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We introduce a general, variational scheme for systematic approximation of a given Kohn-Sham free-energy
functional by partitioning the density matrix into distinct spectral domains, each of which may be spanned
by an independent diagonal representation without requirement of mutual orthogonality. It is shown that by
generalizing the entropic contribution to the free energy to allow for independent representations in each spectral
domain, the free energy becomes an upper bound to the exact (unpartitioned) Kohn-Sham free energy, attaining
this limit as the representations approach Kohn-Sham eigenfunctions. A numerical procedure is devised for
calculation of the generalized entropy associated with spectral partitioning of the density matrix. The result is
a powerful framework for Kohn-Sham calculations of systems whose occupied subspaces span multiple energy
regimes. As a case in point, we apply the proposed framework to warm- and hot-dense matter described by
finite-temperature density functional theory, where at high energies the density matrix is represented by that of
the free-electron gas, while at low energies it is variationally optimized. We derive expressions for the spectral-
partitioned Kohn-Sham Hamiltonian, atomic forces, and macroscopic stresses within the projector-augmented
wave (PAW) and the norm-conserving pseudopotential methods. It is demonstrated that at high temperatures,
spectral partitioning facilitates accurate calculations at dramatically reduced computational cost. Moreover, as
temperature is increased, fewer exact Kohn-Sham states are required for a given accuracy, leading to further
reductions in computational cost. Finally, it is shown that standard multiprojector expansions of electronic
orbitals within atomic spheres in the PAW method lack sufficient completeness at high temperatures. Spectral
partitioning provides a systematic solution for this fundamental problem.
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I. INTRODUCTION

Most complex problems in materials chemistry and physics
have heterogeneous character involving many length, time,
and energy scales. Often solutions exist for separate spatial,
temporal, or spectral domains but difficulties arise when they
are merged while boundary interactions are accounted for
and global constraints are maintained. In electronic struc-
ture theory, there are many instances of this approach, e.g.,
the pseudopotential approximation for the core-valence inter-
action [1–4], the divide-and-conquer technique for order-N
scaling density functional theory (DFT) [5,6], the coherent
potential approximation for disordered alloys [7], and the
downfolding technique in many-body physics for strongly
correlated electrons embedded in a Fermi liquid [8,9].

The aim of this paper is to introduce and develop a general
variational framework for spectral partitioning (SP) of the
density matrix (DM) in Kohn-Sham (KS) DFT. In this scheme,
a spectral-partitioned DM is constructed from independent
diagonal representations, each spanning a distinct energy do-
main. This is accomplished by using a spectral partition of
unity to ensure that the original unpartitioned DM is recovered
in the limiting case that the representations in all subdomains
consist of Kohn-Sham eigenfunctions.

*sadigh1@llnl.gov

An important example of spectral partitioning in chem-
istry is the subdivision of the occupied subspace into core
and valence states. The core states are treated as localized
atomic-like orbitals, while the valence electrons are allowed
to become extended with Bloch wave character and required
to be orthogonal to the core subspace [10,11]. As a result
of this orthogonality constraint, the valence wave functions
in molecules and solids become quite complex, exhibiting
rapid spatial variations near the nuclei and bond formation
in the interstitial region between the nuclei. By relaxing the
orthogonality constraint, the pseudopotential approximation
in its various forms [1,4,12–14] achieves a much simpler
description of the valence subspace. The separate treatments
of the two subspaces is possible due to the substantial en-
ergy gap between them. Our purpose in this paper is to
develop a robust and general framework, which we refer to
as spectral-partitioned Kohn-Sham density functional theory
(spDFT), enabling the use of different representations in dif-
ferent energy ranges, for any electronic structure, regardless
of presence or size of energy gaps.

While spectral partitioning is a general mathematical
technique applicable to the full range of electronic struc-
ture problems, as well as generalizations of KS theory,
we have been motivated by problems that plague finite-
temperature DFT calculations of high-energy-density (HED)
matter. These calculations play a significant role in the funda-
mental understanding of exciting new fields of physics, from
inertial confinement fusion [15] to laboratory astrophysics
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[16], that have emerged due to recent advances in laser and
pulsed power technologies [17–19]. The conditions achieved
in HED experiments are so complex and so difficult to charac-
terize that theory and computations are indispensable for both
their design and interpretation. Calculations of equations-of-
state (EOS), opacities, and x-ray absorption spectra are but
a few examples of necessary contributions from theory. Fi-
nally, as a result of these developments, significant progress
has been achieved in our understanding of the structures of
planetary interiors and their magnetic fields [20].

Several complications arise when standard implementa-
tions of KS-DFT are applied to HED matter. At extreme
temperatures, a substantial density of highly excited nearly
free electrons coexist with low-energy hybridizing valence
electrons as well as ionized core shells [21]. Hence, a large
number of highly excited states must be incorporated in the
calculations, which can lead to prohibitive computational
costs. To circumvent this so-called “orbitals wall” prob-
lem, a variety of approaches and approximations have been
employed, including orbital-free approaches [22–24], density-
matrix based techniques [25–27], Green’s function methods
[28], path-integral Monte Carlo [29,30], and pseudoatom
molecular-dynamics [31,32]. Each of these techniques has its
advantages and disadvantages. In this regard, spectral parti-
tioning provides an interesting alternative as it can alleviate
the orbitals-wall problem by breaking up the valence-electron
subspace into two spectral domains: (i) the low-energy sub-
space of hybridizing orbitals, which can be treated by exact
diagonalization of the KS Hamiltonian, and (ii) the high-
energy subspace of highly excited states, which can be treated
as nearly free electron states. In this way, computational cost
can be reduced dramatically without loss of accuracy. Among
other HED conditions of interest are extreme densities. At
these conditions, core levels can overlap and form bands,
and the energy window within which hybridization occurs
can become exceedingly wide. Spectral partitioning can offer
an effective solution to this problem by splitting the spectral
range of the occupied subspace into smaller intervals, each of
which is treated separately and merged seamlessly.

Zhang and coworkers [33] have recently pioneered the
idea of spectral partitioning at extreme temperatures by split-
ting the expectation values of relevant observables into exact
KS contributions at low energies and approximate homoge-
neous electron gas (HEG) contributions at high energies, the
so-called extended first-principles molecular-dynamics (ext-
FPMD) method. They implemented a self-consistent scheme
within the PAW method, and have shown much promise for
calculations of plasma EOS. This methodology has been fur-
ther developed and employed in subsequent works [34–38].

However, all ext-FPMD formulations to date rely on in-
tuition and approximation regarding key aspects such as the
coupling of KS and HEG contributions and handling of non-
local pseudopotentials. This in turn is due to the lack of a
variational free-energy functional from which the ext-FPMD
Hamiltonian, forces, and stresses can be analytically derived.
Specific consequences include: (i) ad hoc expression for the
self-consistent Hamiltonian, (ii) inconsistency between the
expression for free energy and those for forces and stresses,
and (iii) internal inconsistency between forces/stresses calcu-
lated at different points along ionic trajectories.

In this paper, we show how all of the issues listed above
can be straightforwardly and rigorously addressed using the
spDFT framework. We show that a variational spDFT free-
energy functional can be derived for any nonpathological
spectral decomposition of the DM. The key innovation is
to generalize the entropy function to allow for indepen-
dent representations, other than just KS eigenfunctions, in
each spectral domain. The need for amending total-energy
functionals with entropy terms was first realized when gen-
eralizing KS-DFT to finite temperatures [39–42], and was
later found to be essential for internal consistency of ab initio
total energies and atomic forces when smearing techniques are
used to carry out Brillouin-zone (BZ) integrations [43–49].
The derivation in this work of the entropy associated with
spectral partitioning of the DM builds on this foundation, and
introduces further technical advances to it, as we detail below.

With the SP-entropy in place, we show that the total SP free
energy is an upper bound to the exact (unpartitioned) KS free
energy. Consequently, self-consistent Hamiltonians, as well as
expressions for forces and stresses, can be straightforwardly
derived from the variational principle. Furthermore, the vari-
ational spDFT free-energy functional can now be endowed
with higher order corrections via perturbation theory [50–52],
or generalized to other contexts that may benefit from spec-
tral partitioning with a strongly inhomogeneous electron
gas, for which intuitive guesses become inadequate and a
rigorous variational framework as developed here becomes
indispensible.

In the following, we first formulate a general frame-
work for spectral partitioning of the DM using an analytic
partition of unity to smoothly combine different representa-
tions in distinct energy domains. Subsequently, an associated
spDFT free-energy functional is constructed, from which
forces, stresses, and related physical quantities can be de-
rived. We then discuss practical algorithms for convenient and
user-friendly implementations of the spDFT framework that
can handle elaborate Fermi surfaces, and are able to main-
tain consistency between total energy and forces throughout
dynamical simulations. To illustrate the power of the frame-
work in practice, we develop the detailed formalism for
incorporation of the HEG approximation at high energies,
and derive expressions for its implementation within PAW
and norm-conserving pseudopotential (NCPP) techniques. We
then apply the new methodology to the study of H and Be
lattices at warm dense matter and plasma conditions. As an
unexpected outcome of this study, we show that at elevated
electron temperatures, standard nonlocal projector expansions
for pseudo-wave functions become increasingly incomplete
within the atomic augmentation spheres, and as a result, the
basic assumptions underlying the derivation of the PAW equa-
tions break down. We discuss the ubiquity of this problem and
demonstrate how spDFT can be used to rectify it.

II. spDFT DERIVATION

Spectral partitioning is a general technique that can be
applied not only to finite-temperature DFT and local KS
functionals [40,41,53,54] but also to generalized KS function-
als such as meta-GGA [55], DFT + U [56,57], and hybrid
functionals [58–61]. Furthermore, spectral partitioning can be
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applied to any electronic occupation statistics, such as Gaus-
sian smearing [43] or Fermi-Dirac broadening [39]. However,
for clarity and brevity, we focus in this paper on application
of spectral partitioning to finite-temperature KS-DFT for ex-
tended systems in periodic boundary conditions. Since the
formalism does not depend on periodic boundary conditions,
it is equally applicable to finite bound systems such as isolated
molecules. In the following, Hartree atomic units are used
unless otherwise specified.

A. Ensemble Kohn-Sham density functional theory

Consider a many-electron system in an external ionic po-
tential V̂ie({R}), with the nuclei at positions {R} in a periodic
array of unit cells each containing Nat atoms in a volume
�. Ensemble Kohn-Sham DFT maps this system onto a
reference system of noninteracting electrons in an external
self-consistent potential V̂KS. The state of the noninteracting
system is completely described by the ensemble density oper-
ator ρ̂, whose real-space representation is the density matrix
ρ(r′, r) defined as

ρ(r′, r) ≡ 〈r′|ρ̂|r〉 =
∑
k,n

fknψkn(r)ψ∗
kn(r′), (1)

where the k-index enumerates NBZ Bloch wave vectors on
a uniform grid spanning the first BZ, n enumerates bands,
ψkn(r) are the KS wave functions, and fkn are occupation
probabilities required to be nonnegative, fkn � 0, and are
derived from ensemble statistics, as shown below. The discrete
grid of Bloch wave vectors derives from the Born von Karman
(BvK) boundary condition on the wave functions. Within the
BvK supercell, every pair of Bloch wave functions with wave
vectors k �= k′ are orthogonal.

