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To achieve the highest possible laser intensities with the least laser energy, shorter-wavelengths lasers are
advantaged if they can be focused to spots of a few laser wavelengths and durations of several laser periods.
However, the top laser pulse energies available nowadays are megajoules at near-optical wavelengths and
millijoules at shorter wavelengths. Thus, to produce the highest laser intensities, what is required is an efficient
spectral transfer of the huge near-optical energies to shorter wavelengths. It is proposed here that the desired
spectral transfer could occur via resonant photon interactions associated with nonlinearity of mildly relativistic
motions of plasma electrons in intense laser fields, specifically via the six-photon resonant scattering of collinear
laser pulses in plasma. The six-photon interaction can, in fact, be the dominant resonant photon interaction to

achieve collinear frequency up-conversion.
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I. INTRODUCTION

The top laser intensities achievable in laboratories were
steadily growing through the last three decades following
the invention of chirped pulse amplification (CRA) tech-
nique [1,2] and development of optical parametric CPA
(OPCPA) [3.4]. The currently greatest intensity 10> W /cm?
was reached in the state-of-art experiment [5] where the 4
PW laser pulse of 800 nm wavelength was focused to a
near-diffraction-limited pm spot and contracted to a near-
Fourier-transform-limited 20 fs duration. The pulse energy
~100 J was much smaller than the currently available ener-
gies, but the quality was superior. If it were possible to achieve
a comparable quality for 10 kJ optical laser pulses, the focused
intensity would reach 10%> W/cm? level. The 10 kJ bench-
mark is set by the National Ignition Facility (NIF) [6,7], which
features 192 such lasers with total energy ~2 MJ. However,
producing a 10 kJ pulse in NIF takes a nearly half-meter-size
gratings operating at the highest tolerable energy fluence on
the surface, which makes getting the superior pulse quality
challenging. Reaching 10> W /cm? intensity, probably close
to the limit achievable within the common technologies now,
is aimed in a few exawatt-class laser facilities currently built
around the world [8]. However, to achieve the highest possible
laser intensities with the least laser energy, shorter-wavelength
laser pulses are advantaged if they can be focused to spots of
a few laser wavelengths and durations of several laser periods.

Intense shorter-wavelength pulses could be produced in
plasma as a high-harmonic radiation coming from nonlin-
ear ultrarelativistic electron oscillations in ultraintense optical
laser pulses [9]. However, it is challenging to make the
energy transfer into high harmonics sufficiently efficient to
achieve the greatest intensities by focusing to smaller spots.
It was proposed to increase the efficiency of relativistic third-
harmonic generation by modulating plasma density along
the pulse propagation direction in a way spatially synchro-
nizing the driving pulse and the third harmonic [10]. Apart
from the strong modulation, a more practical alternative was
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considered there to use a low-frequency small-amplitude den-
sity wave in an homogeneous plasma, such as, for example,
a long-wavelength ion acoustic wave. However, relying on
such waves, it would be challenging to control the stimulated
Brillouin and Raman scatterings seeded by noise, along with
other parasitic processes.

Higher efficiencies for spectral energy transfer are more
readily achievable in resonant photon interactions driven by
the nonlinearity of mildly relativistic motions, v/c = a < 1,
of plasma electrons in intense laser fields. The lowest-order
nonlinear process of possible interest here would be the parax-
ial four-photon scattering, capable of nearly doubling laser
frequencies. However, it also appears to be challenging. On
the one hand, the paraxial angle must be small, 8 <« 1, to
avoid excessive transverse slippage. On the other hand, the
rate of four-photon scattering appears to contain an extra
small factor 62 due to the mutual cancellation of the leading
nonlinear terms [11], while the evolving nonlinear detuning of
the resonance does not contain such a cancellation in general,
thus tending to quickly ruin the resonance at 8 < 1.

