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First-order differential equations for single-particle quantum mechanical systems
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Coupled first-order differential forms of a single-particle Schrödinger equation are presented. These equa-
tions are convenient to solve efficiently using the widely available ordinary differential equation solvers.
This is particularly true because the solutions to the differential equation are two sets of complemen-
tary functions that share simple and consistent mathematical relationships at the boundary and across the
domain for a given potential. The differential equations are derived from an integral equation obtained
using the Green’s function for the kinetic operator, making them universally applicable to various sys-
tems. These equations are applied to the Yukawa potential −e−αr/r to calculate the critical screening
parameter α = 1.190 612 421 060 617 705 342 777 106 361 05 using a standard quadruple precision calcu-
lation, which is the most accurate compared to similar calculations in the past that confirm the first
30 significant figures. Also reported is the interesting coincident point with the eigenvalue, α = −E =
0.274 376 862 689 408 994 894 705 268 554 458.

DOI: 10.1103/PhysRevE.108.045301

I. INTRODUCTION

Electronic structure calculations are mostly done by solv-
ing a single-particle equation thanks to density functional
theory or Hartree-Fock theory that have made the oth-
erwise complicated many-body physics manageable [1,2].
Further simplifications that arise from symmetry consid-
eration or other approximations within the theory lead to
a second-order differential equation (DE) that can be di-
rectly integrated. The resulting solutions obtained this way
are more efficient than those obtained from a diagonal-
ization method because they avoid basis set optimization
or dealing with large eigensystems—processes associated
with applying the variational principle. But since integra-
tion is not second order by nature, it is necessary to cast
the equations into a first-order form to make maximum
use of available ordinary DE solvers. Despite its frequent
use, only a little thought is given to this procedure other
than simultaneously solving for the function and its first
derivative.

This article revisits this necessary procedure of trans-
forming a single-particle time-independent Schrödinger equa-
tion into a set of first-order DEs [3,4] by presenting an ab
initio derivation. The derivation utilizes the Green’s func-
tion for the kinetic operator, which makes it universally
applicable to systems with different potentials. A spherical
coordinate system, which is the most popular coordinate
system in electronic structure calculations, is used. The
derivations shown here can be easily implemented in a
different coordinate system and/or Green’s function. The
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resulting DEs are not only versatile but also aesthetically
appealing.

The spherically symmetric version of the equations is
applied later to the Yukawa and related screened Coulomb
potentials. These screened potentials have relevance in
numerous physical applications. However, only their
numerical aspects are considered here [5–7]. For α = 0,
the system with the potential −e−αr/r is identical to a
hydrogen atom. But as α increases, the electron becomes less
tightly bound, and after some critical value of the parameter,
it can no longer retain a bound state. The potentials’ screening
parameter and eigenvalue pair (α, E ) have been successfully
calculated and reported previously, but not near the critical
values, especially as E increases towards the continuum.
Only a few digits of the critical value of α were calculated
until recently [8,9]. Its electronic density at the origin [10]
is another quantity that becomes numerically challenging
to compute near the critical values. The derived DE is
implemented to produce a comprehensive table of benchmark
values for a wide range of these quantities.

II. INTEGRAL EQUATION

The nonrelativistic, time-independent Schrödinger equa-
tion for a one-particle quantum mechanical system is (atomic
units will be used throughout)(− 1

2∇2
r + V (r) − E

)
�(r) = 0, (1)

where V and E are the total potential and energy
of the system, respectively. The notation r ≡ |r| and
r̂ ≡ r/r are used for a position vector r in three-
dimensional coordinate space. Using the Green’s function
for the Laplace operator given by ∇2

r [(−4π |r − x|)−1] =
δ(r − x) [11], the solution can be formally written

2470-0045/2023/108(4)/045301(7) 045301-1 ©2023 American Physical Society

https://orcid.org/0000-0002-6753-0589
https://orcid.org/0000-0003-4635-9636
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.045301&domain=pdf&date_stamp=2024-05-09
https://doi.org/10.1103/PhysRevE.108.045301