In the following, the domain of all integrals is the unit
cell volume � unless otherwise specified. Also, we define the
Bloch wave functions as

ψkn(r) = 1√
NBZ

ukn(r)eik·r, (2)

where ukn have the periodicity of the lattice and are normal-
ized in the unit cell.

As a result of Bloch’s theorem, the density matrix ρ̂ can be
decomposed into Bloch-wave components

〈r′|ρ̂|r〉 = 1

NBZ

∑
k

〈r′|ρ̂k|r〉eik·(r−r′ ), (3)

with the property that every pair of Bloch-wave components
ρ̂k and ρ̂k′ with k �= k′ are orthogonal in the BvK supercell,
i.e., ∫

BvK
〈r′|ρ̂k|r〉〈r|ρ̂k′ |r′′〉ei(k−k′ )·r dr = 0 (4)

for all r′ and r′′ in the BvK cell. Hence, the KS problem is
separable with respect to the lattice-periodic operators ρ̂k,

〈r′|ρ̂k|r〉 =
∑

n

fknukn(r)u∗
kn(r′), (5)

which contain all the variational degrees of freedom.

The charge density n(r) is obtained as the diagonal of the
DM

n(r) = ρ(r, r). (6)

The Helmholtz free energy of the noninteracting system in
the absence of the self-consistent potential V̂KS can be written

AKS[ρ̂; τe] = Ts[ρ̂] − τeTr{S[ρ̂]}, (7)

where the noninteracting kinetic energy Ts[ρ̂] takes on the
form

Ts[ρ̂] = − 1

2NBZ

∑
k,n

fkn〈ukn|(∇ + ik)2|ukn〉, (8)

and the entropy function S[ρ̂] is specified by the ensemble
statistics and τe is the associated temperature. Note that the
Tr operator in Eq. (7) corresponds to integration over a single
unit cell and therefore we have

Tr{S[ρ̂]} = 1

NBZ

∑
k,n

S[ fkn]. (9)

With the noninteracting free energy AKS defined, the total
ensemble-KS free-energy FKS can be written as a functional of
the DM ρ̂ at temperature τe in an external potential V̂ie({R})

FKS[ρ̂; {R}, τe] = EKS[ρ̂; {R}, τe] − τeTr{S[ρ̂]}
= AKS[ρ̂; τe] + EH [n] + Fxc[ρ̂, τe]

+
∫

〈r|V̂ie({R})|r′〉ρ(r′, r) drdr′, (10)

where

EH [n] = 1

2

∑
T

∫
n(r)n(r′)

|r − r′ + T| drdr′, (11)

〈r|V̂ie({R})|r′〉 =
∑

R

Vie(r − R, r′ − R), (12)

Vie(r, r′) = Vloc(r)δ(r − r′) + VNL(r, r′). (13)

Above, V̂ie({R}) is the electron-ion interaction potential oper-
ator that is allowed to be nonlocal within each atomic sphere
in case ions are replaced by pseudopotentials. In Eq. (11), T
denotes the set of periodic lattice translation vectors, and in
Eq. (12), the nuclear positions are expanded as R = T + si,
where si specify the positions of atoms within each unit cell.
In Eq. (10), Fxc[ρ̂, τe] is the contribution of the electronic
exchange and correlation (XC) to the free energy, which in
general has explicit temperature dependence [40–42]. Within
the most commonly used approximations in KS-DFT [53,54],
Fxc is a functional of the diagonal elements of the DM only,
i.e., charge density n(r) and its gradients, but XC function-
als with explicit dependencies on off-diagonal elements of
the DM, such as hybrid exchange [59,60,62] and meta-GGA
[55,63] are becoming increasingly popular.

The formalism developed in the following is general. How-
ever, for the sake of illustration, we will focus on application
to warm-dense matter, where a large number of partially
occupied orbitals must be accounted for whose occupation
probabilities fkn are distributed according to Fermi-Dirac
(FD) statistics. Below, we derive the associated entropy
function S[ρ̂] = SFD[ρ̂]. Generalization to other statistical en-
sembles is straightforward.
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Let us start by formulating the expression for the equi-
librium ensemble-KS free-energy �KS. This can be obtained
by constrained minimization of FKS with respect to ρ̂, which
involves the variational degrees of freedom {ukn} and { fkn}

�KS[{R}, τe] = min
ρ̂,μ,{�}

FKS[ρ̂; {R}, τe] − μ(Tr{ρ̂} − Ne)

−
∑
k,n,m

�k
nm(〈ukn|ukm〉 − δnm). (14)

Above, the second term on the right-hand side constrains the
total number of electrons Ne, the last term enforces orthonor-
malization of the KS wave functions, and μ and �k

nm are
the associated Lagrange multipliers. It should be noted that
within this formulation, no constraints are imposed on the
XC potential to be multiplicative and local. Hence, for XC
functionals that depend explicitly on off-diagonal elements
of the DM, such as meta-GGA and hybrid-exchange, the
above procedure leads to semilocal or nonlocal XC potentials,
which result in self-consistent Hamiltonians that belong to
the generalized-KS framework [64,65]. Inclusion of potential
constraints that enforce rigorous KS mapping to fictitious
noninteracting systems in a self-consistent optimized effective
potential (OEP) [66] are not considered in the present work.
While spectral partitioning can in principle provide a powerful
way to simplify the OEP integro-differential equations, the
tools developed in this work are not immediately applicable
to that problem.

At equilibrium, the KS wave functions ψkn become eigen-
functions of the self-consistent Hamiltonian ĤKS, which
can be obtained through functional differentiation of EKS in
Eq. (10) with respect to ρ̂ defined in Eq. (1):

〈r′|ĤKS[ρ̂KS]|r〉 = δEKS[ρ̂KS]

δρ(r′, r)
, (15)

where for brevity, we have suppressed the dependence of EKS

and ĤKS on {R} and τe. The differentiation in Eq. (15), in the
BvK supercell, leads to

δEKS

δρ(r′, r)
= δ(r − r′)

(
−∇2

2
+ VH (r)

)
+ 〈r′|V̂ie[R]|r〉

+ 〈r′|V̂ xc[ρ̂KS, τe]|r〉, (16)

with VH (r) = δEH/δn(r), 〈r′|V̂ie[{R}|r〉 defined in Eq. (12),
and

〈r′|V̂ xc[ρ̂KS, τe]|r〉 = δFxc[ρ̂KS, τe]

δρ(r′, r)
, (17)

where we have explicitly presented the dependencies of the
various potentials on the temperature τe, ionic positions {R},
and the DM ρKS. Note that for XC functionals that only
depend on the density n(r) and its gradients, the XC po-
tential becomes multiplicative and local: 〈r′|V̂ xc[n, τe]|r〉 =
δ(r − r′)δFxc[n, τe]/δn(r).

At equilibrium, the Lagrange multiplier matrices �k
nm be-

come diagonal,

�k
nm = δnm

fkn

NBZ
〈ukn|ĤKS

k |ukn〉 = δnm
fkn

NBZ
εkn, (18)

where ĤKS
k are lattice-periodic Bloch-wave components of the

KS Hamiltonian defined as

〈r′|ĤKS|r〉 = 1

NBZ

∑
k

〈r′|ĤKS
k |r〉eik·(r−r′ ), (19)

and can be obtained through functional differentiation of EKS

in Eq. (10) with respect to ρ̂k defined in Eq. (5):

〈r′|ĤKS
k [ρ̂KS]|r〉 = NBZ

δEKS[ρ̂KS]

δρk(r′, r)
. (20)

Finally, at equilibrium the occupation probabilities become
solutions to the equations

εkn − μ − τe
∂S

∂ fkn
= 0, (21)

where μ acts as the chemical potential. The left-hand side of
the above equation is obtained by partial differentiation of the
free energy expression Eq. (10) with respect to occupations
fkn. Within FD statistics, the occupation probabilities are dis-
tributed according to

f FD
kn = 1

1 + exp
(

εkn−μ

τe

) . (22)

By inserting Eq. (21) into Eq. (22), a relation for the FD
entropy function SFD[ρ̂] can be obtained

fkn = 1

1 + exp(ṠFD( fkn))
, (23)

with ṠFD( f ) = dSFD

df . Equation (23) can be solved analytically

for ṠFD, and integrated to obtain the FD entropy function SFD

using the boundary condition SFD(0) = 0, which subsequently
can be written as

SFD( fkn) = − fkn ln( fkn) − (1 − fkn) ln(1 − fkn). (24)

By inserting the FD occupations Eq. (22) into Eq. (1), and
using the diagonal representation of the KS Hamiltonian

ĤKS =
∑
k,n

εkn|ψkn〉〈ψkn|, (25)

the following standard relation can be derived between the
equilibrium DM in the canonical ensemble and the KS Hamil-
tonian:

ρ̂KS =
[

Î + exp

(
ĤKS − μÎ

τe

)]−1

, (26)

where Î is the identity operator. Likewise, using the diagonal
representation of ĤKS

k

ĤKS
k =

∑
n

εkn|ukn〉〈ukn|, (27)

we can derive the following operator relation

ρ̂KS
k =

[
Î + exp

(
ĤKS

k − μÎ

τe

)]−1

. (28)
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B. spDFT at extreme temperatures

At high electron temperatures the FD distribution becomes
broad with a long spectral tail leading to finite occupations at
very high energies εkn, which makes orbital-based electronic-
structure calculations at such temperatures computationally
very expensive. For example, free-energy calculations at a
temperature of 1 keV require thousands of KS bands per
electron for convergence.

One way around this problem has been suggested by Zhang
et al. [33] to in effect, approximate the KS Hamiltonian at high
energies by the HEG one

ĤA = − 1
2∇2 + U HEG

0 , (29)

where U HEG
0 is a constant potential aligning ĤA with the sys-

tem’s Hamiltonian ĤKS, Eq. (16). In practice, in this scheme
a splitting energy is chosen below which the equilibrium DM
is spanned by the KS eigenfunctions and above which it is
replaced by

ρ̂A =
[

Î + exp

(
ĤA − μÎ

τe

)]−1

. (30)

Since the computational cost of evaluating ρ̂A is negligible,
dramatic savings in computational cost can be achieved if
the splitting energy can be pushed down to small values. In
Sec. V, we will show that for realistic systems, spectral par-
titioning produces accurate free energies and pressures with
just tens of KS bands per electron irrespective of temperature.

