇αχa
I,p

〉〈
χb

I,p

∣∣+ ∣∣χa
I,p

〉〈∇αχb
I,p

∣∣)∣∣ψn,k
〉
e−ik·Lb

− gn,k

PI∑
p=1

γI,p

∑
a

∑
b

eik·La
〈
ψn,k

∣∣(∣∣∇αχa
I,p

〉〈
χb

I,p

∣∣+ ∣∣χa
I,p

〉〈∇αχb
I,p

∣∣)∣∣ψ (1)
n,k,q,Jβ

〉
e−i(k+q)·Lb

⎤⎦
= 2

Nc

∑
k

Ns∑
n=1

[
g(1)

n,k,q,Jβ

〈
ψn,k

∣∣VNL
(1)
k,0,Iα

∣∣ψn,k
〉+ gn,k

〈
ψn,k

∣∣VNL
(2)
k,Iα,Jβ

∣∣ψn,k
〉+ gn,k

〈
ψ

(1)∗
n,−k,q,Jβ

∣∣VNL
(1)
k,−q,Iα

∣∣ψn,k
〉

+ gn,k〈ψn,k|VNL
(1)
k+q,−q,Iα

∣∣ψ (1)
n,k,q,Jβ

〉]
, (15)

where “c.c.” refers to the complex conjugate of the associated term, VNL
(1)
k,q,Jβ

is given by Eq. (8d), and

VNL
(2)
k,Iα,Jβ

= 2δIJ

PJ∑
p=1

Re

{
γJ,p

∑
a

∑
b

(
eik·La

∣∣∇α∇βχa
J,p

〉〈
χb

J,p

∣∣e−ik·Lb + eik·La
∣∣∇αχa

J,p

〉〈∇βχb
J,p

∣∣e−ik·Lb
)}

. (16)

Above, “Re” denotes the real part of the expression. In arriving at Eq. (15), the second equality uses the translational invariance
of the lattice, Bloch periodicity of ψn,k and ψ

(1)
n,k,q,Jβ

, g(1)
n,k,q,Jβ

= δq0g(1)
n,k,0,Jβ

, and the fact that the nonlocal projectors are centered

on atoms and satisfy the relation χb
J;p(x + La ) = χb−a

J;p (x). For the third equality, we use the time-reversal symmetry satisfied by

ψ
(1)
n,k,q,Jβ

: ψ
(1)∗
n,k,−q,Jβ

(x) = ψ
(1)
n,−k,q,Jβ

(x).
Collecting all terms from Eqs. (14) and (15), and then substituting into Eq. (13), we arrive at the following real-space DFT

expression for the dynamical matrix at the phonon wave vector q:

[Dq]IαJβ
= 1√

MI MJ

[(
δIJ
〈
b(1)

0,Jβ

∣∣∇αφ
〉+ 〈

b(1)
q,Iα

∣∣φ(1)
q,Jβ

〉+ 1

2

〈
b(1)

q,Iα
+ b̃(1)

q,Iα

∣∣Ṽ (1)
q,Jβ

− V (1)
q,Jβ

〉 + 1

2

〈
Ṽ (1)

q,Iα
− V (1)

q,Iα
|b̃(1)

q,Jβ
+ b(1)

q,Jβ
〉

+ δIJ

2

〈
b(1)

0,Jβ
+ b̃(1)

0,Jβ

∣∣∇αVc
〉+ δIJ

2

〈∇αb + ∇α b̃
∣∣Ṽ (1)

0,Jβ
− V (1)

0,Jβ

〉)+ 2

Nc

∑
k

Ns∑
n=1

(
g(1)

n,k,q,Jβ
〈ψn,k|VNL

(1)
k,0,Iα

|ψn,k〉

+ gn,k〈ψn,k|VNL
(2)
k,Iα,Jβ

|ψn,k〉 + gn,k
〈
ψ

(1)∗
n,−k,q,Jβ

∣∣VNL
(1)
k,−q,Iα

|ψn,k〉 + gn,k〈ψn,k|VNL
(1)
k+q,−q,Iα

∣∣ψ (1)
n,k,q,Jβ

〉)]
. (17)

Indeed, all computations in the evaluation of the dynamical
matrix are restricted to the unit cell or fundamental domain
�, with 〈·〉 denoting the inner product over the unit cell �.