These challenges, however, could be handled in the self-
channeling regimes [12], at powers mildly exceeding the
relativistic self-focusing critical power P, ~ 17w?/w? GW
[13-15], where w is the laser frequency and w, is the
plasma electron frequency. In these regimes, having 6% ~
a’> ~ P/P,, — 1 « 1, the leading terms of relativistic non-
linearity and transverse dispersion cancel each other. The
noncancelled terms are of the order of the quintic relativistic
nonlinearity, producing the same order transverse bound fre-
quency of the photons in the ground trapped state. The quintic
nonlinearity can produce the resonant six-photon scattering,
which is allowed by the classical dispersion law even for
exactly collinear laser pulses, in contrast to the resonant four-
photon scattering. The four-photon coupling does not exceed
the quintic nonlinearity at 6> ~ a®> < 1. The higher-order in-
teractions tend to be slower at a®> < 1. Thus, our goal here is
to calculate the rate of resonant collinear six-photon scattering
to see if this previously unknown rate could provide noticeable
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amplifications within tabletop distances. The positive answer
to this question would strongly motivate further research in
more complex geometries, such as the paraxial channel.

The paper is organized as follows. In Sec. II, we show
how the six-photon process can be both resonant and collinear
under the classical dispersion law, even as the four-photon
process cannot, and demonstrate that the six-photon reso-
nance can multiply the input pulse frequency by as much as
2 4+ /3 &~ 3.73 times. In Sec. III, we write the basic equa-
tions for the scattering rate. In Sec. IV, we calculate the
general six-photon coupling coefficient for collinear laser
pulses in homogeneous plasma. In Secs. V, VI, and VII we
analyze the six-photon couplings and rates in three particular
classes of the scattering regimes. In Sec. VIII, we summarize
our results and discuss some complementary and alternative
techniques.

II. COLLINEAR SIX-PHOTON RESONANCE

Consider resonant collinear six-photon interaction in
which four photons 1, 2, 3, and 4 are scattered into a
higher-frequency photon 5 and a lower-frequency photon 6.
Momentum and energy conservation of photons are expressed
by the following relations, also known as synchronism condi-
tions for wave numbers and frequencies:

ki +ky+ ks +ky = ks + ke =2K, €))
w1+ wr + w3 + w4 = w5 + wg = 2. 2)

The classical dispersion law for electromagnetic waves in
uniform plasma of electron concentration ny is

4 nge?
w? —kc? = w? = k2c?,
J J e m e

j=1,2,3,4,5,6,
3)
where c is the speed of light in vacuum, m is the mass, and —e
is the charge of electron. The laser frequencies are larger than
the plasma frequency.
Equations (1)—(3) define unambiguously the resonant out-
put frequencies ws and wg as functions of K and €2,

w05 =Q+ Ko\l - 02/ (@2 — K262),

we =9 —Kc\/l — W )(Q? — K22). @)

Incidentally, this explicitly shows that, for resonant four-
photon interactions under the classical dispersion law (3),
frequencies of collinear input and output pulses are the same.
In contrast to it, resonant collinear six-photon interactions
do allow significant frequency shifts even under the classical
dispersion law.

For example, in the regime w; = w, = w3 = wa,

K=2k1, Q:Za)],

ws = 2w, + V3kic, we=2w; —3kic. (5)

Frequency multiplication factors ws/w; and wg/w; as func-
tions of the input laser-to-plasma frequency ratio w;/w, are
shown in Fig. 1 by solid lines. At w;/w, > 1, these factors

FIG. 1. Frequency multiplication factors ws/w; and wg/w; as
functions of w,/w, in six-photon scattering of two photons of fre-
quency w; and two photons of frequency w; into a photon of
frequency ws > 2w, and a photon of frequency ws < 2w;.

tend to the limits
ws/w; — 2+ /3~ 3.73,
we/w1 — 2 — /3~ 0.27. (6)

As will be seen from what follows, the six-photon cou-
pling in this regime quickly decreases with the increase of
laser-to-plasma frequency ratio w; /@, >> 1 (mostly due to the
large frequencies and, hence, small amplitudes of the beatings
between input and output waves). The decrease could be miti-
gated in regimes where some of the input-output beatings stay
at relatively small frequencies even at w; > w,. Consider, for
example, regimes where w; = w, = w3, while wy is selected
such that the frequency of beatings between pulses 4 and 6,

wp = w4 — we, @)

is relatively small. Equations (1)-(3) and (7), define un-
ambiguously the resonant output frequencies ws and wg as
functions of w; and wy,

ws = 3w +wp, kpy=ks—3k = (8)

ck;,:c(k4—k6)=\/wﬁ—wf—\/wé—wg =

k o L@
wg=ckp | —5—+-——.
6 b ckl—wp 4 2

At w1 > W,

ck, = \/a)g —w? —3\/w% - w? %a)b~|—4a)g/3a)1 =

we X /3w10p/8 — wp/2.