Two features of the technique described above need elabo-
ration: (i) how best to join the two DMs ρ̂KS and ρ̂A and (ii)
the best choice for the alignment energy U HEG

0 . A number of
proposals for solving these problems have been presented in
previous publications [33,34]. However, no rigorous frame-
work for an optimal technique has been proposed.

In the following, we derive such a framework. To do so, one
needs to step back from Eq. (29) and instead build the spDFT
formalism from bottom up, starting from a general ansatz for
a DM partitioned into two spectral domains: (i) a low-energy
subspace spanned by KS eigenstates {ψkn} and (ii) a high-
energy subspace spanned by another complete set of orthonor-
mal Bloch states {ψh

kn} that need not be eigenstates of the
KS Hamiltonian. We then derive the expression for the free-
energy functional whose variational minimium is the optimal
DM that is partitioned according to the ansatz given above.
Subsequently, in Sec. IV we revisit the problem of electronic
structure calculations at extreme temperatures and spectral
partitioning with the HEG at high energies. We derive detailed
expressions for the spectral-partitioned KS Hamiltonian,
forces, and stresses within both PAW and NCPP formalisms.

C. Smooth spectral partitioning of the density matrix

Before embarking on the derivation of the spDFT
functional, we first formulate a template for the spectral-
partitioned equilibrium DM ρ̂SP that results from variational
minimization of this functional. In other words, our aim in
this section is to specify our choice of method for joining
different DM representations. For this purpose, let us con-
sider the example in the previous subsection, where the KS
Hamiltonian at high energies is approximated by ĤA in

Eq. (29). Since the Bloch-wave components of the DM are
mutually orthogonal, see Eq. (4), they can be spectrally par-
titioned separately and the splitting energies χk are allowed
to vary within the BZ. It is however, desirable that the k-
dependence of the splitting energies conserve the point group
symmetry of the ionic lattice and possibly the time-reversal
symmetry to preserve the irreducible wedge in the BZ.

For the following discussion, it suffices to just focus on
a single Bloch-wave component ρ̂SP

k . Preferably, the parti-
tion should consist of a smooth interpolation between ρ̂KS

k
[Eq. (28)] below a splitting energy χk and an approximate
ρ̂A

k [Eq. (30)] above χk. For this purpose, we employ an ana-
lytic partition of unity by a function η(x) and its complement
η(x) = 1 − η(x), with η(x) being a broadened step function,
with η(x) = 1 for x → −∞ and η(x) = 0 for x → ∞. A
natural choice is the sigmoid function. As a result, the SP-DM
ρ̂SP

k becomes

ρ̂SP
k = ηk

(
ĤKS

k − μÎ
)
ρ̂KS

k + ηk

(
ĤA

k − μÎ
)
ρ̂A

k , (31)

with ρ̂KS and ρ̂A defined in Eqs. (28) and (30), respectively,
and

ηk(X̂k ) =
[

Î + exp

(
X̂k − χk Î

τs

)]−1

. (32)

Above, ηk(Ĥk − μÎ ) is the sigmoid function of the Hamilto-
nian operator relative the chemical potential, centered at the
splitting energy χk, which can be freely chosen for each wave
vector k separately. The broadening parameter τs can also
be chosen separately for each wave vector k but it is only
a regularization parameter for enhancing numerical stability
and therefore we choose to work with a single τs value with
τs � τe. Figure 1 illustrates a typical spectral splitting of the
FD distribution as described above.

In the following, we address the central problem of this pa-
per, which is to construct a variational free-energy functional
whose equilibrium DM is the SP-DM ρ̂SP in Eq. (31). Sub-
sequently, we derive a general force theorem that facilitates
implementation of atomic forces within various electronic
structure methodologies.

D. Variational spDFT free-energy functional

Consider the Hilbert space spanned by a complete set of
orthonormal Bloch wave functions |ψh

kn〉 subject to the same
BvK boundary condition as the KS wave functions |ψkn〉.
Hence, as in Eq. (2), ψh

kn can be written in terms of functions
uh

kn with lattice periodicity as

ψh
kn(r) = 1√

NBZ
uh

kn(r)eik·r, (33)

where uh
kn(r) are normalized within each unit cell. The two

Hilbert spaces can be transformed into one another by unitary
operators Uk,nm

|ψkn〉 =
∑

m

Uk,nm

∣∣ψh
km

〉
, (34)

Uk,nm = 〈
uh

km

∣∣ukn
〉
. (35)
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FIG. 1. (a) The solid curve represents a typical electron density-
of-states (DOS) of a solid and the dashed curve is the HEG DOS
approximating the high-energy spectral region. (b) The energy spec-
trum is decomposed into a blue region (left side) delineated by η(ε),
and a yellow region (right side) bounded by η(ε). The solid black
curve depicts the electron occupation probabilities, which follow the
FD distribution.

We define the class of Hamiltonians that are diagonal in
this basis

Ĥh =
∑
k,n

εh
kn

∣∣ψh
kn

〉〈
ψh

kn

∣∣, (36)

where εh
kn are real-valued coefficients. Given any parametriza-

tion of Ĥh, we determine the ensemble density operator ρ̂h at
temperature τe by Eq. (30), which therefore also becomes di-
agonal in the basis |ψh

kn〉. However, it is important to note that
contrary to Eq. (29), we make no assumptions about the values
of the coefficients εh

kn. Rather, they emerge as a consequence
of the variational formulation of spectral partitioning, as we
show below.

Our aim is to devise a variational framework whose equi-
librium DM can be described by Eq. (31). For this purpose,
we decompose each Bloch-wave component of the DM ρ̂k
into two contributions ρ̂ l

k and ρ̂h
k , with distinct diagonal

representations

ρ̂
η

k = ρ̂ l
k + ρ̂h

k, (37)

ρ̂ l
k =

∑
n

Qkn|ukn〉〈ukn|, (38)

ρ̂h
k =

∑
n

Pkn

∣∣uh
kn

〉〈
uh

kn

∣∣, (39)

where {Qkn}, {Pkn}, and {ukn} are variational degrees of free-
dom. Hence, ρ̂ l

k are treated fully variationally, while ρ̂h
k are

only allowed to vary their orbital occupations Pkn. Addition-
ally, the chosen wave functions uh

kn can in principle depend
on ion positions. However, for brevity we drop this functional
dependence.

In summary, our aim is to construct the spDFT free energy
functional in such a way that at its variational minimum, ρ l

in Eq. (37) corresponds to the first term on the right-hand
side of Eq. (31) and ρh corresponds to the second. Hence, at
equilibrium, ρ̂ l encompasses the low-energy part of the DM
and ρ̂h encompasses the high-energy part.

The Helmholtz free energy of the noninteracting spectral-
partitioned system in the absence of the self-consistent
potential V̂KS can now be written

ASP[ρ̂η; τe, {τ k}] = Ts[ρ̂
η] − τe

NBZ

∑
k

Tr
{
SSP[ρ̂η

k ; τ k
]}

,

(40)

with

τ k =
(

τs

τe
,
χk

τs

)
. (41)

The noninteracting kinetic energy Ts[ρ̂η] in Eq. (40) takes
on the form

Ts[ρ̂
η] = − 1

2NBZ

∑
k,n

Qkn〈ukn|(∇ + ik)2|ukn〉

− 1

2NBZ

∑
k,n

Pkn
〈
uh

kn

∣∣(∇ + ik)2
∣∣uh

kn

〉
, (42)

and the spectral-partitioned entropy becomes a functional of
the spectral-partitioned DM ρ̂η, dimensionless ratios of the
splitting energies χk, broadening parameter τs, and the elec-
tron temperature τe, see Eq. (41). Note that the SP-entropy in
Eq. (40) is decomposed into independent contributions from
each Bloch-wave component of the SP-DM ρ̂

η

k .
Following the steps leading to Eq. (10), we derive the

spDFT total free energy functional

FSP[ρ̂; {R}, τe, {τ k}]
= EKS[ρ̂η; {R}, τe] − τe

NBZ

∑
k

Tr
{
SSP

[
ρ̂

η

k ; τ k
]}

= ASP[ρ̂η; τe, {τ k}] + EH [nη] + Fxc[ρ̂η, τe]

+
∫

〈r|V̂ie({R})|r′〉ρ(r′, r) drdr′, (43)

where the SP charge density nη corresponds to the diagonal
elements of the SP-DM ρη(r, r).

Due to the linearity of the spectral-partitioning ansatz for
the DM ρ̂η in Eq. (37), functional differentiation of EKS in
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Eq. (43) with respect to ρ̂η recovers the same expression for
the spectral-partitioned Hamiltonian as the unpartitioned KS
Hamiltonian ĤKS in Eq. (16). Therefore, at equilibrium, the
spectral-partitioned energy eigenvalues can be written as

εl
kn = NBZ

∂EKS

∂Qkn
= 〈ukn|ĤKS

k [ρ̂SP]|ukn〉, (44)

εh
kn = NBZ

∂EKS

∂Pkn
= 〈

uh
kn

∣∣ĤKS
k [ρ̂SP]

∣∣uh
kn

〉
. (45)

This is an important result. Note that the coefficients εh
kn

have been completely determined by the variational procedure
without ever having been explicitly treated as variational de-
grees of freedom. In this way, the approximate Hamiltonian
Ĥh can be determined without any prior assumptions. We see
now that the spDFT framework can handle arbitrarily complex
approximate Hamiltonians and that the particularly simple
form of the HEG Hamiltonian in Eq. (29), with a constant
alignment potential U HEG

0 , is an exception, resulting from an
intuitive ansatz, rather than the rule. In fact, we will show in
Sec. IV B that even for the HEG, this is too simple an as-
sumption, and in the presence of NCPP, the HEG Hamiltonian
admits a nonlocal potential.

We can now formulate the equilibrium spDFT free energy
�SP, which is obtained by constrained minimization with re-
spect to ρ̂η involving the variational degrees of freedom {ukn},
{Qkn}, and {Pkn},

�SP
[{

uh
kn

}
, {R}, τe, {τ k}

]
= min

{u,Q,P,μ,�}
FSP[ρ̂η; {R}, τe, {τ k}] − μ(Tr{ρ̂η} − Ne)

−
∑
k,n,m

�k
nm(〈ukn|ukm〉 − δnm). (46)

At equilibrium, the self-consistent SP-DM ρ̂SP should recover
Eq. (31).

The rest of this section will be dedicated to proving the
following two theorems.

Theorem I. There exists an electronic entropy function
SSP such that at the spDFT equilibrium state corresponding
to the variational minimum of the spDFT total free-energy
functional in Eq. (43), ρ̂SP recovers the spectral partition of
unity in Eq. (31).

Theorem II. The equilibrium spDFT free energy �SP is an
upper bound to the exact (unpartitioned) KS-DFT free energy,
i.e., �SP[{uh}; {R}, τe, {τ k}] � �KS[{R}, τe].