The expression for the dynamical matrix presented above
is not only applicable to local exchange-correlation function-
als, but also to semilocal and hybrid exchange-correlation
functionals, all without nonlinear core corrections. It is also
applicable to orthogonal and nonorthogonal unit cells alike,
provided all the gradients appearing in the expression are in-
terpreted as derivatives along the Cartesian directions. Instead,
if the derivatives are evaluated with respect to the lattice vec-
tor directions, as typically done for convenience within DFT
implementations, the resultant dynamical matrix Dq needs to
be transformed as follows:

Dq := WTDqW, [W]IαJβ
= [S]αβ,

S =
[

L1

|L1|
L2

|L2|
L3

|L3|
]−1

. (18)

Due to numerical inaccuracies, since the computed dynam-
ical matrix does not satisfy the acoustic sum rule—phonon
frequencies of the acoustic modes must be zero, given the
translational symmetry of the crystal—the diagonal compo-
nents of the dynamical matrix at q = 0 are updated so that the
sum of each of the rows of the force constant matrix is zero:

Na∑
J=1

√
MI MJ [D0]IαJα

= 0 ∀

α ∈ {1, 2, 3}, I ∈ {1, 2, . . . , N}. (19)

In terms of computational cost, the evaluation of each entry
in the density matrix at a given phonon wave vector scales
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as O(NkNs), where Nk = Nc is the number of electron wave
vectors. Since the number of matrix entries scales as O(N2

a ),
the evaluation of the dynamical matrix at a given phonon wave
vector scales as O(N2

a NkNs). Once the dynamical matrix at
any phonon wave vector has been formed, its diagonalization
scales as O(N3

a ). Therefore, the cost of evaluation and diago-
nalization of the dynamical matrix at all the Nq = Nc phonon
wave vectors scales as O(NqN2

a NkNs) + O(NqN3
a ) ∼ O(N3

a ),
which changes to O(NqNaNkNs) + O(NqN3) ∼ O(N3

a ) upon
truncation of the dynamical matrix, based on its expected
decay away from the diagonal [71]. As discussed in Sec. III A,
the cost of the solution of the Sternheimer equations scales
as O(N3−4

a ). Moreover, it is associated with a large prefactor,
since each solution requires multiple self-consistent iterations,
each of which is associated with multiple iterations arising
during the solution of the linearized Sternheimer equations.
Therefore, the overall computational cost associated with the
calculation of phonons has a scaling of O(N3−4

a ) with system
size, accompanied by a large prefactor, making such calcula-
tions particularly expensive.

The key differences between the current and previous
formulations [3,83] for the dynamical matrix merit further
elaboration. First, we adopt a local formulation of the elec-
trostatics [73–75] that is particularly suited for the real-space
method, circumventing the need for techniques such as Ewald
summation that are commonly used in plane-wave methods
for handling the long-ranged Coulomb potential. In particular,
the expressions are applicable to systems of any dimension-
ality, including surfaces and nanowires, even when there are
large dipole moments and/or external electric fields present
in the vacuum direction. Indeed, plane-wave methods require
corrections in such circumstances, which have been devel-
oped for surfaces [44], but are not yet available for wires
and molecules. Second, we have transferred the derivative
on the nonlocal projectors with respect to atomic position
to the derivative with respect to space, allowing for the
finite-difference differential operator to be applied, which
significantly increases the numerical accuracy of the formal-
ism within real-space DFT, as observed previously for the
Hellmann-Feynman atomic forces [62,88] and stress tensor
[89]. Third, at no additional computational cost, the formu-
lation presented here provides the actual ψ

(1)
n,k,q,Jβ

—a quantity
that can be directly used in physical applications—whereas
previous formulations instead only ensure that ρ

(1)
q,Jβ

and dy-
namical matrix Dq are correctly computed, e.g., Refs. [3,91]
only determine the projection of ψ

(1)
n,k,q,Jβ

onto the unoccupied

space manifold, which keeps ρ
(1)
q,Jβ

and Dq unchanged. Finally,
we provide the complete expressions and their derivation for
the dynamical matrix and associated Sternheimer equation,
which have not been made available heretofore.

