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Thermal conductivity of a laser plasma
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We present a model of the electron thermal conductivity of a laser-produced plasma. The model, supported
by Vlasov-Fokker-Planck simulations, predicts that laser absorption reduces conductivity by forcing electrons
out of a Maxwell-Boltzmann equilibrium, which results in the depletion of both low-velocity bulk electrons and
high-velocity tail electrons. We show that both the bulk and tail electrons approximately follow super-Gaussian
distributions, but with distinct exponents that each depend on the laser intensity and wavelength through the
parameter α = Zv2

E/v2
T . For a value of α = 0.5, tail depletion reduces the thermal conductivity to half its zero-

intensity value. We present our results as simple analytic fits that can be readily implemented in any radiation-
hydrodynamics code or used to correct the local limit of nonlocal conduction models.
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I. INTRODUCTION

Thermal conduction is a key component of the energy
balance and transport of laser-produced plasmas, especially
those produced in high-energy-density experiments such as
high-performance inertial confinement fusion (ICF) implo-
sions [1]. In laser direct drive (LDD) experiments, thermal
conduction is responsible for converting laser energy absorbed
in the corona into ablation pressure, providing the drive for
a spherical implosion [2]. The more conductive the coronal
plasma, the better the coupling between the laser and the
target, which is beneficial for fusion performance. In laser
indirect drive (LID), the laser illuminates the interior wall of a
gas-filled hohlraum, which emits x rays that drive the capsule.
The radiation transport properties throughout the hohlraum
and blowoff plasma are sensitive to the temperature profile
and thus to the thermal conductivity of the plasma [3,4].

The baseline model for thermal conduction in a plasma is
that of Spitzer and Härm (SH) [5]. Not only is this the basic
model used in radiation-hydrodynamics simulations, but it is
also central to the construction of nonlocal conduction models
[6–8]. The fundamental assumption underpinning this theory
is that the electrons are in local thermodynamic equilibrium
with a Maxwell-Boltzmann (MB) velocity distribution. How-
ever, the inverse bremsstralhung (IB) absorption of laser light
distorts the electron distribution function away from a MB
form, a phenomenon sometimes called the “Langdon effect”
[9]. In this case, the SH theory no longer applies, and the
local theory of heat conduction as well as nonlocal models
based on SH need to be revised to explicitly account for laser
absorption.

Some theoretical attempts have been made to assess how
laser intensity affects heat conduction [10–12], but these have
never precipitated a quantitative and practical model to re-
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place the SH theory despite their dramatic predictions: that
accounting for laser intensity leads to a reduction in the
thermal conductivity by as much as a factor of four to five.
The lack of this effect in mainline conduction models means
would imply that current radiation-hydrodynamics simula-
tions of laser-produced plasmas might seriously overestimate
the conductivity in regions of high laser intensity, even before
considering possible nonlocal effects. In the context of ICF
experiments, this region corresponds to the coronal (LDD)
or blowoff (LID) plasmas, where changes to the conductivity
have compounding effects on the power balance and perfor-
mance of ICF designs.

In this paper we resolve this issue by providing an accurate
and practical model for the reduced thermal conductivity of
a plasma in the presence of laser absorption. Our approach is
based on a detailed model of the electron distribution function
in the presence of absorption and conduction, supported by
Vlasov-Fokker-Planck (VFP) simulations of the relaxation
of long-wavelength temperature perturbations in a plasma
absorbing laser light with fixed intensity. Electron-ion colli-
sions, electron-electron collisions, and nonlinear absorption
(Langdon effect) are all taken into account. The main result is
that absorption reduces the thermal conductivity from the SH
value according to

κ (Z, α)

κSH(Z )
= c0(Z ) + c1(Z )α

1 + c2(Z )α
, (1)
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is the SH conductivity [5],

α = ZIB
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(3)
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is the Langdon parameter, and

Z =
∑

i Z2
i ni�ei∑

i Zini�ee
, ZIB =

∑
i Z2

i ni�IB,i∑
i Zini�ee

(4)

are the effective ion charge numbers for collisions and absorp-
tion, respectively. The quantities c0, c1, and c2 are numerical
coefficients which depend weakly on Z . In the above, Zi, ni,
�ei, and �IB,i are the charge state, number density, electron-
ion Coulomb logarithm, and IB Coulomb logarithm [13,14]
for ion species i, �ee is the electron-electron Coulomb log-
arithm, vT = √

kBTe/me is the electron thermal speed for
temperature Te, and vE = eEL/(meωL ) is the electron oscilla-
tion velocity in a laser with angular frequency ωL and electric
field amplitude EL = √