This regime frequency multiplication factors ws/w; and
we/w; as functions of the input laser-to-plasma frequency
ratio w;/w, are plotted in the Fig. 2, for a few values of
parameter wy/w,.
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FIG. 2. Frequency multiplication factors ws/w; and wg/w; as
functions of w;/w, in six-photon scattering of three photons of fre-
quency w; and a photon of frequency w, into a photon of frequency
ws and a photon of frequency wg = w; — wp, for a few values of
parameter w,/w, = +/2, 2, and 3.

As yet another example, consider regimes where w; = w,
and w3 = w4 < ;. In suchregimes (some of which are shown
in Fig. 1)

K = ki + ks,
ws = w1 + w3 + (k1 + k3)c
X \/1 — wf/[Z(a)]an — kikyc? + wz)],

we = w1 + w3 — (k1 + k3)c

Q= w; + w;,

X \/1 —a)g/[Z(w]wg —k1k3cz+w§)]. (10)
At w3 = wy, this reduces to (5). At w; > ws, this reduces to
ws ~ 2w + 3(w3 + ksc)/4, we = 2w3 — 3(w3 + ksc)/4.
For w3 > w,, it gives wg ~ w3/2. For w3 = 2w, = kzc =

we/3, it gives ws & w, (5/2 — 3+/3/4) ~ 12w, .

III. BASIC EQUATIONS

To calculate the scattering rate, we use the Maxwell equa-
tions in Coulomb gauge and Hamilton-Jacobi equation for
electron motion in electromagnetic fields [16]:

H=VxA, E=-03,A—Vo, (11)
4
Via=0, 24-am="_4ve a2
C
J —ench AD = dre )y (13)
= — =4amwen —ngy),
vm2c? + P2 0
eA 5
P=—+VS 0S=ed—cvym?c2+P24+mc-. (14)
C

For the dimensionless electromagnetic potentials, and the
electron momentum,

A=mc2a/e, d>=mc2¢/e, P = mcp, (15)

and the rescaled action, S = mc?

rewritten in the form

s, the equations can be

0> + AP
V1i+p?
s=¢—1+p+1. 17)

For collinear plane waves, all quantities depend only on the
time ¢ and the longitudinal coordinate z. Then, according
to the equation V -a =0, the z component of a is zero,
so that

V.a=0, (3} —c*Aa=- —co, Vo, (16)

p=a+cVs,

pL=a, p;=co,s,
(87 — *9 + w})a = ua, (18)

- 1+ w;2c*02¢

u=

V14 p?
W, p: + ¢d,0.9 = wlup., (19)
3 p. = cd(¢p — /1 + p?). (20)

Equations (19)—(20) can be rearranged as
(87 + @?)cd,p = & (up, + cd/1+p?), (21

(812 + a)ﬁ)pZ = wup, — cd. 31 + p2. (22)

Well off the Raman resonances, these equations define ¢ and
p. as functionals of @, thus turning (18) into a nonlinear
equation for a. For a?® « 1, the nonlinear functional u can be
expanded in the powers of a2,

U=1uy+us~+---, (23)

2

where u; is linear in a”, u4 is quadratic in a2, and so on.