Let us start by first proving Theorem I. For this purpose,
we construct the entropy function SSP, which at the variational
minimum that defines �SP in Eq. (46), satisfies the following
relations:

∂SSP

∂Qkn
= εl

kn − μ

τe
, (47)

∂SSP

∂Pkn
= εh

kn − μ

τe
. (48)

The energy eigenvalues εl
kn and εh

kn above are defined in
Eqs. (44) and (45). For the equilibrium SP-DM ρ̂SP to satisfy

Eq. (31), the solutions of Eqs. (47) and (48) should yield

Qkn = ηk
(
εl

kn − μ
)

[
1 + exp

(
εl

kn−μ

τe

)] , (49)

Pkn = ηk

(
εh

kn − μ
)

1 + exp
(

εh
kn−μ

τe

) . (50)

We start by constructing an entropy function Sη(x; τ k ) that
can generate Eq. (49) as solution. For brevity, in the following
we suppress its parametric dependence and instead denote it
by Sη

k (x). Hence, we make the definition

Sη

k (x) ≡ Sη(x; τ k ). (51)

This notation displays the k-dependence of the splitting en-
ergy parameter χk. We thus insert Eq. (47) into Eq. (49) to
obtain

x = 1[
1 + exp

(
Ṡη

k (x)
)][

1 + Bk exp
(
AṠη

k (x)
)] , (52)

with

A = τe

τs
, Bk = exp

(
−χk

τs

)
, Ṡη

k = dSη

k

dx
. (53)

Equation (52) must be inverted to obtain Ṡη

k (x). This is possi-
ble if Ṡη

k (x) is a monotonic function. But Eq. (52) is a product
of two sigmoid functions, each of which are separately invert-
ible and everywhere positive. It is thus easy to see that the
product must also be monotonic and thus invertible. This can
be rigorously verified by examining the second derivative of
the entropy with respect to occupations. For this purpose, we
differentiate both sides of Eq. (52) with respect to x, and upon
rearranging terms, a simple expression for S̈η

k can be found:

S̈η

k = − (1 + eṠη

k )2(1 + BkeAṠη

k )

eṠη

k + ABk eAṠη

k + (A + 1)BkeṠη

k+1
< 0. (54)

From the above equation, it can be concluded that Ṡη

k (x) is
invertible. In the Appendix, we describe a simple procedure
for calculating this function to desired accuracy. Figure 2(a)
illustrates Ṡη

k (x) for several choices of the ratios τe/τs and
χk/τs that are typical for applications to the warm-dense mat-
ter regime, presented later in this paper.

It is not as straightforward to construct an entropy function
that can generate Eq. (50) as a solution. The reason is that
in contrast to Eq. (49), Eq. (50) is not a monotonic function
of the entropy derivative defined in Eq. (48). This is also
depicted in Fig. 1(b), where the Pkn distribution defined in
Eq. (50) is shown as the envelope of the yellow region. This
distribution can instead be obtained as the difference between
two monotonic functions: (i) the FD distribution, and (ii) the
product of the FD distribution with the cut-off function ηk(x),
shown as the envelope of the blue region in Fig. 1(b). Hence,
the high-energy DM ρ̂h can be considered a superposition of
fictitious states with positive as well as negative occupations.
As a result, the ansatz for ρ̂h in Eq. (39) is incomplete. Rather,
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FIG. 2. (a) The entropy derivative Ṡη, for three different param-
eter sets typical of warm-dense matter applications in this paper.
The dotted black line shows the standard FD entropy derivative
ṠFD. (b) The deviation of the SP entropy from the FD entropy, i.e.,
Sη(x) − SFD(x), as a function of occupations x.

it should be broken up into two contributions

ρ̂h
k = ρ̂h+

k − ρ̂h−
k , (55)

ρ̂h+
k =

∑
n

P+
kn

∣∣uh
kn

〉〈
uh

kn

∣∣, (56)

ρ̂h−
k =

∑
n

P−
kn

∣∣uh
kn

〉〈
uh

kn

∣∣, (57)

where both P+
kn and P−

kn need now be treated as indepen-
dent variational degrees of freedom. Consequently, the total
spectral-partitioned entropy function SSP in Eq. (43) takes the
form

SSP
[
ρ̂

η

k ; τ k
] =

∑
k

Sη

k

[
ρ̂ l

k

] + SFD
[
ρ̂h+

k

] − Sη

k

(
ρ̂h−

k

)
, (58)

where SFD(x) is the FD entropy defined in Eq. (24) and the
entropy function Sη

k (x) is obtained from Eq. (52). Following
the earlier steps in this section, it is straightforward to see that

upon minimization, the Qkn occupations acquire the distribu-
tion in Eq. (49) and the other ones become

P+
kn = 1[

1 + exp
(

εh
kn−μ

τe

)] , (59)

P−
kn = ηk

(
εh

kn − μ
)

1 + exp
(

εh
kn−μ

τe

) . (60)

Hence, at the variational minimum, the SP charge density can
be written as

nSP(r) =
∑
kn

Qkn|ψkn(r)|2 + (P+
kn − P−

kn)
∣∣ψh

kn(r)
∣∣2

, (61)

with

P+
kn − P−

kn = ηk

(
εh

kn − μ
)

1 + exp
(

εh
kn−μ

τe

) � 0. (62)

It should be noted that even if P+
kn and P−

kn are allowed to vary
independently during minimization of the right-hand side of
Eq. (46), their difference at the variational minimum is never
negative, and the equilibrium SP charge density is always
positive definite. The proof of Theorem I is thus complete.

We now proceed with the proof of Theorem II. Before do-
ing so, let us define for the sake of clarity the term “occupied
domain,” which we use in the following to denote the spectral
region where either one or both of Qkn and Pkn = P+

kn − P−
kn

are nonzero.
The proof is conducted in three steps: (i) It is shown that

the SP free energy �SP in Eq. (46) becomes equal to the
exact KS free energy �KS in Eq. (14), whenever in the oc-
cupied domain, the basis functions spanning the high-energy
subspace coincide with those spanning the low-energy one,
uh

kn = ukn. (ii) Under this condition, we prove that the SP free
energy is at a local minimum with respect to infinitesimal
unitary transformations of {uh

kn}. (iii) We show that whenever
in the occupied domain, there are basis functions such that
〈uh

kn|ukm〉 �= δnm, the SP free energy �SP can be lowered by a
unitary transformation of {uh

kn}.
We start by proving (i). For this purpose, consider the SP

free energy �SP[{wkn}], where for brevity we have suppressed
the dependence on the variables {R}, τe, {τ k}. All arguments
put forth below should hold for any reasonable choice of these
variables. Let us now define the basis functions wkn = ukn

in the occupied domain. We need to show that the following
relation holds

�SP[{wkn}] = �KS, (63)

where �KS is the exact KS free energy in Eq. (14). This is true
because wkn are eigenfunctions of the KS Hamiltonian ĤKS

k
in Eq. (20), and therefore εh

kn = εl
kn as can be concluded from

Eqs. (44) and (45). Consequently, the occupations P−
kn = Qkn,

see Eqs. (49) and (60), and thus the non-Fermi-Dirac contri-
butions to the entropy function in Eq. (58) cancel and the free
energy function �KS is recovered. This concludes the proof
of (i).

Next we prove (ii). For this purpose, we investigate the
variations of �SP with respect to the basis functions uh

kn span-
ning the high-energy subspace. This is simplified because �SP
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is already at a variational minimum with respect to the KS
orbitals ukn as well as the occupations P±

kn and Qkn. Con-
sequently, the Hellmann-Feynman theorem holds and only
partial derivatives of the right-hand side of Eq. (46) with
respect to uh

kn contribute to the functional derivatives of �SP

leading to

|gkn〉 = d�SP[{wkn}]
d
〈
uh

kn

∣∣ = (P+
kn − P−

kn)

NBZ
ĤKS

k [ρ̂SP]|wkn〉, (64)

with the Hamiltonian ĤKS
k [ρ̂SP] defined in Eq. (20), and the

Hartree and the exchange-correlation potentials VH and V xc

evaluated at the SP equilibrium ρ̂SP. Since we have chosen
wkn = ukn in the occupied domain, ρ̂SP is equal to the exact
equilibrium DM ρ̂KS, and ĤKS

k [ρ̂KS] are diagonal

〈wkn|ĤKS
k [ρ̂KS]|wkm〉 = δnmεh

kn. (65)

Now consider infinitesimal variations of uh
kn∣∣uh

kn

〉 = |wkn〉 + α
∣∣δuh

kn

〉
,∣∣δuh

kn

〉 =
∑

m

Wk,nm|wkm〉. (66)

For orthonormality of the basis functions to be preserved
to first order in α, the matrices Wk,nm must be anti-Hermitian.
Hence, the first-order change in energy becomes

d�
(1)
SP = 1

NBZ

∑
kn

〈
δuh

kn

∣∣gkn
〉 + c.c.

= 1

NBZ

∑
kn

Pkn
〈
δuh

kn

∣∣ĤKS
k [ρ̂KS]|wkn〉 + c.c., (67)

with Pkn = P+
kn − P−

kn. Since ĤKS
k is diagonal in the wkn basis,

see Eq. (65), the change in free energy to first order in α can
be written as

d�
(1)
SP = 1

NBZ

∑
kn

Pknε
h
kn(Wk,nn + c.c.) = 0. (68)

The last equality on the right-hand side of the above equa-
tion stems from the anti-Hermitian property of the Wknm

matrices. This completes the proof of (ii).
Finally, we prove (iii). For this purpose, we consider

�SP[{wkn}], where wkn are chosen such that within the oc-
cupied domain 〈wkn|ukm〉 �= δnm. The derivatives of �SP with
respect to uh

kn can be calculated via Eq. (64), where now
ρ̂SP �= ρ̂KS. As a result 〈wkn|ĤKS

k [ρ̂SP]|wkm〉 is not diago-
nal. Consequently, we can choose the anti-Hermitian matrices
Wk,nm in Eq. (66) in such a way that the free energy �SP can
be lowered. Following Refs. [67,68], we choose Wk,nm to be

Wk,nm = 〈wkm|ĤKS
k [ρ̂SP]|wkn〉(Pkm − Pkn). (69)

Note that Wk,nm is clearly anti-Hermitian with vanishing di-
agonal elements. Inserting the above ansatz for Wk,nm into
Eq. (66) and subsequently into Eq. (67), we calculate the
change in the free energy to first order in α to be

d�
(1)
SP = − 1

NBZ

∑
k,n,m

|Wk,nm|2 < 0. (70)

Hence, the free energy �SP[{wkn}] is not at a minimum with
respect to infinitesimal unitary transformations of the basis

functions wkn. This concludes the proof of (iii), and completes
the proof of Theorem II.