DANIEL GEBREMEDHIN AND CHARLES WEATHERFORD PHYSICAL REVIEW E 108, 045301 (2023)

as

�(r) =
∑

L

2

2l + 1
YL(r̂)

∫
YL

∗(x̂)
rl
<

rl+1
>

[E − V (x)]�(x)d3x,

(2)

where the Laplace expansion of |r − x|−1 in the spherical
coordinate system has been employed. Here, L ≡ {l, m} is a
composite index, Y is a spherical harmonic function, and the
> and < signify the greater and lesser of r and x, respectively.
The above equation is itself an expansion in terms of Y given
below:

�(r) =
∑

L

ψL(r)YL(r̂) ≡
∞∑

l=0

l∑
m=−l

ψm
l (r)Y m

l (r̂), (3)

where

ψL(r) = 2

2l + 1

∫
Y ∗

L (x̂)
rl
<

rl+1
>

[E − V (x)]�(x)d3x. (4)

Substituting Eq. (3) on the right-hand side of the above equa-
tion, one can write

ψL(r) =
∑

L′

∫ ∞

0
x

rl
<

rl+1
>

PLL′ (x)ψL′ (x)dx, (5)

where P is a symmetric matrix of double integrals over the
angular variables that incorporate all of the physics of the
system.

PLL′ (r) = 2r

2l + 1

∫
YL

∗(r̂)[E − V (r)]YL′ (r̂)dr̂. (6)

The factor r up front helps to regularize the singularity in
Coulomb-like (∝1/r) potentials. Now, let us break the x axis
into two parts as [0, r] and [r,∞) and write Eq. (5) more
explicitly as

ψL(r) =
∑

L′

[
1

rl+1

∫ r

0
xl+1PLL′ (x)ψL′ (x)dx + rl

×
∫ ∞

r
x−l PLL′ (x)ψL′ (x)dx

]
. (7)

The right-hand side of the above equation has a striking simi-
larity with the potential in Poisson’s equation if the radial part
of the density replaces the product Pψ [12].

III. COUPLED FIRST-ORDER
DIFFERENTIAL EQUATIONS

To get the desired DEs, first write the above integral equa-
tion in the following form:

ψL(r) = 1

rl+1
SL(r) + rlCL(r), (8)

where

SL(r) =
∑

L′

∫ r

0
dx xl+1PLL′ (x)ψL′ (x), (9)

CL(r) =
∑

L′

∫ ∞

r
dx x−lPLL′ (x)ψL′ (x). (10)

For reasons that will soon be clear, the above two complemen-
tary functions shall be named S (ine) and C (osine) component
functions, respectively. Taking a derivative (denoted below by
an overhead dot) of the above equations with respect to r
gives

ṠL(r) =
∑

L′
rl+1PLL′ (r)ψL′ (r), (11)

ĊL(r) = −
∑

L′
r−lPLL′ (r)ψL′ (r). (12)

Clearly, ṠL(r) = −r2l+1ĊL(r). This is the defining relation-
ship that keeps the numerical behavior of Ṡ and Ċ universally
simple and consistent. They become equal in magnitude only
at r = 1. For r > 1, |Ṡ| > |Ċ|, and vice versa for r < 1. This
is also a marked qualitative difference from the traditional
(ψ, ψ̇ ) pair, whose mutual relationship depends on the po-
tential V .

Substituting for ψ from Eq. (8), and after some rearrange-
ment, results in the following first-order, homogeneous matrix
DE:

[
ṠL(r)

ĊL(r)

]
=

∑
L′

PLL′ (r)

[
rl−l ′ rl+l ′+1

−r−l−l ′−1 −rl ′−l

][
SL′ (r)

CL′ (r)

]
.