IV. SIX-PHOTON COUPLING

Solutions of Eq. (18) can be searched in the form

a= Z(aje’“f +c.c) + 8a, (24)
J

8zaj = kjn’ 8[05]' = —Wjp, (25)

where envelopes a; slowly vary in space time, k;, and wj,
are wave numbers and frequencies slightly modified by the
nonlinearity, producing also small nonresonant beatings déa.
The modification (so-called renormalization) of the dispersion
law comes from the terms in ua proportional to a;e'®, and
can be described by slightly adjusting the plasma frequency,
w, — w,j, for each a;. The resonant variation of a; = ¢;a;
comes from the terms in ua not proportional to a;e'*, but
matching space-time synchronism conditions with ¢'*/. In
particular, variations of as and ag, associated with the renor-
malized resonance (1)—(2), can be described by equations of
the form

(87 — ¢*02 + w}s)as exp(ias)

j=4 j=4

=a)§V5 l_[aj agexp |t Zaj—% , (26)
j=1 j=1
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(97 — ¢*02 + wlg)ace'™
j=4 j=4
= wlVs na.,- asexp |1 o — as 27)
j=1 j=1
In the exact resonance,
o] +ar + o3 + oy = o5 + ag + const, (28)
these equations can be reduced to
2 2 2 2 2 ) 2
Ws, = kSnC + Wes Wy, = k6nC + Weg> (29)
—21(ws0; + kscd,)as ~ wfV5a1a2a3a4a§, (30)
—21(wed; + kecd,)ag ~ a)zV6a1a2a3a4a§. 31

The energy density in pulse j is proportional to w?|a %, so
that the number-of-quanta density is proportional to w;|a;|.
Since numbers of quanta in pulses 5 and 6 are changing
identically in the resonant scattering (1)—(2), the difference
wslas|? — welag|* is conserved, as long as the slippage be-
tween envelopes of pulses 5 and 6 is much smaller than the
scale of envelopes variation. This means that Vs ~ V4. For
such relatively long pulses, in the mildly relativistic regimes
considered here, the expected spectra of the up-converted
radiation are narrowly located around the resonant frequency.
Small amplitudes of the resonant pulses 5 and 6 can grow
exponentially with the rate

w?|Vsaiarasay)|

2« /W5We

as long as the resonance is kept and depletion of pulses 1, 2,
3, and 4 is negligible. An exponentiation occurs within the

T~ (32)

J

2

_ 48wlw?(w? — @?) — 150} (@} + @?/8) 3w;

Vs

2w w6 — 2c2kiks — a)g

propagation distance

c 2c./wswe

I @?|Vsaiaxazas|

W14/ W5W6

1 ,
2
mws|Vsajarazay|

(33)

where A = 27 c/w; is the pulse 1 wavelength.
To evaluate the six-photon coupling coefficient Vs, we need
explicit expressions for functionals u#, and u4, which can be

obtained from the definition of u and Egs. (21)-(22),
uy=[1- *o2(97 + a)f)_l]az/z, (34)

uy = [1-202(07+w2) " |{[cd.0, (87 +w?) ']

+ @[22 (02 +w)) " —1]a* /4 + .0, (32 + w?)~

([ - 8207+ 02) " a[eoct (2P +0?) ]} 4
(35)

—a*}/8
1

The cubic term u,a in Eq. (18) does not enable collinear
four-photon resonances producing significant frequency up-
shifts, except for special conditions considered in the paper
[17] on the cubic model of Eq. (18). Well off such special
conditions, the cubic term directly generates only nonresonant
collinear beatings

da ~ (8] — 97 + a)f)_luza. (36)

Substituting these beatings into the cubic term modifies the
quintic term in Eq. (18):

(ua)5 = usa + uzéa + aSug, (37)

Suy = [1 = 232(37 + w?) (@ 5a). (38)
Equations (34)—(35) with a in the form (24) and the procedure
leading to (30) give an explicit formula for Vs.
V. 3.7+ FREQUENCY MULTIPLICATION

In particular, for all pulses having the same linear polariza-
tiona; = e,a;, in the regime (5):

(1607 — w?) (40} — w2)2 440 — )

e

cBky — ke)Bw1 — we)c(ky — ke)(w1 — ws)

[Bor — w)? — 0?2 ][(w1 — we)? — ]

+ 3w?
2(4(1)% — a)g)

3w§(2w1w6 — 2¢%ki kg — a)z)

e

2[(01 — w)? — 2]

} " { (40t — ) [(@1 — w6 — ]

B dckyw1c(Bk; — kg)(Bwy — wg)
(40)]2 - w?) [(30)1 — wg)? — a)g]

4c?ky (k1 — ko)1 (01 — we)

9a)§ — 6w we + 6¢%kike
2[Bwr — we)? — @?]