E. spDFT forces

Let us start by reformulating the spDFT total-energy
functional as a sum of band-structure energy and double-
counting correction, which we evaluate for the self-consistent
SP-DM ρ̂SP

EKS[ρ̂SP, R] = Ebs[ρ̂
SP, R] + Edc[ρ̂SP], (71)

where

Ebs = 1

NBZ

∑
kn

Qknε
l
kn + (P+

kn − P−
kn)εh

kn, (72)

Edc = Fxc[ρ̂SP] − Tr{V̂ xc[ρ̂SP] ρ̂SP} − EH [nSP]. (73)

Above εl
kn and εh

kn are defined by Eqs. (44) and (45), with
εl

kn being the eigenvalues of the KS Hamiltonian ĤKS
k defined

in Eq. (20), with the Hartree and the XC potentials VH and V xc

defined in Eq. (17). For brevity, we have dropped the explicit
temperature-dependence of the XC free energy and potential
in the above equations. Following Goedecker and Maschke
[69], it is easy to see that the following relation holds quite
generally

dEKS

dR
= Tr

{
∂ĤKS

∂R
ρ̂SP

}
+ Tr

{
Ĥ

d ρ̂SP

dR

}
. (74)

It is worth reiterating that Tr{ĤKSρ̂SP} = Ebs, and
∂ĤKS/∂R = dV̂ie/dR. Hence, in the most general case
we have

dEKS

dR
= Tr

{
∂ĤKS

∂R
ρ̂ l

}
+ Tr

{
ĤKS dρ̂ l

dR

}

+ Tr

{
∂ĤKS

∂R
ρ̂h

}
+ Tr

{
ĤKS d ρ̂h

dR

}
. (75)

This is the central result of this section, which is that the
atomic forces Fat can always be written as a sum of separate
spectral contributions,

Fat = Fl
at + Fh

at. (76)

Hence, within spDFT, the contribution to forces from spec-
tral partitions spanned by variational eigenfunctions of the KS
Hamiltonian, such as Fl

at in the above example, are unaffected
by spectral partitioning. Consequently, it is only necessary
to derive and implement new expressions for Fh

at. Further
simplification can be achieved by noting that atomic forces
are negative derivatives of the free energy functional �SP

with respect to atomic positions. Since �SP is at a variational
minimum with respect to the occupation numbers P+

kn and P−
kn,

we can express Fh
at as follows:

Fh
at = −

∑
kn

P+
kn − P−

kn

NBZ

〈
uh

kn

∣∣dV̂ie

dR

∣∣uh
kn

〉

−
∑
kn

P+
kn − P−

kn

NBZ

[〈
∂uh

kn

∂R

∣∣∣∣ĤKS
k

∣∣uh
kn

〉 + c.c.

]
. (77)
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III. spDFT IMPLEMENTATION

In this section, we discuss implementation details of the
spDFT technique for optimized performance. We will con-
sider the same context as in the last section: Two separate
subspaces with the low-energy one spanned by variational KS
states {ψkn} and the high-energy one spanned by nonvaria-
tional approximate eigenstates {ψh

kn}. The computational cost
stems mainly from calculation of the low-energy variational
subspace.

Before discussing optimization strategies, we first sum-
marize the necessary steps for implementation of an spDFT
scheme in an existing KS-DFT code.

(1) Determine the energy eigenvalues εl
kn and εh

kn, using
Eqs. (44) and (45).

(2) Calculate the occupations Qkn, P+
kn, and P−

kn, using
Eqs. (49), (59), and (60).

(3) Calculate the SP charge density using Eqs. (37), (38),
and (39).

(4) Calculate the total SP energy by inserting the energy
eigenvalues and charge density into Eqs. (71), (72), and (73).

(5) Calculate the SP entropy using Eq. (58), with SFD(x)
defined by Eq. (24) and Sη

k (x) determined numerically by the
method described in the Appendix.

(6) The total SP free energy is then obtained by inserting
the total SP energy and SP entropy into Eq. (43).

The spDFT technique relies on the smeared cut-off func-
tion ηk(x) that splits the two spectral subspaces at energies χk
with a broadening parameter τs. For optimal performance, an
algorithm must determine the minimal number of KS states
that are required to contain the low-energy subspace. How-
ever, from the perspective of practical use, it is rather desired
that the number of KS states containing the low-energy sub-
space be chosen by the user and the algorithm determines the
best set of χk . This will be discussed in Sec. III A below.

In Sec. III B, a concern regarding the consistency of
calculated spDFT free energies, forces, and stresses along
paths connecting different ionic configurations, e.g., via
molecular-dynamics simulations, structural relaxations, or
nudged elastic band calculations, is addressed. In previous
literature on HEG-extended DFT calculations of hot dense
plasmas [33,34], such concerns have not been considered
since variational free energies were not available. With the
spDFT framework, one can address such issues and develop
rigorous solutions for them.

A. Maximizing accuracy for given number of KS states

The spDFT technique as described above is parameterized
by splitting energies χk and broadening width τs. It will be
shown in Sec. V that so long as τs is not chosen too small
(τs � 0.1 eV) as to slow convergence to self-consistency, and
not too large (τs > 1 eV) as to lead to suboptimal occupations
of the topmost KS states, the results are insensitive to the
precise value. For the cases studied in this paper and reported
in Sec. V, it is found that a choice of τs in the range 0.1–0.2 eV
works well.

More important is the choice of the splitting energies χk.
In general, χk determine the size of the variational low-energy
subspace. Hence, given any set of χk values, the size of the

low-energy subspace is determined by the minimal number of
variational KS states beyond which the calculated total free
energy �SP remains unchanged to desired accuracy. In other
words, the value of the cutoff function must vanish outside
the low-energy subspace. However, since the computational
cost is determined by the size of the low-energy subspace, in
practice it is most straightforward for the user to determine
the number of variational KS states to be included in the
calculations and for the algorithm to automatically determine
the optimal set of χk, for which the occupations of the vari-
ational KS states follow the FD distribution as closely as
possible, i.e., the cutoff function ηk(x) > 0 for as many KS
states as possible.

This is easily done so long as the χk are allowed to adjust
during the self-consistency iterations. At each iteration, the
energy eigenvalues of the KS states are calculated and sorted,
from which the chemical potential μ, as well as the maximal
KS band energy εmax(k) at each k-point in the BZ are deter-
mined. We can now ensure that the cutoff function ηk(x) is
only nonzero within the low-energy KS subspace by setting

ηk

(
εmax(k) − μ − χk

τs

)
≈ 10−4. (78)

The above relation uniquely determines χk and preserves the
irreducible wedge in the BZ. For the case when ηk(x) is the
sigmoid function Eq. (32), χk become

χk ≈ εmax(k) − μ − 9.21τs. (79)

B. Internal consistency along ionic trajectories

The spDFT framework provides a variational formulation
within which relative energies of any two ionic configurations
can be evaluated. However, it also places strong constraints
on the choices of spectral-partitioning parameters along ionic
trajectories generated by MD simulations or structural relax-
ations. These constraints emerge from Eq. (46), where the
total free energy �SP is not only a function of the ion positions
{R}, but also of the electron temperature τe as well as the set of
all spectral-partitioning parameters, in particular the splitting
energies {χk}.

In the present work, we follow a convention that has been
tacitly followed in literature, which we refer to in the follow-
ing as the constant-χ convention. It requires that the forces
(Sec. II E) and the stresses (Sec. IV) be derived by differ-
entiation of the free energy expression Eq. (46) with respect
to ionic displacements and lattice strains, respectively, while
holding all other parameters including the splitting energies
χk fixed. Consider thus a system of ions, with the nuclei
residing on sites R0. Denote the system’s total spDFT free
energy by �0

SP and the corresponding forces by F0
at. A small

displacement of the ions � to a new position vector R1 =
R0 + � leads to first order in � to the following change in
the free energy

�1
SP − �0

SP = −F0
at · � + O(|
|2). (80)

For atomic forces F0
at that are derived within the constant-χ

convention above, Eq. (80) strictly holds only when all χk
stay unchanged between the two configurations R0 and R1.
Hence, for MD simulations or structural relaxations guided

045204-10



SPECTRAL-PARTITIONED KOHN-SHAM DENSITY … PHYSICAL REVIEW E 108, 045204 (2023)

by atomic forces and stresses that adhere to the constant-χ
convention, Eq. (78) should only be used to determine χk
for the initial configuration. Further along any trajectory, the
internal consistency between forces and free energies requires
invariant χk within this convention. In Sec. V, this internal
consistency is examined by comparing numerical free-energy
differences with analytic derivatives of the free-energy.

It should be noted that the variational formalism allows
for the constant-χ convention to be abandoned for better ones
depending on the application. Other conventions will require
the introduction of additional terms in the expressions for ana-
lytic forces and stresses. They can be derived from concurrent
differentiation of Eq. (46) with respect to both ionic displace-
ments and splitting energies. Care must though be taken that
the splitting energies χk along any trajectory preserve the
irreducible wedge in the BZ and remain reasonably uniform
within it, such as in Eq. (79). Too large variations in splitting
energies within the BZ can negatively affect the convergence
of the variational SP free energies.

We conclude this section by a brief discussion of what
it means to keep χk constant between two separate ionic
configurations. From Eqs. (31) and (32), it can be seen that
the splitting energies are not absolute energies but are rather
measured relative to the chemical potential μ. The latter is a
variational quantity that changes during self-consistency itera-
tions. As a result, in the constant-χ convention, the maximum
KS band energy εmax(k) that is required to be included in the
calculations must be calculated from Eq. (78) or Eq. (79), and
thus be updated concurrently with μ.

IV. spDFT-HEG FOR HIGH-TEMPERATURE
APPLICATIONS

In this section, we derive expressions for the total free
energy, forces, and stresses within the spDFT-HEG scheme,
assuming the XC free energy is a functional of the charge
density and its gradients, and the DM is spectrally partitioned
so that at low energies it is constructed from variational KS
eigenstates {ψkn}, while at high energies it is constructed from
planewaves

ψh
k+G(r) = 1√

NBZ
uh

G(r) exp (ik · r), (81)

uh
G(r) = 1√

�
exp (iG · r). (82)

Above, the wave functions have been factorized into two
separate sets of planewaves following Eq. (33). As a result,
the k-vectors belong to the 1st BZ, and G · T = 2πN , where
T are periodic lattice translation vectors and N are integers.
This decomposition is necessary for the most general im-
plementations of the spDFT technique, when one chooses to
allow the splitting energies χk to vary throughout the BZ, see
Eqs. (60) and (78). In this notation, the ansatz for the DM at
high energies ρ̂h becomes

ρh(r, r′) = 1

�

∑
k,G

(P+
k+G − P−

k+G) exp[i(k + G)(r − r′)].