(13)

P completely factors out of the above 2 × 2 kernel matrix.
The eigenvalues of this matrix are (0, rl−l ′ − rl ′−l ), which
prohibits the possibility of using the powerful spectral de-
composition theorem [13] to further decouple Eq. (13) into
two sets of DEs. The exact implications of these eigenvalues
are not clear, but the overall effect seems to be consistent
with the fact that the solutions are essentially “decoupled”
into small and big components. The overall result according
to our numerical tests on electronic structure calculations is
that Eq. (13) can be integrated in a very stable manner out
to large distances where the wavefunction is well decayed.
Its familiar form also makes it convenient to integrate using
readily available DE solvers as long as the summation over
L′ is finite. Construction of this linear, first-order DE boils
down to an evaluation of P. From Eqs. (9) and (10), by
definition, the S and C functions vanish at the origin and
at infinity, respectively. Thus, one of the key advantages of
these functions is that, for all potentials, the integration can
proceed outwards with the initial condition (SL(0),CL(0)) =
(0, 1) and the corresponding ψ renormalized properly
afterward.

Thus, one can, in principle, solve the above equation and
generate the basis functions that belong to the same given
energy E and construct the solution using Eq. (3). The size
of the matrix DE in Eq. (13) is subjective to the (spherical)
symmetry of the potential or how convergent the total wave-
function � is in representing with the spherical harmonics
basis set. Next, we will take a closer look at the simple but
important spherically symmetric case of V (r) → V (r) and
use it to describe the numerical advantages that this form of
the equations portend and, in the process, lay out some insight
for working with the full potential.
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FIG. 1. The 5s eigenstate ψ of hydrogen atom and the cor-
responding S and C functions. The S function is overall more
prominent than C.

A. Radial equation

Due to the orthonormality of the spherical harmonics, for a
radial potential Eq. (6) reduces to

Pl (r) = 2r

2l + 1
[E − V (r)], ∀m,−l � m � l, (14)

where the magnetic quantum number m is suppressed to avoid
clutter. And hence, Eq. (13) becomes[

Ṡl (r)
Ċl (r)

]
= Pl (r)

[
1 r2l+1

−r−2l−1 −1

][
Sl (r)
Cl (r)

]
. (15)

They are exponential in nature near and far from the origin:
namely, for short range Sl (r) ≈ ePl (r), and for long range
Cl (r) ≈ e−Pl (r). Their typical plot shown in Fig. 1 indicates
that they evolve into big and small components in such a way
that, according to our tests, is also numerically conducive.
Both eigenvalues of the above 2 × 2 matrix vanish, which
again renders the two equations inseparable. However, by
going into a phase-amplitude representation of the S and C
functions, it is possible to obtain two decoupled equations,
which allows for an alternative and interesting path towards
the solution.

B. Phase-amplitude representation

In addition to their values at the origin and the simple
relationship between their derivatives, a typical overlay plot
of both the S and C functions, as shown in Fig. 1, makes
it apparent that they resemble the trigonometric sin and cos
functions. This warrants investigation for an alternate form
of Eq. (15) that best approximates this peculiar behavior for
further pedagogical or computational benefits. To this end,
let us represent the two functions with the following phase-
amplitude ansatz.

Sl (r) = Al (r) sin [�l (r)], Cl (r) = Al (r) cos [�l (r)],

(16)

with inverse relations,

Al (r) =
√

S2
l (r) + C2

l (r), �l (r) = tan−1

[
Sl (r)

Cl (r)

]
, (17)
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FIG. 2. The phase function � for the first few states of a hydro-
gen atom.

and hence, their name. After carrying out the derivatives, sub-
stituting into Eq. (15), and solving the resulting simultaneous
equations, it can be shown that � and A obey the following
two DEs:

�̇l (r) = Pl (r)(rl+1/2 cos [�l (r)] + r−l−1/2 sin [�l (r)])
2
,

(18)

Ȧl (r) = Pl (r)
(

1
2 (r2l+1 − r−2l−1)