IV. IMPLEMENTATION AND RESULTS

We have implemented the above-described real-space for-
mulation for phonons in M-SPARC [92,93], which is a MATLAB

version of the large-scale parallel C and C++ electronic
structure code SPARC [62,70,73], both codes employing the
same local form for the electrostatics that has been adopted
here. In M-SPARC or SPARC, all quantities are discretized on a

uniform real-space grid, with high-order centered finite dif-
ferences used for differential operators and the trapezoidal
rule used for integral operators. The electronic ground state
is determined using the self-consistent field method [76],
wherein partial diagonalization is performed in each iteration
using the Chebyshev filtered subspace iteration [94,95], with
self-consistency accelerated using the restarted periodic Pulay
mixing scheme [96,97]. The Poisson equation for the electro-
static potential is solved using the AAR [86,87] method, for
which the incomplete Cholesky factorization of the discrete
Laplacian matrix serves as a preconditioner in M-SPARC.

The self-consistent solution of each Sternheimer equa-
tion is determined using a fixed-point iteration with respect
to ρ

(1)
q,Jβ

, accelerated using the restarted periodic Pulay mixing
scheme, with the noninteracting version of the system used
as an initial guess, i.e., ρ

(1)
q,Jβ

corresponding to the case when
the electron density is assumed to be the superposition of
isolated-atom electron densities. In each iteration of this self-
consistent solution, the linear systems for ψ

(1)
n,k,q,Jβ

[Eq. (12)]

and φ
(1)
q,Jβ

[Eq. (7d)] are solved using the preconditioned con-
jugate gradient and AAR methods, respectively. In so doing,
the incomplete Cholesky factorization of the discrete Lapla-
cian matrix is used as preconditioner, boundary conditions
are enforced within the Kronecker product formalism for the
Laplacian matrix-vector products [98], and the solution ob-
tained in the previous iteration is used as the initial guess.
We parallelize the computations over the Brillouin zone wave
vectors (i.e., k) using MATLAB’s PARFOR command, while
utilizing the complete independence of the eigenproblems
between different phonon wave vectors (i.e., q) to launch
multiple such jobs simultaneously on the computing cluster.

We now verify the accuracy of the developed formula-
tion and implementation by comparisons with the established
plane-wave code ABINIT [35,91]. For this paper, we con-
sider three representative examples of different compositions,
geometries, and dimensionalities, all at their equilibrium con-
figurations: a one-atom primitive unit cell of body-centered
cubic (bcc) cesium, with a 8 × 8 × 8 Monkhorst-Pack [99]
grid for Brillouin zone integration; a four-atom primitive unit
cell of rectangular α-phosphorene, with a 8 × 8 Monkhorst-
Pack grid for Brillouin zone integration; and a two-atom
primitive unit cell of the one-dimensional carbon polymeric
chain polyyne, with 11 Monkhorst-Pack grid points for Bril-
louin zone integration. In ABINIT, we use plane-wave cutoffs
of 27, 35, and 120 Ha for the cesium, phosphorene, and
polyyne systems, respectively, which translates to phonon
frequencies converged to within 0.1 cm−1. In M-SPARC, we
use a 12th-order accurate finite-difference discretization with
mesh sizes of 0.39, 0.25, and 0.12 bohr for the cesium,
phosphorene, and polyyne systems, respectively, which trans-
lates to the phonon frequencies converged to within 1 cm−1.
In all simulations, we employ optimized norm-conserving
Vanderbilt pseudopotentials [100] from the Shojaei-Pask-
Medford-Suryanarayana (SPMS) set [101], Purdew-Zunger
[102] variant of the LDA [2] as the exchange-correlation
functional, and Fermi-Dirac smearing of 0.001 Ha.

In Fig. 1, we present the phonon dispersion curves
and phonon density of states so obtained by M-SPARC and
ABINIT for the chosen cesium, phosphorene, and polyyne
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0.0 0.1 0.2

(a) BCC Cesium

0.00 0.05 0.10 0.15

(b) α-Phospherene

0.00 0.01 0.02

(c) Polyyne

FIG. 1. Phonon dispersion and density of states for bcc cesium, α-phosphorene, and polyyne. The red (continuous) and the blue (dashed)
curves in the dispersion plots represent the cubic spline fit to the data points obtained from ABINIT and M-SPARC, respectively. The maximum
differences in the phonon frequencies between M-SPARC and ABINIT for the cesium, phosphorene, and polyyne systems are 0.2, 0.93, and
0.61 cm−1, respectively.