(83)

Note that the contribution of the HEG to the charge density
ρ̂h(r, r) is constant in space. As a result, the expression for
the total SP-charge density nη becomes

nη(r) =
∑
kn

Qkn|ψkn(r)|2 + 1

�

∑
k,G

(P+
k+G − P−

k+G). (84)

In the next two sections, we derive the necessary expres-
sions for the spDFT-HEG scheme to be implemented in the
two main frozen-core approaches in use today: (i) PAW and
(ii) NCPP. We assume the XC functional depends on the
charge density and its gradients only, and as a result the XC
potential is multiplicative and local. For brevity, we also drop
the explicit temperature dependence of the XC free energy
functional and the XC potential, as it neither changes the sub-
stance of the following derivations nor the final expressions.
In general, implementation of the spDFT total free energy
functional in a KS-DFT code requires the steps enumerated
in Sec. III. In particular, to implement the spDFT-HEG total
free energy functional in existing PAW or NCPP codes, new
expressions must be derived for the following two quantities:
(i) the energy eigenvalues of the high-energy subspace εh

kn
and (ii) the SP-charge density nη(r). The functional forms
of all other quantities including the energy eigenvalues of the
low-energy subspace εl

kn remain unchanged.
Regarding explicit contributions to interatomic forces from

spDFT-HEG, it is clear from Eq. (77) that both terms on the
right-hand side vanish, and therefore no special implemen-
tation is necessary. In contrast, there are finite contributions
to macroscopic stresses from spDFT-HEG. In the following
two sections, detailed derivations of these contributions will
be presented.

A. spDFT-HEG in the PAW method

In this section, we follow the formalism and notation of
Kresse and Joubert [70] for the PAW method. In this scheme,
contrary to the NCPP formalism, the all-electron total-energy
functional is in principle unchanged. Instead the valence elec-
tron wave functions are written in a mixed basis representation

|ψkn〉 = |ψ̃kn〉 +
∑

iL

(|φiL〉 − |φ̃iL〉)〈 p̃iL|ψ̃kn〉, (85)

where the soft pseudo-wave functions ψ̃kn constitute the vari-
ational degrees of freedom, and the all-electron eigenstates
are recovered by a partial-wave expansion within nonoverlap-
ping augmentation spheres around each atom. φiL and φ̃iL are
the atomic all-electron and pseudopartial waves respectively,
with the index i enumerating atomic sites and L the angular
momentum channels, and the projectors p̃iL being dual to the
pseudopartial waves

〈p̃iL|φ̃i′L′ 〉 = δi,i′δL,L′ . (86)

It is important to note that for the PAW method to be an
exact frozen-core scheme, the partial-wave expansions inside
the atom-centered augmentation spheres must be complete.
We will see in Sec. V D that this condition can become dif-
ficult to satisfy at high electron temperatures. Nevertheless, it
is straightforward to make the variational spDFT ansatz for
the DM as described in Eq. (37) with ρ̂ l constructed from the
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all-electron wave functions in Eq. (85), and ρ̂h described by
Eq. (83). Now following Eq. (84), the PAW SP-charge density
can be written as

nη(r) = ñ(r) + n1(r) − ñ1(r) + nh, (87)

with the first term on the right-hand side being the pseu-
docharge density represented on the soft planewave grid

ñ(r) =
∑
kn

Qkn|ψ̃kn(r)|2, (88)

and the next two terms being onsite charge density contri-
butions represented on the radial grid within each atomic
augmentation sphere

n1(r) =
∑

i

∑
LL′

κ i
LL′φiL(r)φ∗

iL′ (r), (89)

ñ1(r) =
∑

i

∑
LL′

κ i
LL′ φ̃iL(r)φ̃∗

iL′ (r), (90)

with the onsite occupations κ i
LL′ defined as

κ i
LL′ =

∑
kn

Qkn〈ψ̃kn| p̃iL〉〈 p̃iL′ |ψ̃kn〉. (91)

The last term on the right-hand side of Eq. (87) accounts for
the HEG contribution at high energies HEG to the SP-charge
density:

nh = 1

�

∑
k,G

(P+
k+G − P−

k+G). (92)

By the same rationale, the noninteracting kinetic energy Ts

can be written as the sum of four contributions,

Ts[ρ̂
η] = T̃s[ρ̂

l ] + T 1
s [ρ̂ l ] − T̃ 1

s [ρ̂ l ] + T h[ρ̂h], (93)

with

T̃s[ρ̂
l ] =

∑
kn

Qkn〈ψ̃kn| − ∇2

2
|ψ̃kn〉, (94)

T 1
s (ρ̂ l ) =

∑
i

∑
LL′

κ i
LL′ 〈φiL| − ∇2

2
|φiL′ 〉, (95)

T̃ 1
s (ρ̂ l ) =

∑
i

∑
LL′

κ i
LL′ 〈φ̃iL| − ∇2

2
|φ̃iL′ 〉, (96)

and

T h[ρ̂h] =
∑
k,G

(P+
k+G − P−

k+G)
(k + G)2

2
. (97)

Contrary to the kinetic energy term, there is more than
one legitimate spDFT formulation for the interaction energy
terms in PAW. For example, in the simplest implementa-
tion of spDFT-HEG within PAW, the constant charge density
nh is added only to the soft pseudocharge density ñ(r).
This approach was taken in previous ext-FPMD implemen-
tations [33,34]. We refer to this method as the pseudocharge
spDFT-HEG (PC-spDFT-HEG). Unfortunately, it leads to a
suboptimal total-energy with systematic errors in both the
exchange-correlation and the Hartree energies. Below, we an-
alyze the PAW expressions for these interaction energies and
show that the most accurate spDFT-HEG approach is obtained
by adding nh to both the soft pseudocharge density ñ(r), and

the onsite charge densities n1(r) and ñ1(r). We refer to this
approach as the all-electron spDFT-HEG (AE-spDFT-HEG).

1. Exchange-correlation free energy

Following Kresse and Joubert [70], the PAW XC free en-
ergy within spDFT-HEG must be written as

Fxc[ñ + n̂ + ñc + nh] + Fxc[n1 + nc + nh]

−Fxc[ñ1 + n̂ + ñc + nh], (98)

where n̂ is the compensation charge that brings the multipole
moments of the onsite pseudocharge density ñ1

A to match
that of the all-electron charge density n1

A, and nc and ñc are
the frozen all-electron and the partial core charge densities,
respectively. Neither of the quantities n̂, nc, or ñc are affected
by the spectral partitioning. The bars extending over the sec-
ond and the third terms above denote spatial integration over
atomic augmentation spheres alone. It is clear that the con-
tribution to the exchange-correlation energy in the interstitial
regions between the atomic augmentation spheres is described
by the first term in Eq. (98), while within the spheres, it is the
second term that determines the exchange-correlation energy
with the first and third canceling. Due to the nonlinearity of
the exchange-correlation functional, it is thus important that
all three terms in Eq. (98) incorporate the constant charge
density nh from the high-energy spectral region.

2. Hartree energy

To derive the correct expression for the Hartree energy, we
start by the total charge density nT including the ions, the core,
and the valence electrons. Following Kresse and Joubert, it is
decomposed into three terms,

nT = ñT + n1
T − ñ1

T , (99)

with

ñT = ñ + n̂ + ñZc + nh, (100)

n1
T = n1 + nZc + nh, (101)

ñ1
T = ñ1 + n̂1 + ñZc + nh. (102)

Above nZc is the combined charge density of the ions and
core electrons, and ñZc is a smooth charge distribution that
coincides with nZc outside the atomic core radius and have the
same moment as nZc inside the atomic core region. With these
definitions at hand, the Hartree energy can be written [70]

1
2 (nT )(nT ) = 1

2 (ñT )(ñT ) + (
n1

T − ñ1
T

)
ñT

+ (
n1

T − ñ1
T

)(
n1

T − ñ1
T

)
, (103)

where we have adopted the notation from [70]

(a)(b) =
∫

a(r)b(r′)
|r − r′| drdr′. (104)

It is important to note that the n1
T − ñ1

T is only nonzero
inside the atomic augmentation spheres and has vanishing
multipole moments due to the compensation charge n̂, and
therefore the electrostatic integrals in the second and third
terms on the right-hand side of Eq. (103) have no contribution
from outside the atomic augmentation sphere. As a result,
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Eq. (103) can be approximated by

1
2 (nT )(nT ) = 1

2 (ñT )(ñT ) + (
n1

T − ñ1
T

)
ñ1

T

+ (
n1

T − ñ1
T

)(
n1

T − ñ1
T

)
, (105)

where the bar extending over the second and the third terms
denote the electrostatic integral only extends within the atomic
augmentation spheres. Note that the factor ñT in the second
term has been replaced by ñ1

T . This approximation has van-
ishing error whenever the partial wave expansion within the
atomic augmentation spheres is complete. It also requires ñ1

T
to include contribution from spectral-partitioned charges nh,
and thus be defined as in Eq. (102). Furthermore, since ñ1

T
and n1

T must have same moments, the latter must also include
nh as defined in Eq. (101).

Starting from Eq. (105) and reordering terms following
Ref. [70], the electrostatic electron-electron and electron-ion
interaction energy can be reformulated as follows:

1

2
(ñ + nh + n̂)(ñA + nh + n̂)

+1

2
(n1 + nh)(n1 + nh) + (nZc)(n1 + nh)

−1

2
(ñ1 + n̂ + nh)(ñ1 + n̂ + nh)

+
∫

Vloc(r)(ñ(r) + n̂(r) + nh) dr

−
∫

ωa

Vloc(r)(ñ1(r) + n̂(r) + nh) dr. (106)

The quantity nZc is the total ion and core charge density
including the nuclear charge, and Vloc(r) is a local pseudopo-
tential that outside of a core radius must be equal to the
electrostatic potential from the ion and core charge nZc. ωa

signifies that integration is confined to within atomic augmen-
tation spheres.

3. Hamiltonian, forces, and stresses

From the preceding discussion, we can conclude that the
form of the PAW total-energy functional is preserved under
spectral partitioning within the spDFT-HEG scheme. This
implies that the expression for the energy eigenvalues of the
low-energy subspace εl

kn in Eq. (44) also remain unchanged.
Care must be taken to incorporate the HEG density nh into the
SP-charge density.

As for the high-energy subspace, the energy eigenvalues
εh

kn can be obtained by functional differentiation of the kinetic
energy, exchange-correlation, and Hartree energies with re-
spect to the occupations P±

k,G, see Eq. (45). In the following,
we detail the expressions for both of AE-spDFT-HEG and PC-
spDFT-HEG approaches. Starting with the AE-spDFT-HEG
method, we have

εh
kn =

∑
k+G

(k + G)2

2
+ U AE

0 , (107)

where U AE
0 can be derived by differenting Eqs. (98) and (106),

leading to the following expression

U AE
0 � =

∫
Vxc[ñ + nh + n̂ + ñc] dr

+
∫

ωa

Vxc[n1 + nh + nc]dr

−
∫

ωa

Vxc[ñ + nh + n̂ + ñc] dr

+
∫

ωa

VH [n1 + nh + nZc] − VH [ñ1 + nh + n̂] dr

−
∫

ωa

Vloc(r) dr, (108)

where Vxc[n] is the exchange-correlation potential, VH [n] is
the Hartree potential, and ωa signifies that integration is con-
fined to within the atomic augmentation spheres. Note that
we have dropped the contribution to U AE

0 from the fifth term
in Eq. (106), because by convention [2], the electron energy
spectrum in standard codes is shifted by the unit-cell average
of Vloc.