2I/(cε0) for a laser with intensity I .
Fundamental constants appearing in these expressions are the
elementary charge e, the vacuum speed of light c, the vacuum
permittivity ε0, and the Boltzmann constant kB. The parameter
Z measures the relative strength of electron-ion to electron-
electron collisions, which mainly affects the anisotropy of
the distribution function responsible for the conduction. The
parameter α measures the relative strength of IB absorption to
electron-electron collisions, which mainly affects the shape
of the isotropic part of the distribution function. The limit
in which Z → ∞ at fixed α corresponds to the Lorentz gas
model, on which all prior theoretical work on this problem
was based [10–12]. It will be seen that this treatment does cap-
ture the overall trend that conductivity reduces as α increases,
but the reduction is significantly overestimated compared to a
full kinetic treatment of electron-electron collisions.

II. SIMULATIONS

The VFP simulations were conducted using the code
K2, which expands the velocity dependence of the dis-
tribution function in spherical harmonics [15]. For the
one-dimensional (1D) problems considered here, this is
equivalent to a Legendre polynomial expansion, f (x, v, t ) =∑∞

�=0 f�(x, v, t )P�(vx/v), of which we retain only the
isotropic component f0 and flux component f1. The two-
term truncation is valid provided the temperature perturbation
wavelength is much longer than the collision mean free path,
otherwise the heat conduction is nonlocal. Convergence to the
local limit is straightforward to establish by increasing the
background electron density and verifying that the conduc-
tivity does not vary [16]. It is also necessary that the laser
intensity not be so high that vE > vT , otherwise the laser
absorption introduces temperature anisotropy [17,18].

The coupled VFP equations for the isotropic and
anisotropic components of the distribution function are

∂t f0 + v

3
∂x f1 − eE

3mev2
∂v (v2 f1) = C0 + CIB, (5)

∂t f1 + v∂x f0 − eE

me
∂v f0 = −νei f1 + C1, (6)

where C0 and C1 are respectively the isotropic and anisotropic
electron-electron collision operators [19], CIB is the IB ab-
sorption operator [9], νei(v) = Ze4ne�ee/(4πε2

0 m2
ev

3) is the
velocity-dependent electron-ion collision rate, and E is the
ambipolar electric field [20]. The Lorentz limit is obtained
by excluding C1 from the simulations. The results shown
here were also checked using a more general VFP simulation

FIG. 1. Time evolution of a Z = 10 plasma at various laser in-
tensities. (a) Conductivity reduction factor. (b) Langdon parameter.
(c) Fitted super-Gaussian exponent for bulk electrons. (d) Fitted
super-Gaussian exponent of tail electrons.

approach which treats the low- and high-frequency dynamics
on equal footing, rather than relying on CIB to model the
absorption [20]. This gives a more accurate account of the
IB absorption in principle, but we find for the simple laser
fields considered here (uniform and constant) that the results
are nearly identical to the conventional approach using CIB.

The simulations are initialized with a MB distribution at
fixed, uniform electron density and a sinusoidally perturbed
temperature, Te(x, t = 0) = T0 [1 + 10−3 cos(2πx/L)], where
L = 5 mm is the domain size and T0 = 200 eV is the initial
electron temperature. The electron density ranged from 0.1
to 1 times the critical density for 0.35-µm light as needed to
ensure the long-wavelength limit was realized. The choice of
a sinusoidal perturbation allows for periodic boundary condi-
tions and facilitates using Fourier analysis to separate the evo-
lution of the mean temperature from the fluctuating one. The
laser intensity ramps up from zero to a uniform constant value
over the first 100 fs of the simulation. As the simulation pro-
gresses, the mean temperature increases monotonically due to
IB absorption, while the temperature fluctuation relaxes due
to heat conduction. The instantaneous thermal conductivity
is extracted from a Fourier analysis of the k = 2π/L fun-
damental mode κ = Re {iQk/(kTk )}, where Qk is the Fourier
component of the heat flux, Q = 2πme/3