systems. In plotting the dispersion curves, we choose the
high symmetry �(0, 0, 0)–H(−0.5, 0.5, 0.5)–N(0,0,0.5)–
�(0, 0, 0)–P(0.25,0.25,0.25)–N(0,0,0.5)–P(0.25,0.25,0.25)–
H(−0.5, 0.5, 0.5) circuit for cesium and the high symmetry
�(0, 0)–X(0.5,0)–S(0.5,0.5)–Y(0,0.5)–�(0, 0)–S(0.5,0.5)–
X(0.5,0)–Y(0,0.5) circuit for phosphorene, the coordinates
representing fractions of the lattice vectors. For the phonon
density of states, we exclude the rigid body modes at the
q = 0 phonon wave vector and smear the Dirac delta function
using a Gaussian with widths of 2, 7, and 40 cm−1 for the
cesium, phosphorene, and polyyne systems, respectively. It
is clear from the results that there is excellent agreement
between M-SPARC and ABINIT, with the maximum difference
in phonon frequencies being 0.2, 0.93, and 0.61 cm−1 for
the cesium, phosphorene, and polyyne systems, respectively.
Indeed, the agreement between M-SPARC and ABINIT further
increases on refining the real-space grid in M-SPARC. Note that

the phosphorene and polyyne systems do not have any dipole
moment, hence the particularly good agreement between the
real-space and plane-wave formulations or implementations.
Also note that though the focus in the present paper is phonons
the developed DFPT framework is equally applicable to the
calculation of vibrational spectra for isolated clusters or
molecules, as shown in Appendix B. Overall, these results
demonstrate the accuracy of the developed formulation and
implementation for phonons in real-space DFT.

The phonon dispersion curves also allow us to make
some physical observations. First, cesium, α-phosphorene,
and polyyne are all structurally stable, with maximum
phonon frequencies of 1.25, 14.0, and 66 THz, re-
spectively. Second, cesium has anisotropy in the elas-
tic constants, as evident from the different slopes of
the longitudinal acoustic branch along different direc-
tions near �, i.e., along the �(0, 0, 0)–H(−0.5, 0.5, 0.5),
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�(0, 0, 0)–P(0.25,0.25,0.25), and �(0, 0, 0)–N(0,0,0.5) di-
rections. Third, α-phosphorene also has anisotropy in the
elastic constants—different slopes of the longitudinal acous-
tic branch along �(0, 0)–X(0.5,0), �(0, 0)–Y(0,0.5), and
�(0, 0)–S(0.5,0.5) directions—and has a phonon band gap
of 2.5 THz, in agreement with literature [103,104]. Finally,
polyyne displays acoustic phonon transport only along the
axis of the chain, with a twofold degeneracy in its overall
phonon dispersion.

In the absence of wave-vector-based symmetry reduc-
tions, which are currently not exploited in the prototype
MATLAB code, the developed implementation is competitive
with ABINIT: the M-SPARC timings for �-point calculations of
cesium, phosphorene, and polyyne are 6.0, 64, and 360 s,
respectively, with the corresponding ABINIT timings being
6.5, 77, and 108 s, respectively. The superior performance
of ABINIT for polyyne can be attributed to the highly fine
grid used, for which the efficient preconditioners available in
Fourier space are more effective. Indeed, an efficient imple-
mentation of the current formalism in C or C++ is expected
to immediately provide a fewfold reduction in computational
time, as observed for ground state calculations in SPARC

relative to M-SPARC. The advantages of the real-space im-
plementation will become increasingly prominent at larger
system sizes and larger number of processors, as observed
in comparisons of SPARC with established plane-wave codes
[70]. Further gains in the efficiency can be achieved by em-
ploying more sophisticated mixing schemes that reduce the
number of linear solvers, and through more efficient linear
solvers. In particular, for the examples studied here, more
than 99% of the computational or wall time is taken for
the solution of the linearized Sternheimer equations, where
the key computational kernel is the matrix-vector product. In
so doing, a significant fraction of the time is taken for the
application of the Qk+q operator. Given that this operation
scales as O(NsNd ), whereas the application of the real-space
Hamiltonian Hk+q only scales as O(Nd ), the application of
Qk+q will become progressively more dominant as the sys-
tem size increases. The development of efficient or effective
preconditioners and/or ways to remove the singularity of the
Sternheimer equation, without increasing the order of the
scaling, will significantly reduce the cost of phonon calcula-
tions, particularly as the system size increases. As discussed
in Sec. III A, one such strategy that has been explored here
and found to work well is to make the rank of Qk+q (and
therefore Pk+q) independent of the system size, by setting
the coefficients γm,k+q = 0 when |λn,k − λm,k+q| is greater
than some specified threshold. Though this strategy did not
yield noticeable gains for the current examples, where the the
number of states is relatively small, it promises tremendous
gains for larger system sizes that are being targeted with the
large-scale parallel implementation in the SPARC electronic
structure code.