6
Sw,

16(40)% - wg)[(wl — wg)? — wf] (

e

450*

e

9a)§(2w1w6 — 2c%kikg — 30)5)

20?2
2 2 +
w1 — C k1k6 —

16(w1w6 — Zkyke — wf) (4w% — w?)2

16(40? — w?) (160} — »?)

16(40? — 02)[Bwr — we)? — 2]

e

3w?(2wiwe — 2¢%kike — 30?) |:2a)1w6 — 2c%kikg — 2 3w2/2

4[(3a)1 —wg)? — a)g] (w1w6 — cZkykg — a)g)

where the first two lines come from the term u4a, the third line
comes from the term u,8a, and the last two lines come from
the term adu, of (37). This Vs of the regime (5), proportional

(w1 — we)? — @2

— , 39
4 —w2i| (39)

e

(

to w?/w} at w; > w,, can be conveniently put in the form

Vs = Vol /o) (40)
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FIG. 3. The six-photon coupling coefficient V
a function of the laser-to-plasma frequency ratio w;/w, for the
regime (5).

=Vso}/o? as

with function V shown in Fig. 3. To stay off the Raman
resonances, we limit here the parameter range by w;/w, >
3, so that w; — wg > (v/24 —3)w, ~ 1.9w, and we > (6 —
V2h o~ 1.1w,.
At frequencies much greater than shown in Fig. 3,
w1 /w, >> 1, the factor V tends to the limit Vo, &~ 0.835.
Using (5) and (40) in Eq. (33) gives

~<

~

FIG. 4. The exponentiation length L to the laser wavelength A,
ratio, as a function of the laser-to-plasma frequency ratio w, /., for
the regimes (5) and (8)-(9) at |a,)* = |a;|*> = 0.1.

The ratio L/A is shown by the solid line in Fig. 4.

VI. 3+ HIGH-FREQUENCY MULTIPLICATION

a)? /w% + 30)3 In regimes (8)—(9), the above procedure gives the following
L=\ ——— 41 formula for Vs:
nof Vel
J
Ve = (1 _ 2k} ) 2¢% kw1 (2ky + k) Ry + wy,) 1 " 302/2 Ay (2ky + k) Qwy + wy) _
’ w,% —w; (460% - wf) [(2601 + wp)? — 603] 2 4“’% —w; [(2C01 +wp)? — wf] (wi - 603)

(ki + kg) (@1 + ©4)(3k; + ka) By + ws) _

c*(ky — ko) (@1 — we)(3k1 — ke)(Bw1 — we) _

[(3w1 + w4)? — a)g][(a)l + wy)? — wf] [(3(01 — we

1
)? = o] [(@1 — we)? — o] }
+ k) (@1 + @4)(ky — ko) (w1 — ws)

+ 02(2k1 + kb)z ] ZCzkl,whklwl 1 Cz(kl
L Quw; + wp)? — o2 | (0} — 0?) (4} —@2) 2

+ . C2(3k1 + k4)2 T 202k1w1(k1 + k4)((01 + a)4) . 1
L Goit o)’ —o; || (40} — o?)[(0 + 02 —?] 2

+ . C2(k1 + k4)2 :| 2c2k1w1(3k1 + k4)(3w1 + w4) . 1
L (01 + w4)? — w? (4w% - wf) [(3a)1 + wg)? — wﬁ] 2

+ . 02(k1 - k6)2 :| zczklwl(?’kl — ks)(Bw; — ws) _ 1
L (w1 — wg)* — w? (40? — 02)[Bor — we)? — 2] 2

[(@1 + ©4)* — @2 ][(01 — we)? — ]

|+

|

2%k (ki — ke)(w1 — wg)

]{@d—wﬂmm—%ﬁ—wﬂ
]
|

Bk — ko)’

Gy — we)? — w?