Within the PC-spDFT-HEG method, the expression for the
alignment potential significantly simplifies

εh
kn =

∑
k+G

(k + G)2

2
+ U PC

0 , (109)

U PC
0 � =

∫
Vxc[ñ + nh + n̂ + ñc] dr. (110)

We now have all the ingredients for implementing the
spDFT-HEG total free energy functional Eq. (43), in an ex-
isting PAW code. It is interesting to insert, e.g., Eq. (107), and
Eq. (81) into Eq. (36). Summing all the terms yields

Ĥh = − 1
2∇2 + U AE

0 . (111)

Hence, without any assumptions, we have rigorously recon-
structed the HEG Hamiltonian for the high-energy partition
with the alignment potential U AE

0 derived variationally with-
out ever treating it explicitly as a variational degree of
freedom.

We now proceed with derivation of forces and stresses
[71,72]. It was shown in Sec. II E that in general the ex-
pression for forces can be decomposed into contributions
from separate spectral regions, see Eq. (76). Also, it was
concluded earlier in this section, after examining Eq. (77)
that there are no additional terms associated with spDFT-HEG
in the expression for forces. In contrast, we show below that
there are explicit contributions to stresses. Nevertheless, since
the PAW total-energy expression is preserved under both PC-
spDFT-HEG and AE-spDFT-HEG approaches, the standard
expressions for stress within the PAW scheme remain valid.
However, additional terms must be included: (i) a contribution
from the kinetic energy of the HEG subspace to stress within
both PC-spDFT-HEG and AE-spDFT-HEG approaches and
(ii) contributions to AE-spDFT-HEG stress due to incorpo-
ration of nh into the integrals of the onsite charge densities n1

and ñ1.
In the following, we derive these excess pressure terms,

which we denote by 
PAE
gas and 
PPC

gas . It should be noted
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that due to the uniformity of the HEG, it can only contribute
explicitly to hydrostatic pressure. For clarity, we split the
expressions into several terms,


PAE
gas = 
Pkin

gas + 
Pxc
gas + 
PH

gas, (112)


PPC
gas = 
Pkin

gas . (113)

It is now straightforward to derive the different terms from the
energy expressions above:


Pkin
gas =

∑
k,G

(P+
k+G − P−

k+G)
|k + G|2

3
, (114)


Pxc
gas = nh

∫
ωa

Vxc[n1 + nh + nc] dr

− nh
∫

ωa

Vxc[ñ1 + nh + n̂ + ñc] dr, (115)


PH
gas = nh

∫
ωa

VH [n1 + nh + nZc] dr

− nh
∫

ωa

( VH [ñ1 + nh + n̂] + Vloc(r)) dr. (116)

All the pieces are now in place for implementation of
spDFT-HEG within a PAW code, so long as the SP-entropy
function discussed in Sec. II is also carefully incorporated.
We will discuss in Sec. V that for standard PAW potentials,
the partial-wave expansion within the atomic augmentation
spheres can become insufficiently complete at high temper-
atures. It is important to note that AE-spDFT-HEG (but not
PC-spDFT-HEG) can alleviate this problem as the partial-
wave basis set within the atomic spheres only needs to be
complete for electron orbitals in the low-energy spectral re-
gion. Of course, the quality of the ansatz for the DM at
high energies is crucial for the overal accuracy of the spDFT
technique.

B. spDFT-HEG in the NCPP method

Separable norm-conserving pseudopotentials offer a rela-
tively simple, accurate, and efficient formalism for removing
core electrons from calculations. They replace the frozen-
core all-electron Hamiltonian with an effective pseudo-
Hamiltonian involving only pseudized valence electrons
whose interaction with the nuclei and core electrons is de-
scribed via a nonlocal pseudopotential. By far, the most
popular representation for the nonlocal pseudopotential is the
separable form, first proposed by Kleinman and Bylander
[73]. This form is derived below, where for simplicity of nota-
tion, we consider a periodic unit cell of volume � containing
Nat atoms of only one specie. Generalization to several species
is straightforward.

Vie(r, r′) =
∑

R

Vloc(rR)δ(r − r′) +
∑
i,l,k

clk p̃lk (r′
R) p̃lk (rR)

×
∑

m

Ylm(r̂′
R )Y ∗

lm(r̂R ), (117)

where rR = r − R with R denoting nuclear positions, the
projectors p̃lk are radial functions localized within the atomic
spheres, and the coefficients clk are constants. The l index

enumerates the angular momentum channels, and the k index
enumerates the number of nonlocal projectors per l channel.
The local potential Vloc is also spherically symmetric and
consists of two parts,

Vloc(rR) = −Zval

rR
+ V nc

loc(rR), (118)

where Zval is the pseudoatom valence charge and the second
term is localized within each atomic sphere. Equation (117)
does have the same structure as Eq. (13).

Inserting Eq. (82) into Eq. (45) with the KS Hamiltonian
defined according to Eqs. (20) and (117), the following ex-
pression for the energy eigenvalues of the HEG is obtained

εh
k+G = (k + G)2

2
+ 1

�

∫
Vxc(r) dr + V FT

NL (|k + G|),
(119)

where

V FT
NL (q) = Nat

�

∑
lk

2l + 1

4π

∣∣ p̃FT
lk (q)

∣∣2
, (120)

with

p̃FT
lk (q) =

∫
p̃lk (r) jl (qr) 4πr2 dr, (121)

where jl (qr) is the lth spherical Bessel function and V FT
NL (q)

depends only on the magnitude of the planewave vector q.
Note that in Eq. (119), we have dropped the contribution from
the non-Coulombic part of the local pseudopotential V nc

loc to εh
q,

since by convention [2], the eigenvalue spectrum in standard
codes is shifted in such a way as to exclude it.

We now have all the ingredients for implementing the
spDFT-HEG total free energy functional Eq. (43), in an ex-
isting NCPP code. Inserting Eqs. (81) and (119) into Eq. (36),
the effective Hamiltonian in the high-energy spectral region
Ĥh can be expressed as

Ĥh = − 1
2∇2 + U h

0 + U h
1 (|r − r′|), (122)

with

U h
0 = 1

�

∫
Vxc(r) dr, (123)

U h
1 (r) = 1

�

∫
V FT

NL (q) j0(qr) 4πq2 dq. (124)

It is noteworthy that the expression for Ĥh in Eq. (122),
containing the nonlocal potential U h

1 is more general than the
intuitive ansatz [see Eq. (29)] made in previous publications
[33,34]. In fact in their original paper, Zhang et al. [33]
note that nonlocal pseudopotentials at high energies cause
an energy-dependent contribution to the potential energy,
which leads to a small error if neglected. While this error
is indeed small, the inclusion of Eq. (122) in its entirety is
necessary for a full variational treatment. Furthermore, its in-
corporation introduces insignificant computational overhead.
Finally, it should be emphasized that the Hamiltonian for the
high-energy partition Eq. (122), has been derived rigorously
without any presumptions other than the variational principle.

Let us now proceed to discuss forces and stresses. It was
shown in Sec. II E that in general the expression for forces
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can be decomposed into separate spectral contributions, see
Eq. (76), and after examining Eq. (77), it is straightforward
to conclude that the contribution to forces from spDFT-HEG
vanishes. In contrast, there are finite contributions to stresses.
These arise from the kinetic energy, as well as the nonlocal
pseudooptential VNL terms. In the following, we derive ex-
pressions for the excess pressure 
Pgas originating from these
additional contributions. Hence, we have


Pgas = 
Pkin
gas + 
PNL

gas . (125)

The first term on the right-hand side has already been defined
in Eq. (114). The second term simply follows


PNL
gas = 1

�

∑
k,G

(P+
k+G − P+

k+G)V FT
NL (|k + G|), (126)

with V FT
NL (q) defined in Eq. (120). It is now straightforward to

implement spDFT-HEG within the NCPP framework as long
as the SP-entropy function discussed in Sec. II is also carefully
incorporated.

V. APPLICATION TO WARM- AND HOT-DENSE MATTER

In this section, we discuss electronic structure calculations
in the warm- and hot-dense regimes using spDFT-HEG. We
will focus on how the new variational formulation allows in-
ternally consistent free energies, forces, and stresses, while at
the same time enables efficient approach to self-consistency.
We will compare free energies obtained from the variational
formulation Eq. (46) with those calculated based on expres-
sions in the literature using the FD entropy [33,34], and
discuss the consequences of inconsistency of the latter with
analytic forces and stresses. We will also demonstrate that
with increasing electron temperature, fewer variational KS
bands are necessary to reach a given accuracy, contrary to
previous findings for the ext-FPMD method [33–35]. This
bodes well for the usefulness of the spDFT-HEG method for
applications to high-temperature plasma. We conclude with
an in-depth discussion of the accuracy of the pseudopotential
formalism in general and the PAW method in particular at
extreme temperatures. We will demonstrate that careful imple-
mentation of the spDFT-HEG method as outlined in Sec. IV A
can correct some of the deficiencies of the PAW technique at
plasma conditions.

The calculations presented in this section have been
conducted using the VASP code [68], with additional imple-
mentations for the spDFT-HEG method as described above.
Two systems, H and Be, are studied at elevated temperatures
with all electrons present, i.e., 1 per atom for H, and 4 per
atom for Be. All calculations were performed in unit cells
containing a single atom using an 8 × 8 × 8 k-point mesh
for BZ integrations, and a 2000 eV planewave cutoff for
H and 3000 eV for Be. The PBE parametrization [53,54]
of the generalized-gradient approximation to the exchange-
correlation potentials was used throughout. As our purpose in
this work is only to demonstrate the capabilities offered by
the variational spDFT technique, we focus on just two lattice
structures and densities, one for each of the two elements.
We study hydrogen in a simple cubic crystal structure at a
low density corresponding to a specific volume of 8 Å3/atom,

and beryllium in a face-centered cubic (fcc) lattice at a rela-
tively high density corresponding to a specific volume of 5.61
Å3/atom.

The most important parameter that controls the computa-
tional cost and accuracy of spDFT-HEG calculations is the
number of variational KS bands that are included. Hence,
convergence of the calculations should be primarily investi-
gated as a function of this number. Furthermore, it is desirable
to devise a universal parameter that can be used to conduct
comparative studies of the convergence of the spDFT-HEG
calculations for systems with distinct chemical compositions
and lattice structures. For this purpose, we introduce here Nκ

defined as the number of variational KS bands per electron in-
cluded in an spDFT-HEG calculation. All convergence studies
in the following sections will be plotted against Nκ .