∫ ∞
0 v5 f1dv, and Tk

is the Fourier component of the temperature fluctuation.
The thermal conductivity obtained in this way varies in

time because the mean temperature increases monotonically
due to absorption. Consequently, the value of α also varies in
time, as does the shape of f0. The time evolution for a typical
case is shown in Fig. 1, which shows the instantaneous values
of κ/κSH, α, as well as super-Gaussian exponents character-
izing the shape of f0 (discussed further below). The thermal
conductivity is only formally meaningful if the simulations
have reached the hydrodynamic stage of evolution, mean-
ing the time variation and space variation of the distribution
function is totally implicit in the time variation and space
variation of the temperature [21]. It is difficult to rigorously
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FIG. 2. Ratio of the thermal conductivity to the SH value as a
function of Langdon parameter α for various ion charge numbers
Z , as well as for a Lorentz gas. Symbols are the results of VFP
simulations and lines are interpolation formulas.

identify whether or not this is the case in the VFP simulations.
Nevertheless, Fig. 1 suggests two clear regimes: a transient
relaxation up to about 10 ps and a quasisteady evolution from
about 20 ps onward. Conservatively, we take only the last
values of α and κ/κSH from each simulation to construct our
model.

III. RESULTS AND DISCUSSION

The results are collected in Fig. 2, which shows the re-
duction in thermal conductivity as a function of α for various
values of Z . Each data point is the final instantaneous values
of κ/κSH and α obtained from a different value of the laser
intensity (I = 0, 1012, 1013, 1014, 1015 W/cm2). For each Z ,
the results are fitted to Eq. (1) and shown as solid lines; the
resulting fit coefficients are given in Table I. Note that c0

should in principle be unity, but we find it is systematically
a few percent less, indicating that the zero-intensity thermal
conductivity from VFP is slightly less than the SH value.

At nonzero intensity, the thermal conductivity is substan-
tially reduced from the SH value. Even at small values of the
Langdon parameter, α = 0.1, the reduction is already about
25%, while at α = 1, the reduction is almost 60%. This re-
duction exhibits only a weak dependence on Z , indicating that
the reshaping of f0 due to IB and the reshaping of f1 due to
electron-electron collisions are essentially separable effects.
It is mainly the deformation of f0 that causes the conductivity
reduction, while the effect of electron-electron collisions on
f1 is not strongly intensity dependent. This insensitivity to Z
might lead one to think that the Lorentz gas model should
be adequate to describe the thermal conductivity reduction;

TABLE I. Fit coefficients for the conductivity reduction factor in
Eq. (1).

Z = 1 Z = 3.5 Z = 10 Z = 29 Z = 80 Lorentz

c0 0.982 0.989 0.977 0.976 0.971 0.981
c1 1.332 1.038 0.943 0.739 0.615 3.278
c2 4.862 4.214 3.685 2.984 2.483 17.94

FIG. 3. Isotropic component of the velocity distribution function
for a Z = 10 plasma with α = 0.45. The solid line is the VFP result,
the dashed line is a super-Gaussian fit to the bulk electrons, the
dashed-dotted line is a super-Gaussian fit to the tail electrons, and
the dotted line is a Maxwellian distribution. Note the transition from
linear to logarithmic scale at v = v∗.

however, this turns out not to be the case. VFP results for
the Lorentz gas severely overestimate the reduction in ther-
mal conductivity. In the absence of a laser, the Lorentz gas
model corresponds to the Z → ∞ limit of the Spitzer-Härm
conductivity, but this relationship no longer holds at nonzero
intensity. In fact, when electron-electron collisions are fully
accounted for, the trend is that at fixed α, higher-Z plasmas
have a conductivity that is slightly closer to the SH value.

To better understand the failure of the Lorentz gas model, it
is instructive to connect with the theory of Mora and Yahi [10].
The Mora-Yahi theory takes f1 in steady state and neglects C1

to obtain

f1 = −λei

[
∂x f0 − eE

mv
∂v f0

]
, (7)

where λei = v/νei is the mean free path. They consider f0 to
have a super-Gaussian form, f0(v) ∝ exp[−(v/vm)m], where
the exponent m is assumed to be known. The thermal conduc-
tivity may then be determined analytically as a function of m,
with m = 2 recovering the Lorentz gas limit of SH theory.

To connect with the VFP results, we must determine the
value of m that best characterizes the shape of f0 in the velocity
range relevant to conduction. We emphasize the importance
of choosing the appropriate velocity range because this has
been a point of confusion in the past [11]. In the literature
on IB absorption, there is both simulation and experimen-
tal support for relating the exponent to α as mIB(α) = 2 +
3/(1 + 1.66/α0.724), as proposed by Matte et al. [13,22–24].
However, IB absorption is sensitive only to the bulk electrons
with v � 3vT , and accordingly we find that this formula only
describes the low-velocity population in our VFP simulations.