1

2

|

(ki — ke) (w1 — we)(2k1 + k) Qw1 + wy) _

[(@1 — 06)? — 0?][ Qw1 + wp)? — ]

(ki + ko) (@1 + w12k + k) Qo1 + wy) _
[(@1 + @3 = @?][ Qw1 + @2 — 2]

+(1 c*k} 302/2 w? 1
0} — 0? ) 4w} — 0?2 \ kI — oF + 2ckpky — 2wy 8

4 [ A(ky + ky)? 302/2 w?/4 w?

L (01 + ws)? — @2 [40? — 02 \ wyw — c*hiks — @2 ki — W} + 2c2kpky — 2wp0,
n —1 Ak —ke)* | 3w?2/2 w?/4 w?

L (w1 — we)? — 2 |40? — 2 \ c*hiky — w4 — @2 czk,f - wﬁ + 2c2kpk) — 2wpw,
e Ak +ky)? T 1 Ak — kg )? w, /4 w, /4

L (a)1 + (,!)4)2 — wz_ (w1 — a)(,)z — a)f C2k1k4 — W4 — a)? wiwe — Czklké — (x)g

04520
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n 2k + ky)? c*k} Ak + ky)? c*(ky — ko )? w?
Qo + wp)? — @2 o} — »? (0 + @4)* — w2 (w1 — we)? — @2 | 2k} — w} + 22 kpky — 2wp0,
302/8 w? w? 4|1 (ki + kg )? w?/4 +|1 Ak — ke)?
4wt — w2 \ Ckiks — 0104 — 0} wjw6 — Ckikg — @? (01 + w4)? — w2 | Chiky — w104 — 02 (01 — we)? — w?
w2 /4 . Gk + ke ) Aky + ke ) 302/2 w2 /4 302/16
« _ WM T M _ _
wiwe — c*kike — w? Bwi + wy)? — &? (01 +04)? — @} 40? — @} | Chiky — 0104 — 02 bt — 2
[ 6k ke B 302/2 w? /4 302/16 @)
Bw; — we)? — w? (01 — w)? — w? (4w,2 — wg) wjws — Ckiks — w2 da? —a? |’

where the first six lines come from the term u4a, the next four lines come from the term u,8a, and the last four lines come from
the term adu, of (37). The exponentiation length (33) for this regime is shown in Fig. 4, along with the exponentiation length for
the regime (5).

A far asymptotic expression for the coefficient Vs at frequencies much greater than shown in Fig. 4, w; > wp — 0, ~ w,, is

Var ~ 0! /[8(0] — o2)ol]. @)
The ratio V5/Vs, is shown in Fig. 5. The exponentiation length L, corresponding to the far asymptotic formula (43) for Vs in the

regimes (8)—(9), is proportional to (w;/w,)'"/*.

VIIL. 2+ HIGH-FREQUENCY MULTIPLICATION

In regimes (10), the above procedure gives the following formula for

V. [l c*(ks — ke)* ]|:C(k1 + k3)(w1 + w3) c(ky + 2k — ko) (w1 + 2w3 — ws) 2ckiwy c(2ky + k3 — ke) Qw1 + w3 — w) 3]
=

(w3 — we)? — @2 (0 + w3)? — &2 (w1 + 2w3 — w6)* — w? 40? — @2 Qi + w3 — we)* — w? 2

3w2/2 [C(ks — ke)(w3 — wg) c(2ky + k3 — ke)(2w; + w3 — wg) 2cksws  4eky + k) (w1 + w3) 3]

d0? — 02| (w3 — we)? — w2 Qwy + w3 — we)? — w? 4a)§ —w? w4+ w3)? — w? 2
oz Ak —ke)* [ clki + k3) (w1 + w3) (ki + ks — ke)(2w1 + w3 — wy) 2ckzws ek + 2ks — ke)(w1 +2w3 —w5) 3
L (0 —we)? — @2 || (01 +w3)? — w2 Qwy + w3 — wg)? — w? 403 — o (01 + 2w3 — wg)? — w? 2