V. CONCLUDING REMARKS

We have presented an accurate and efficient formulation
for the calculation of phonons in real-space Kohn-Sham
DFT. Specifically, employing a local approximation for the
exchange-correlation functional, norm-conserving pseudopo-

tential in the Kleinman-Bylander representation, and local
form for the electrostatics in terms of ionic pseudocharges, we
have derived expressions for the dynamical matrix and asso-
ciated Sternheimer equation that are particularly amenable to
the real-space finite difference method, within the framework
of DFPT. The resulting formulation is applicable to insulating
as well as metallic systems of any dimensionality, enabling
the efficient and accurate treatment of semi-infinite and bulk
systems alike, for both orthogonal and nonorthogonal cells.
We have also developed a high-order finite-difference im-
plementation of the proposed formulation in the M-SPARC

electronic structure code. We have verified the accuracy of the
formulation and implementation by demonstrating excellent
agreement with established plane-wave results for represen-
tative examples having different structure, composition, and
dimensionality. Though the focus of the current paper is
phonons, the developed framework is equally applicable to
the calculation of vibrational spectra for isolated systems or
molecules.

The current paper opens an avenue for the formulation and
implementation of perturbations with respect to other quan-
tities, e.g., electric fields, as well as higher-order derivatives
in real-space DFT using DFPT, e.g., third-order interatomic
force constants. The development of a massively parallel im-
plementation in SPARC [62,70,73]—a large-scale parallel C or
C++ version of M-SPARC—will enable the study of responses
to perturbations more efficiently, making it worthy of pursuit.
In addition, the extension of these developments to cyclic and
helical symmetries [105,106], which are encountered during
the study of low-dimensional materials and their response to
mechanical deformations [107–109], is currently being pur-
sued by the authors.
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APPENDIX A: REMOVAL OF SINGULARITY IN THE
STERNHEIMER EQUATION

The linearized Sternheimer equation presented
in Eq. (7a) is now reformulated so as to make it
nonsingular [16,18,83]. In particular, the operator
Qk+q = ∑Ns

m=1 γm,k+q|ψm,k+q〉〈ψm,k+q|, with coefficients
γm,k+q chosen so as to ensure a nonsingular linear system,
is included on the left hand side of Eq. (7a). To ensure
that the solution to the equation remains unchanged, the
operator Pn,k+qH(1)

k,q,Jβ
is included on the right hand side,

where Pn,k+q = ∑Ns
m=1 ζn,m,k,q|ψm,k+q〉〈ψm,k+q|, with the

coefficients ζn,m,k,q as derived below.
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1. Case I: λn,k �= λm,k+q

It can be shown that

Qk+q
∣∣ψ (1)

n,k,q,Jβ

〉 = Ns∑
m=1

γm,k+q|ψm,k+q〉
〈
ψm,k+q

∣∣ψ (1)
n,k,q,Jβ

〉
=
(

Ns∑
m=1

γm,k+q

λn,k − λm,k+q
|ψm,k+q〉〈ψm,k+q|

)
× H(1)

k,q,Jβ
|ψn,k〉, (A1)

where the relation for 〈ψm,k+q|ψ (1)
n,k,q,Jβ

〉 has been obtained
by multiplying both sides of Eq. (7a) with 〈ψm,k+q|, and

then using the Kohn-Sham eigenvalue equation [Eq. (1a)],
orthogonality between the orbitals for the same wave vector,
and λ

(1)
n,k,q,Jβ

= δq0λ
(1)
n,k,0,Jβ

. It follows that the coefficients are

ζn,m,k,q = γm,k+q

λn,k − λm,k+q
. (A2)