× sin [2 �l (r)] − cos [2 �l (r)]
)
Al (r), (19)

with �l (0) = 0 and Al (0) = |Cl (0)|. Notice that once Eq. (18)
is solved, the solution � becomes part of the potential
for A in Eq. (19), which is a homogeneous, linear equa-
tion. Hence, one can solve Eqs. (18) and (19) separately,
in that order, using two different methods chosen prop-
erly. For example, since A is always positive, one can opt
to solve for ln A instead, which turns the problem into
quadrature.

ln Al (r) = ln |Cl (0)| +
∫ r

0
Pl (x)

(
1

2
(x2l+1 − x−2l−1)

× sin [2 �l (x)] − cos [2 �l (x)]

)
dx. (20)

The price to pay for having such decoupled DEs is, of course,
Eq. (18) is nonlinear. As shown in Fig. 2, its solution � is
typically a monotonic function with a staircase like shape,
which is slowly varying except near the roots of the wave-
function, where it jumps by an amount of what looks like
an integral multiple of π/2. This shape around the roots is
reminiscent of the arctan function around the origin. Thus, DE
solvers implementing adaptive step sizes [14] are necessary
for Eq. (18), especially for solutions with multiple roots. The
phase-amplitude method is commonly used with the regular
and irregular solutions of the continuum states, leading to a
second-order, nonlinear DE for the amplitude referred to as
the Milne DE [15,16], the details of which mirror an interest-
ing compare and contrast with this section’s content.

In passing, it is worth mentioning that Eq. (5) implies the
following Green’s function is available for the radial kinetic
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TABLE I. The calculated results of the screening parameter α, ground state energy E0, and the value of the wavefunction
at the origin C0 for the SCP potential. Values in square brackets are powers of 10. The critical value reported in [9] is α =
1.190 612 421 060 617 705 342 777 106 362 ± [−30].

α E C0(0)

1.0[−33] −0.499 999 999 999 999 999 999 999 999 999 999 1.999 999 999 999 999 999 999 999 999 999 9(9)
1.0[−32] −0.499 999 999 999 999 999 999 999 999 999 991 1.999 999 999 999 999 999 999 999 999 999 9(1)
1.0[−31] −0.499 999 999 999 999 999 999 999 999 999 900 1.999 999 999 999 999 999 999 999 999 999 9(6)
1.0[−30] −0.499 999 999 999 999 999 999 999 999 999 000 2.000 000 000 000 000 000 000 000 000 000 0(1)
1.0[−20] −0.499 999 999 999 999 999 990 000 000 000 000 1.999 999 999 999 999 999 999 999 999 999 9(6)
1.0[−10] −0.499 999 999 900 000 000 007 499 999 999 500 1.999 999 999 999 999 999 985 000 000 00(2)
1.0[−1] −0.407 058 030 613 403 156 754 507 070 361 108 1.986 502 278 187 072 206 286 886 166 677(5)a

1.0 −1.028 578 999 001 769 680 477 421 531 491 551[−2] 0.963 915 192 038 500 879 024 076 250 344(8)b

α E C0(0)

0.274 376 862 689 408 994 894 705 268 554 458 −α 1.910 744 144 491 456 232 442 021 186 822(6)
0.616 395 604 379 678 530 676 311 513 164 471 −1.0[−1] 1.607 850 764 114 054 523 212 072 599 033 3(7)
1.190 593 340 822 933 007 093 495 100 956 29 −1.0[−10] 9.767 089 774 113 679 893 318 343 07(9)[−3]
1.190 612 420 869 815 050 957 096 818 781 82 −1.0[−20] 3.088 669 472 795 467 709 503 5(9)[−5]
1.190 612 421 060 615 797 316 233 221 804 34 −1.0[−30] 9.767 230 474 872 147 2(5)[−8]
1.190 612 421 060 617 705 323 696 840 922 20 −1.0[−40] 3.088 669 473 24(5)[−10]
1.190 612 421 060 617 705 342 776 915 558 39 −1.0[−50] 9.767 231 (2)[−13]
1.190 612 421 060 617 705 342 777 106 359 14 −1.0[−60] 3.1(8)[−15]
1.190 612 421 060 617 705 342 777 106 361 03 −1.0[−64] 3.0(1)[−16]
1.190 612 421 060 617 705 342 777 106 361 04 −1.0[−65] 2.2(7)[−16]
1.190 612 421 060 617 705 342 777 106 361 05 −1.0[−66] (1)[−16]

aReference value 1.986 502 278 2 from [10].
bReference value 0.963 915 192 04 from [10].