n 302/2 [elky —ke)(wi — we) cky + 2k — ko) (w1 + 2w3 — we) 2ckywr 4cthy +ks) (w1 +w3) 3
40} — 2| (01 — we)? — w? (w1 + 203 — we)? — w2 d0? — 0?2 M) +w3)? — &2 2
oz ki + k3)* [ clks — ke)(w3 — wg) clky + 2ks — ko) (w1 + 2w3 — wg)  c(ky — ke) (w1 — we) (ki + k3 — ke)(2w1 + w3 — we)
L (o 4+ ;)P -2 ]| (03 —we)? —w? (w1 + 203 — w6)? — w2 (w1 — wg)? — w? Q) + w3 — we)? — w2
T 402(k1 +k3)2(w1 +w3)2 _3 + |: _ 4C2(k1 +k3)2 :| 4c2k1k3w1w3 Cz(kl + k3)2(a)1 +a)3)2 _ 5
(@1 + 32 — o ][401 + 37 — 2] Hortor? —o | (407 o2) (40} —02) Al torf —oiF 4
oz c*(2ky + k3 — ke )? ] (ki + k3)(ky — ke)(@1 + w3)(w) — wp) 2¢%k (ks — ko) w1 (w3 — wp) 3
L Qorros—oor —ot ]| o +oip - o2][@ — o2 —e2] (40} —1)[@ —wp2—0z] 2
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where the first eight lines come from the term u4a, the next
five lines come from the term u,8a, and the last five lines come
from the term adu, of (37). The exponentiation length L (33)
for this regime is shown in Fig. 6.

The coupling coefficient Vs behavior at frequencies
much greater than shown in Fig. 6 is shown in Fig. 7. Figure 7
contains a few plots of the coefficient Vs divided over the far
asymptotic expression for it V,,

_ 5(a)6 — Ck6) — 13(603 — Ck3)
o 46()]
y w3 — we)* — 3w? — [w3 — we + (ks — ke)]?
(w3 — w6)? — W?
4(we — ckg) — 5(ws3 — ck3) 4w% — dckyws + a)g/Z
+ : 5 .
20, 43 — w?

Va

(45)

This formula assumes that ws — w, is about w,, but off the Ra-
man resonance w3 — wg X w, located at w3 X w,(1/27/8 +
1/2) ~ 2.337w,. The exponentiation length L, corresponding
to the far asymptotic formula (45) for Vs in the regimes (10),
is proportional to (w;/w,)*/?.

VIII. SUMMARY AND DISCUSSION

We identified several resonant six-photon scattering
regimes of collinear laser pulses in plasma and calculated
the respective scattering rates. In these regimes, the upshifted
output pulse frequency ws ranges from 2-3.73 times mul-
tiplied top input pulse frequency w;. The input does not
need to contain a seed of the high frequency ws, since the

6
ub=21/2ue

5 —ub=2we
N3w wb=3w
o =
3 a1 = wb—4we |
o
;3
N3_O 3
NG
>
[ce]

A O T

FIG. 5. Far asymptotic behavior of the six-photon coupling coef-
ficient Vs in the regimes (8)—(9).

(

resonant amplification can be initiated by the seed of lower
input frequency ws < w;. The exponentiation length L tends
to be larger for larger frequency upshifts and laser-to-plasma
frequency ratios w; /®,.

In regimes exhibiting the largest upshift (5), the pulse
amplitude exponentiation length increases at w;/w, > 1 like
L/M o @®/@S. The increase can be mitigated in regimes (8)—
(9) to be like L/x; o< o]'/*/w!'/*, and even more mitigated
in regimes (10) to be like L/A; a)f/z/a)g/z. This may be of
interest for handling greater laser powers P ~ 17w?/w? GW
in a single self-made channel. However, for getting greater
single-step frequency upshifts, the regimes (5) are more fa-
vorable. These single-pump-pulse regimes may be also easier
for the experimental implementation.

Table I gives a few numerical examples of possible pulse
parameters in regimes (5).