2. Case II: λn,k = λm,k+q

The denominator in the above expression vanishes when
λn,k = λm,k+q, for which Eq. (A2) is no longer applicable. In
these cases, we follow Ref. [18] to determine the coefficients.
We first rewrite the expression for ρ

(1)
q,Jβ

in Eq. (7c) as

ρ
(1)
q,Jβ

(x) = 2

Nc

∑
k

Ns∑
n=1

(
g(1)

n,k,q,Jβ
|ψn,k(x)|2 + gn,kψ

∗
n,k(x)ψ (1)

n,k,q,Jβ
(x) + gn,kψ

(1)
n,−k,q,Jβ

(x)ψn,k(x)
)

= 2

Nc

∑
k

Ns∑
n=1

(
g(1)

n,k,q,Jβ
|ψn,k(x)|2 +

Nk+q
b∑

m=1

gn,kψ
∗
n,k(x)ψm,k+q(x)

〈ψm,k+q|H(1)
k,q,Jβ

|ψn,k〉
λn,k − λm,k+q

+
N−k+q

b∑
m=1

gn,kψn,k(x)ψm,−k+q(x)
〈ψm,−k+q|H(1)

−k,q,Jβ
|ψn,−k〉

λn,−k − λm,−k+q

)

= 2

Nc

∑
k

Ns∑
n=1

(
g(1)

n,k,q,Jβ
|ψn,k(x)|2 +

Nk+q
b∑

m=1

gn,kψ
∗
n,k(x)ψm,k+q(x)

〈ψm,k+q|H(1)
k,q,Jβ

|ψn,k〉
λn,k − λm,k+q

+
N−k

b∑
m=1

gn,k+qψn,k+q(x)ψm,−k(x)
〈ψm,−k|H(1)

−k−q,q,Jβ
|ψn,−k−q〉

λn,−k−q − λm,−k

)

= 2

Nc

∑
k

Nk
b∑

n=1

(
g(1)

n,k,q,Jβ
|ψn,k(x)|2 +

Nk+q
b∑

m=1

gn,kψ
∗
n,k(x)ψm,k+q(x)

〈ψm,k+q|H(1)
k,q,Jβ

|ψn,k〉
λn,k − λm,k+q

+
Nk+q

b∑
m=1

gm,k+qψm,k+q(x)ψ∗
n,k(x)

〈ψm,k+q|H(1)
k,q,Jβ

|ψn,k〉
λm,k+q − λn,k

)

= 2

Nc

∑
k

Nk
b∑

n=1

(
g(1)

n,k,q,Jβ
|ψn,k(x)|2 +

Nk+q
b∑

m=1

ψ∗
n,k(x)ψm,k+q(x)

gn,k − gm,k+q

λn,k − λm,k+q
〈ψm,k+q|H(1)

k,q,Jβ
|ψn,k〉

)

= 2

Nc

∑
k

Ns∑
n=1

(
g(1)

n,k,q,Jβ
|ψn,k(x)|2 + 2gn,k

Nk+q
b∑

m=1

ψ∗
n,k(x)ψm,k+q(x)

gn,k − gm,k+q

λn,k − λm,k+q

gm,n,k+q,k

gn,k
〈ψm,k+q|H(1)

k,q,Jβ
|ψn,k〉

)
,

(A3)

where Nk
b denotes the dimension of the kth space. In the above deviation, we have obtained the second equality by expanding

ψ
(1)
n,k,q,Jβ

in terms of the basis of the kth space; the third equality is obtained by using the fact that the k and k + q wave vectors

span the same set; the fourth equality is obtained by first expanding the series (indexed by n) to include all the Nk+q
b eigenbases

(since the occupations are zero for the additional states or eigenbases), then interchanging the indices n and m, and lastly using
the inner product property and adjoint of the H(1)

k,q,Jβ
operator to make the expression inside 〈·〉 identical in the last two terms; the

final equality is obtained by using gn,m + gm,n = 1, gm,n,k+q,k = [1 + exp( λn,k−λm,k+q

σ
)]−1, and symmetry in the n and m indices.