operator.[
−1

2

d2

dr2
− 1

r

d

dr
+ l (l + 1)

2r2

](
2

2l + 1

rl
<

rl+1
>

)
= 1

rx
δ(r − x).

(21)

The techniques discussed in this article can be adopted to
solve other second-order DEs with similar form.

IV. BOUND STATE EIGENVALUES

In this section, an algorithm for locating the eigenvalues
of a DE that assumes little or no familiarity with the system
is outlined. The algorithm relies on the fact that, upon the
integration of the DEs outwards, only for the correct eigen-
value E does the wavefunction ψ decay exponentially to 0
[17]. For an eigenvalue that is just above or below the correct
E , the corresponding ψ will eventually diverge, each with
opposite sign. That is, if ψ for E − �E diverges towards
−∞, ψ for E + �E diverges towards +∞ and vice versa.
In practice, this phenomenon always occurs even for small
�E , as long as we are working with finite precision because
the irregular solutions of ψ will inevitably creep into the
calculation and cause divergence. The algorithm exploits this
extremely sensitive property of the orbitals to calculate E
accurately.

This is done by monitoring the positive quantity R(r) =
ψ2(r) + ψ̇2(r) and its minimum, say Rmin. The integration
can be stopped when R(r)/Rmin exceeds a prescribed large
number (say, ∼104), which is a reliable indicator that the
solution is blasting off. The value of ψ at the end point can
then be linked with an appropriate root-finding subroutine to

find the eigenvalues [18]. Once E is obtained, the portion of
the solution beyond the location of Rmin is to be discarded.
Bracketing algorithms like the bisection method [4], that make
use of the sign of the function to narrow down the bracketing
interval, and thus are less susceptible to the smoothness of
the function, would be preferable methods in this situation.
As will be evident from the tables below, tolerances close to
working precision can be afforded with this method. Another
significant advantage of this algorithm is that one does not
need to estimate the upper limit of the integration, unlike
other methods that propagate in both forward and reverse
directions and enforce continuity of the function and its slope
somewhere in the middle [19].

V. EXAMPLE: SCREENED COULOMB POTENTIALS

As an example, we have employed Eqs. (18) and (20) [and
alternately Eq. (15)] to calculate the ground state eigenstates
of the Yukawa potential and its close relations shown below:
namely, the Yukawa or static screened Coulomb potential
(SCP), the exponential cosine screened Coulomb potential
(ECSCP), and the Hulthén potential (HP):

V (r) =

⎧⎪⎪⎨
⎪⎪⎩

− Ze−αr

r for SCP,
e−αr

(1+e−αr )
Zα

tanh(−αr/2) for HP,

− Ze−αr

r cos αr for ECSCP.

(22)

We shall closely follow the notation in [9], except for the
equivalent formula in Eq. (22) for the HP potential, modified
here for better numerical behavior, especially near the origin.
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TABLE II. The calculated results of the screening parameter α, ground state energy E0, and the value of the wavefunction at
the origin C0 for the ECSCP potential. Values in square brackets are powers of 10. The critical value reported in [9] is α =
0.720 524 085 881 953 095 871 917 136 919 ± [−30].