These examples use the small amplitude seed exponentia-
tion length L shown by the solid line in Fig. 4. The respective
intensity exponentiation length is L/2. The longitudinal slip-
page is associated primarily with the lower frequency wg seed,
which slips backward for the fraction Ly;,/L ~ a)g/ (wé +

108
106 —‘,—‘————‘_— E
- //,,
= =
_I ,/’ -
10t e ]
P - ——WaRw, w3=3we
B 1/2
, /,, — w3_2w ---w —(3w1) /
102 ‘ ’
w1/w

FIG. 6. The exponentiation length L ratio to the laser wavelength
A1, as a function of the laser-to-plasma frequency ratio w; /., for the
regimes (10) at |as|> = |a;|*> = 0.1 and a few different 3. The solid
line corresponds to ws close to, but different from w,;. This line is
nearly the same as one obtained by formally replacing in the regime
(5) |a1|* for 6|a;|?|as|?, so that at |az|*> = |a,|? the resulting L is six
times smaller than in the regime (5).
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2.2
—w3—2w
= w3,
18 ‘.‘ ‘”3:3'5“’9,
' 3

L. ‘ ‘ ‘ ‘
0.8
20 30 40 50 60 70 80 90

w1/we

FIG. 7. Far asymptotic behavior of the six-photon coupling coef-
ficient Vs in the regimes (10).

ckewg) of the propagation length L. The conventionally cho-
sen pulse length is L. =~ L/2. The last two lines show the
pulse energy £ and the intensity /, which would be achieved
if the energy were compressed to the 1000)% volume. Some
of these speculative intensities are much greater than specula-
tive intensities envisioned in earlier schemes combining CPA
and backward Raman amplification (BRA) of laser pulses in
plasma [18-20] techniques [21]. Additionally, the device size
of the present concept could be far smaller than that of the
earlier schemes.

The proposed scheme builds on methods of manipulat-
ing intense laser pulses in plasma via the resonant nonlinear
Raman and Brillouin scattering. A recent review of these
methods may be found in Ref. [22]. The crucial new element
added here is the possibility of resonant transfer of huge
near-optical laser energies to shorter wavelengths via the six-
photon scattering of mildly relativistic-intense collinear laser
pulses in plasma. This six-photon scheme avoids the most
serious challenges experienced by the four-photon scheme
[11,17,23,24].

TABLE I. Examples of pulse parameters.

W/ w, 4 5 6 7 8 9
ws /W, 3.677 3.697 3.708 3.714 3.718 3.721
w1/ ws 3.096 3.001 3.423 3.500 3.552 3.589
P [TW] 0.28 043 062 0.84 1.1 14
1075L /X, 1.2 5 16 41 94 193
Lgip/L 0.37 0.25 0.18 0.13 0.1 0.08
A1 [nm] 850 200 63 24 11 5
As [nm] 230 54 17 6.5 3 1.4
L [cm] 10 10 10 10 10 10
g 45 70 100 140 180 230

1[10%W/cm?] 0.0002 0.03 1 30 450 5000

Apart from the ultrahigh intensity laser applications pro-
posed here, the current calculations may be of broader interest.
The six-photon resonance creates an unusual frequency out-
put. A signature of the six-photon resonant scattering, in
principle, might be detectable in such processes as collinear
radiation traveling through the solar corona. The unusual fre-
quency multiplication factors that are predicted here might
also be used for diagnosing laboratory plasma, especially
under conditions when only axial access to the plasma is
possible, like in Z-pinch experiments [25,26].

A leading alternative approach to achieving ultrahigh in-
tensities is by free electron lasers (FEL) [27,28]. Currently,
the greatest focused intensities produced by the most pow-
erful large-size FEL are a few orders smaller than the top
focused intensities of optical lasers. However, it might be
possible to increase the intensities and reduce the sizes of
FEL via plasma wake-field acceleration of the driving electron
beams [29]. Wake-field-making techniques might also enable
a more direct energy transfer from the driving laser to shorter
wavelengths via photon acceleration in the evolving density
gradient of wake-field plasma [30].
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