An illustrative example is shown in Fig. 3, which shows f0

from VFP simulations, as well as super-Gaussian fits to the
bulk and tail electron populations. Here, “bulk” refers to elec-
trons with v < v∗ and “tail” to electrons with v > v∗, where
v∗ is the velocity where f1(v∗) = 0. That is, the tail electrons
are those flowing down the temperature gradient and con-

045205-3



SHAFFER, MAXIMOV, AND GONCHAROV PHYSICAL REVIEW E 108, 045205 (2023)

FIG. 4. Ratio of the thermal conductivity to the SH value as a
function of the super-Gaussian exponent of the tail electrons. Sym-
bols are VFP results for various charge numbers Z , as well as for a
Lorentz gas. The solid curve is the Mora-Yahi theory.

tributing positively to the thermal conductivity, while the bulk
electrons are those which form the neutralizing return current
and contribute negatively to the thermal conductivity. The
bulk and tail are characterized by different super-Gaussian
exponents. The bulk agrees well with the Matte et al. model,
which gives mIB(0.45) = 2.76 in the case shown in Fig. 3.
This implies that the collisional bulk electrons are insensitive
to the presence of heat flow, and their energy distribution is
described well with standard IB theory. The tail, however, is
more sharply non-Maxwellian, with m = 4 being the best-fit
value. This implies that the tail electron population is more
depleted (and the thermal conductivity reduction more severe)
than one would predict using mIB. Evidently, a separate model
for the tail electron distribution is needed.

Using the tail exponent fitted from each VFP simulation,
the Mora-Yahi theory is evaluated and compared to the VFP
simulation result in Fig. 4, which shows the thermal conduc-
tivity reduction as a function of the tail exponent. Strikingly,
all the VFP simulations which properly account for electron-
electron collisions on f1 collapse in a way that suggests that
κ/κSH is a universal function of m. Though m generally de-
pends on both Z and α, the Z dependence is weak, and we
find that a Z-independent expression of the same form used
for IB,

m(α) = 2 + 3/(1 + 0.247/α0.972), (8)

approximates the tail exponent of the VFP simulations at
any Z within 3% when α < 1. The Lorentz-limit VFP results
follow a different trend entirely but are in excellent agreement
with the Mora-Yahi prediction. An interesting finding is that
though the VFP results do not reach m = 5, they do appear to
trend toward the m = 5 Mora-Yahi prediction. A simple linear
fit connecting the m = 2 and m = 5 limits,

κ (m)

κSH
= 1 − 0.251(m − 2), (9)

gives remarkably good agreement with the VFP results, the er-
rors for all but one case being within 8% [25]. Note, however,

there is some compounding of errors when Eqs. (8) and (9) are
used together, so that applications requiring accuracy better
than a few percent might prefer to interpolate the coefficients
in Table I for use in Eq. (1).

In the theory of IB, m = 5 is an upper limit obtained
when C0 is neglected [9]. The trend of VFP toward Mora and
Yahi’s m = 5 prediction indicates that the Lorentz limit is only
realized when all electron-electron collisions are neglected,
not just those acting on f1. One important implication for
VFP [15,26–28] and simplified kinetic models [6,29–31] of
laser plasmas is that one cannot neglect C1 unless one is
also willing to neglect C0. This goes against a widespread
practice to neglect C1 and compensate by rescaling νei to
recover the SH conductivity in the local transport limit. This
is done because C1 is cumbersome to invert, making it both
a computational bottleneck for VFP codes and inconvenient
for analytic theory. This procedure, while tempting, totally
misrepresents the effect of IB absorption on the heat flow and
produces the wrong local transport limit at nonzero intensity.

IV. CONCLUSIONS

In summary, we have determined the thermal conductivity
and equilibrium distribution function of a plasma heated by a
laser using VFP simulations. In doing so, we have shown the
importance of retaining an accurate and fully kinetic model
of absorption and electron-electron collisions. This allowed
us to identify important shortcomings of previous attempts to
determine the thermal conductivity of a laser plasma. Specif-
ically, in this work, the Lorentz approximation was eschewed
and no functional form for the isotropic distribution function
was assumed. The results can be represented analytically in
a simple form which can be straightforwardly implemented
in radiation-hydrodynamics codes and nonlocal conduction
models as an intensity-dependent correction to the SH con-
ductivity. The impact of this reduced conductivity on coupling
efficiency in ICF experimental design will require thorough
study and be the subject of future work.
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