α E C0(0)

1.0[−33] −0.499 999 999 999 999 999 999 999 999 999 999 1.999 999 999 999 999 999 999 999 999 999 9(9)
1.0[−32] −0.499 999 999 999 999 999 999 999 999 999 990 1.999 999 999 999 999 999 999 999 999 999 9(9)
1.0[−31] −0.499 999 999 999 999 999 999 999 999 999 900 1.999 999 999 999 999 999 999 999 999 999 9(6)
1.0[−30] −0.499 999 999 999 999 999 999 999 999 999 000 2.000 000 000 000 000 000 000 000 000 000 0(1)
1.0[−20] −0.499 999 999 999 999 999 990 000 000 000 000 2.000 000 000 000 000 000 000 000 000 000 0(2)
1.0[−10] −0.499 999 999 900 000 000 000 000 000 001 000 1.999 999 999 999 999 999 999 999 999 99(6)
1.0[−1] −0.400 884 774 639 478 191 787 512 339 062 119 1.996 909 759 984 373 613 903 075 055 621 (3)

α E C0(0)

0.256 302 152 411 963 526 854 820 944 383 792 − α 1.957 912 822 160 202 047 575 184 347 065 6(3)
0.463 084 558 965 304 652 324 937 791 624 197 −1.0[−1] 1.782 252 158 449 884 757 814 245 643 159(0)
0.720 518 362 602 302 364 000 588 194 317 280 −1.0[−10] 1.472 508 433 729 934 487 578 584 22(7)[−2]
0.720 524 085 824 721 299 077 457 036 029 876 −1.0[−20] 4.656 566 841 764 155 584 5(7)[−5]
0.720 524 085 881 952 523 553 949 292 289 864 −1.0[−30] 1.472 535 729 952 123 0(5)[−7]
0.720 524 085 881 953 095 866 193 957 240 132 −1.0[−40] 4.656 566 842 627 (0)[−10]
0.720 524 085 881 953 095 871 917 079 686 781 −1.0[−50] 1.472(8)[−12]
0.720 524 085 881 953 095 871 917 136 918 005 −1.0[−60] 4.6(7)[−15]
0.720 524 085 881 953 095 871 917 136 918 576 −1.0[−65] (4)[−16]
0.720 524 085 881 953 095 871 917 136 918 578 −1.0[−66] (1)[−16]

Also, Z = 1 has been used throughout, and only the ground
state is considered.

The solution is obtained from Eq. (15) by implementing
the algorithm in the previous section along with our integrator
discussed in [18], which is efficient for solving linear, ordinary
DEs. As can be seen in Tables I–III, the screening parameter
and ground state energy pair (α, E ) are calculated over wide

ranges, including near the critical values α → 0+ and E →
0−, and the interesting intersection point where E = −α for
the three potentials in Eq. (22).

All the calculations are done in the IEEE 754 standard
quadruple precision available in modern FORTRAN for compar-
ison purposes. The authors believe that all 33 digits reported
for α and E in Tables I–III, which are very close to the

TABLE III. The calculated results of the screening parameter α, ground state energy E0, and the value of the wavefunction at the origin C0

for the HP potential. Values in square brackets are powers of 10. The critical value of the s states is analytically known to be αn = 2/n2, n =
1, 2, . . . [20].

α E C0(0)

1.0[−33] −0.500 000 000 000 000 000 000 000 000 000 000 1.999 999 999 999 999 999 999 999 999 999 9(9)
1.0[−32] −0.499 999 999 999 999 999 999 999 999 999 995 2.000 000 000 000 000 000 000 000 000 000 0(1)
1.0[−31] −0.499 999 999 999 999 999 999 999 999 999 950 1.999 999 999 999 999 999 999 999 999 999 9(9)
1.0[−30] −0.499 999 999 999 999 999 999 999 999 999 500 2.000 000 000 000 000 000 000 000 000 000 00
1.0[−20] −0.499 999 999 999 999 999 995 000 000 000 000 2.000 000 000 000 000 000 000 000 000 000 0(1)
1.0[−10] −0.499 999 999 950 000 000 001 250 000 000 000 1.999 999 999 999 999 999 997 500 000 00(1)
1.0[−1] −0.451 250 000 000 000 000 000 000 000 000 000 1.997 498 435 543 817 891 578 038 232 806(0)
1.0 −0.125 000 000 000 000 000 000 000 000 000 000 1.732 050 807 568 877 293 527 446 341 505 7(0)