Note that the above derivation is not valid for n = m with q = 0, since 〈ψ (1)
n,k,0,Jβ

|ψn,k〉 = 0 [Eq. (11)], whereby this state does

not appear in the expansion of ψ
(1)
n,k,q,Jβ

. In particular, ζn,n,k,0 = 1 can be obtained by starting with the nonsingular Sternheimer
equation [Eq. (12)], multiplying both sides by 〈ψn,k|, and using the orthogonality condition in Eq. (11).
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TABLE I. Vibrational frequencies (in cm−1) for the silane molecule, as computed by M-SPARC and ABINIT. The number in brackets
represents the degeneracy associated with that mode.

Symmetric Symmetric Asymmetric Asymmetric
stretch (1) bend (2) stretch (3) bend (3)

M-SPARC 2155.01 932.93 2176.11 850.58
ABINIT 2155.52 933.23 2176.27 851.10

The expression in Eq. (A3) agrees with the arguments made in previous works [16,83] that ρ
(1)
q,Jβ

is independent of the
coupling between states or orbitals that either have unit occupations (gn,k = 1) or zero occupations (gn,k = 0). The second
term of Eq. (A3) can also be written as: 4

Nc

∑
k

∑Ns
n=1 gn,kψ

∗
n,k(x)ψ̃ (1)

n,k,q,Jβ
(x), where ψ̃

(1)
n,k,q,Jβ

satisfies a modified Sternheimer
equation [3], a strategy adopted previously for metallic systems [3,18]. However, we instead solve the nonsingular Sternheimer
equation [Eq. (12)], and use the expression in Eq. (A3) to obtain the coefficients of the projector Pn,k+q for the case when
λn,k = λm,k+q. To do so, we first separate the contribution of the degenerate pair of states from the others as shown below:

ψ̃
(1)
n,k,q,Jβ

(x) =
Nk+q

b∑
m=1

λn,k 	=λm,k+q

gn,k − gm,k+q

λn,k − λm,k+q

gm,n,k+q,k

gn,k
ψm,k+q(x)〈ψm,k+q|H(1)

k,q,Jβ
|ψn,k〉

+ 1

2gn,k

∂gn,k

∂λn,k

Nk+q
b∑

m=1
λn,k=λm,k+q

ψm,k+q(x)〈ψm,k+q|H(1)
k,q,Jβ

|ψn,k〉. (A4)

The second term in the above equation provides the con-
tribution of the degenerate states to ψ

(1)
n,k,q,Jβ

, since the
components of the two series in the fourth equality of
Eq. (A3) become identical for degenerate states. To obtain
the coefficients of the projector Pn,k+q corresponding to the
degenerate states, we first start from the nonsingular Stern-
heimer equation [Eq. (12)] and multiply it by the degenerate
state 〈ψm,k+q|, resulting in the following equation:

γm,k+q
〈
ψm,k+q

∣∣ψ (1)
n,k,q,Jβ

〉 = (ζn,m,k,q − 1)〈ψm,k+q|H(1)
k,q,Jβ

|ψn,k〉,
(A5)

which when compared with Eq. (A4) provides the coefficients
for the degenerate states:

ζn,m,k,q = 1 + γm,k+q

(
1

2gn,k

∂gn,k

∂λn,k

)
= 1 − γm,k+q

(
1 − gn,k

2σ

)
.

(A6)

APPENDIX B: VIBRATIONAL SPECTRUM FOR THE
SILANE MOLECULE

We now show that the developed real-space formulation
and implementation for phonons can also be used for cal-
culating the vibrational spectra of isolated systems, taking
the silane molecule (SiH4) as a representative example. In
particular, we compute the vibrational frequencies of silane
at the equilibrium Si–H bond length of 2.81 bohrs, using both
ABINIT [35] as well as M-SPARC. For this purpose, we use a
mesh size of 0.2 bohr in M-SPARC and a plane-wave cutoff
of 40 Ha in ABINIT. The results so obtained are presented
in Table I. It is clear that there is very good agreement be-
tween M-SPARC and ABINIT, with the maximum difference in
the frequencies being 0.52 cm−1. In addition, there is very
good agreement in the zero-point energy—half of the sum
of all the phonon frequencies—with the difference between
M-SPARC and ABINIT being 1.57 cm−1. These results verify
the applicability and accuracy of the proposed formulation
and implementation for calculating the vibrational spectra of
isolated clusters or molecules. Indeed, being in real space, it
can also be used for systems that are charged and/or have
large dipole moments.
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