α E C0(0)

0.343 145 750 507 619 804 793 245 103 161 208 −α 1.970 342 862 018 832 077 379 003 927 623(7)
1.105 572 809 000 084 121 436 330 532 507 49 −1.0[−1] 1.666 645 962 404 632 447 695 256 364 303(4)
1.999 971 715 728 752 538 099 023 966 225 52 −1.0[−10] 1.063 644 136 976 625 377 675 776 06(7)
1.999 999 999 717 157 287 525 380 990 239 66 −1.0[−20] 3.363 585 660 539 175 326 123 (8)[−5]
1.999 999 999 999 997 171 572 875 253 809 90 −1.0[−30] 1.063 659 179 388 996 23(7)[−7]
1.999 999 999 999 999 999 971 715 728 752 54 −1.0[−40] 3.363 585 661 014 (8)[−10]
1.999 999 999 999 999 999 999 999 717 157 29 −1.0[−50] 1.06(5)[−12]
1.999 999 999 999 999 999 999 999 999 997 17 −1.0[−60] 3.3(7)[−15]
1.999 999 999 999 999 999 999 999 999 999 97 −1.0[−64] 4. (7)[−16]
1.999 999 999 999 999 999 999 999 999 999 99 −1.0[−65] 4. (5)[−16]
2.000 000 000 000 000 000 000 000 000 000 00 −1.0[−66] 1. (3)[−16]

045301-5



DANIEL GEBREMEDHIN AND CHARLES WEATHERFORD PHYSICAL REVIEW E 108, 045301 (2023)

working precision, are correct. For the upper half of the tables,
α is held fixed, and E is bracketed and searched for as de-
scribed in Sec. IV, and vice versa, for the bottom half, except
for the case where they coincide into E + α = 0.

One of the main results reported in this work is to show nu-
merically what happens as one of these quantities approaches
the critical value by carefully varying the parameters. For
small α, all three potentials commence like a hydrogen
atom, and by the time their respective eigenvalues reach E =
−α, they separate in such a way that E (HP) < E (SCP) <

E (ECSCP), which is consistent with the findings of [20,21].
Early works [20] reported it is challenging to demonstrate the
relative eigenvalues for the three potentials numerically as α

gets smaller, which our work has overcome. Also proven here
numerically is, α → 0 proportional to the change in the cor-
responding eigenvalue. This is in contrast to the situation near
the critical value of α, where the value of E is quadratically
proportional to the change in α [9,22].

However, the probability density at the origin (here C2
0 )

[10], is the quantity of physical importance that we found
becomes more challenging to calculate as α gets bigger. This
is because the increased screening of the nucleus causes the
wavefunction to spread further away from the origin, and the
numerical integration over the resulting large radius becomes
more time-consuming and ultimately suffers from loss of ac-
curacy. The digits in brackets in Tables I–III indicate the first
digit that changes when the order of the polynomial in our
local basis set is varied by ±1. The values of C0 presented
in the tables are accurate enough for applications done in

the usual 16-digit (double) precision without any need for
extrapolation.

VI. CONCLUSIONS

For all three potentials, and across a wide range, the val-
ues for the (α, E ) pair are calculated close to the maximum
accuracy promised by the employed working precision. The
most accurate value to date is also reported for the electronic
density at the origin. These results demonstrate that the DEs
derived in this article and an accompanying algorithm are
robust.

As it stands, it is not yet clear how Eq. (13) can be
effectively used if E is unknown. While the algorithm of
locating E for bound states presented in Sec. IV can eas-
ily be implemented for the one-dimensional potential V (r),
generally, for a potential V (r) in higher dimensions, it does
not easily translate to handle the band of orbitals ψL that
need to be propagated together using Eq. (13). This is par-
ticularly true for bound states in atoms and molecules as the
orbitals ψL might exponentially decay at different radii, and
divergence can easily contaminate the solution with numerical
overflow. This challenge remains open and a new algorithm is
needed.
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