Finally, an important technical note should be made on the
particular implementations of the spDFT-HEG within PAW
that have been used below. For all of the convergence studies
conducted in sections A through C below, the PC-spDFT-
HEG approach is utilized. While this formulation is not as
accurate as AE-spDFT-HEG, it is more suitable for conver-
gence studies as the PC-spDFT-HEG method augments only
the soft pseudocharge density ñ(r) with the constant charge
density nh from the high-energy subspace. Since the latter
can be represented with arbitrary accuracy within PAW, the
convergence error of the PC-spDFT-HEG can be entirely
associated with the inaccuracy of the HEG to represent the
high-energy portion of the DM. Consequently, by examining
the convergence of calculated pressures and free energies
within PC-spDFT-HEG in sections A through C below, we can
assess the efficacy of the spDFT-HEG technique in general.
The AE-spDFT-HEG method, however, also augments the
onsite charge densities n1(r) and ñ1(r) with the HEG charge
density nh. However, in contrast to the soft pseudocharge
density ñ(r), the onsite charge densities are expanded by only
a few partial waves within each atomic sphere. While this
expansion is nearly complete for wave functions in the low-
energy spectral region, it becomes exceedingly inaccurate for
the high-energy electron orbitals, while the HEG approxima-
tion becomes more accurate. Hence, we expect that at very
high temperatures, the AE-spDFT-HEG in fact provides cor-
rection to the incompleteness of the partial-wave expansions
of the onsite charge densities. We study this issue in detail in
Sec. V D.

A. Convergence of pressure

Figure 3(a) shows the relative errors in calculated pres-
sures of the H lattice at T = 100 eV, and Be lattice at T =
200 eV, as a function of Nκ computed via the standard un-
partitioned technique. In contrast, Fig. 3(b) shows the relative
errors in pressures computed via the spDFT-HEG technique.
The spDFT-HEG calculations are conducted using a broaden-
ing width τs = 0.2 eV. Figure 3(b) demonstrates that when
spDFT-HEG is used to account for thermal occupations at
high spectral energies, the calculated pressures are improved
by an order of magnitude as compared to the standard un-
partitioned calculations depicted in Fig. 3(a). As a result, in
the warm-dense regime, the computational cost of the calcu-
lations can be brought down significantly.
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FIG. 3. Errors in calculated pressures of the H lattice at T =
100 eV and the Be lattice at T = 200 eV, as a function of the
number of KS bands per electron Nκ . Panel (a) shows the results
of standard unpartitioned calculations. Panel (b) shows the results
of spDFT-HEG calculations. Note that for a given Nκ , the relative
error in pressure computed by the spDFT-HEG method is an order
magnitude smaller than that computed by the standard unpartitioned
KS method.

Note that the electron specific volume (volume per elec-
tron) of the Be lattice in this study is 1.4 Å3, which is
almost six times smaller than that of the H lattice of 8 Å3.
Examining Fig. 3(b), we find that the relative error in the
calculated pressure of Be via the spDFT-HEG method is
clearly much higher than for H. This indicates that higher
densities require a larger number of KS bands per electron
to reach a given accuracy. Nevertheless, the relative error of
the spDFT-HEG method for Be never exceeds 1% even for
Nκ = 2.5.

The temperature dependence of the relative error in calcu-
lated pressure of the Be lattice using spDFT-HEG is shown
in Fig. 4. It can be seen that between temperatures 100 and
1000 eV, the percentage error in pressure may be reduced
by as much as four times. This result will be further vali-
dated in Sec. V C, where the variational (with SP-entropy)

FIG. 4. Percentage error in calculated pressure of the Be lattice at
several electron temperatures, using PC-spDFT-HEG at high spectral
energies, as a function of Nκ . The calculations use smooth spectral
splitting with τs = 0.2 eV.

and nonvariational (with FD-entropy) electronic free-energies
as well as their convergences with Nκ are compared. It will
be demonstrated that, for a given Nκ , the free-energy error
in units of thermal energy is smaller at higher temperatures,
contrary to recent findings in the context of the ext-FPMD
method [34–36]. This demonstrates the practical value of the
rigor and consistency provided by the spDFT framework.

In conclusion, while the relative error in the calculations of
pressure using spDFT-HEG diminish markedly with increas-
ing temperature, higher densities require more KS bands to
reach a given level of accuracy.

B. spDFT-HEG with sharp versus smooth spectral splitting

In this section, we examine the relation between broad-
ening width τs of the spectral splitting function, defined in
Eq. (32), and convergence of pressure with respect to Nκ com-
puted within the spDFT-HEG method. We conduct a series
of calculations of pressure in the Be lattice at a temperature
T = 300 eV, varying Nκ from 2.5 to 450, and the broadening
widths τs from 0.0 to 3.0 eV. The zero-broadening or sharp
spectral splitting case has been included to compare the varia-
tional spDFT-HEG technique introduced in this paper, with
the ext-FPMD method in the literature [33,34]. The latter
treats the shift from variational KS subspace to the HEG
subspace as a sharp transition, and tacitly assumes the FD
entropy applies to this situation. Certainly it does not make
any sense to apply the FD entropy function to any spectral
splitting of the DM other than the infinitely sharp one, i.e.,
when τs = 0. The reason for this is that the FD entropy SFD,
for its definition in Eq. (24), requires a diagonal representation
of the DM. Hence, if a DM D is written as a sum of two
functions D = D1 + D2, then the FD entropy associated with
D cannot in general be decomposed into its parts, and thus

SFD(D) �= SFD(D1) + SFD(D2), (127)

unless D1 and D2 operate in mutually orthogonal spectral
regions. Hence, smooth transitions between subspaces as in
Eq. (32) require generalization beyond the FD-entropy, i.e.,
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FIG. 5. Calculated pressure at T = 300 eV as a function of Nκ .
The different curves represent calculations with different broadening
parameters τs. Panels (a) and (b) show convergence of pressure for
two separate ranges of Nκ : (a) Nκ � 50 and (b) Nκ � 50.

the SP-entropy. However, it is important to note that in
nontrivial real-world applications, such as spDFT-HEG, the
two subspaces on which DKS and DHEG are defined will not
be strictly orthogonal and thus no matter how one splits D,
SFD(D) �= SFD(DKS) + SFD(DHEG). Nevertheless, Eq. (127)
has been used sotto voce in the literature. As we will show,
this leads to nonvariational free energies that are inconsistent
with analytic stresses and forces.

Figures 5(a) and 5(b) show the convergence of calculated
pressures of the Be lattice with respect to Nκ , for several
broadening widths τs. It can clearly be seen that smaller τs

are preferred if one is content with accuracies on the order of a
quarter of a percent, requiring Nκ < 20. However, for an order
of magnitude smaller errors, which require Nκ > 50, larger τs

are more optimal. There are also two curves corresponding
to the zero-broadening case: One marked by τs = 0− tracks
quite closely the curve depicting pressure convergence for
τs = 0.01 eV, while the other marked by τs = 0+ consistently
exhibits larger errors than all other curves. The difference
between these calculations is that in the case of τs = 0−, the
sharp spectral split occurs for each k-point of the BZ, at an

energy infinitesimally smaller than the energy eigenvalue of
the topmost KS band at that k-point, which as a result is left
unoccupied. In contrast, in the case of τs = 0+, the spectral
splitting energy at each k-point in the BZ is infinitesimally
larger than the energy eigenvalue of the topmost band at that
k-point, which as a consequence is occupied according to the
FD distribution. This latter case can be considered the closest
to the most recent implementations of the ext-FPMD [34].

Finally, it should also be noted that we have observed
slower approach to self-consistency at very small broadening
widths τs � 0.2 eV. In the next section, we discuss examples
of situations when self-consistency can become almost im-
possible to achieve for τs � 0.2 eV. However, we find that
broadening the spectral splitting always facilitates conver-
gence to self-consistency. For the systems and temperatures
in this study, we have found that for broadening widths of
τs � 0.1 eV, self-consistency is reached without fail.

C. Convergence and consistency of the variational free energy

In this section we examine the variational spDFT-HEG
free energy �SP defined in Eq. (46), and its convergence with
respect to Nκ , as well as its consistency with the analytic pres-
sure expression derived in Sec. IV A. We will compare with
a nonvariational formulation, which replaces the SP-entropy
Eq. (58) by the FD-entropy function in Eq. (43). Figure 6(a)
depicts the convergence with respect to Nκ of �SP in units
of thermal energy per atom for the Be lattice at temperatures
ranging from 100 to 1000 eV. These calculations were con-
ducted using a broadening width τs = 0.2 eV. Note that the
variational spDFT free energy error is always positive, which
is a manifestation of Theorem II proved in Sec. II D. It states
that �SP is an upper bound to the exact free energy. In contrast,
Fig. 6(b) shows the deviation of nonvariational spDFT free
energies from the exact value. These calculations employ a
sharp spectral splitting with τs = 0, and use the FD-entropy
function in the expression for the electronic free-energy. As a
consequence, the nonvariational spDFT free energies are not
upper bounds to the exact value.

Closer examination of Fig. 6(a) reveals that the conver-
gence error in the variational free energy �SP decreases
exponentially with increasing Nκ . It is also clear that the
magnitudes of the free energy errors relative to the thermal
energies shrink with increasing temperature. For Nκ = 2.5,
the variational-spDFT free-energy error is nearly 11% of the
thermal energy at T = 100 eV, but shrinks to only 0.2% at
T = 1000 eV. We can therefore conclude that, in agreement
with Sec. V A, variational spDFT requires fewer KS eigen-
states to reach a given accuracy, the higher the temperature.

We close this section by examining the consistency be-
tween variational spDFT free energy Eq. (46) and analytic
pressure expressions Eqs. (112) and (113). This is shown
in Fig. 7(a), where pressure versus Nκ for the H lattice at
T = 100 eV is calculated in three different ways: (a1) finite
differences of the variational spDFT free energies �SP with
respect to volume change, (a2) direct calculations of pressure
using the analytic expression in Eq. (113), and (a3) finite
differences of nonvariational free energies that use the stan-
dard FD-entropy instead of the SP-entropy. Methods (a1) and
(a2) use a smooth spectral splitting with broadening width
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FIG. 6. Deviation in units of thermal energy per atom from the
reference value of (a) the variational free energy of the Be lattice
using the SP-entropy, and (b) the nonvariational free energy of the
Be lattice using the FD-entropy, as a function of Nκ .

τs = 0.2 eV, while method (a3) uses a sharp spectral splitting
with τs = 0. The latter approach is similar to the extended
free-energy technique in [34]. Figure 7(a) clearly illustrates
that methods (a1) and (a2) produce nearly indistinguishable
results, while method (a3) deviates strongly from the others.
To further analyze this issue, we also conducted a comparative
study of the above three methods for pressures in the Be lattice
at several temperatures. Again, we find the methods (a1) and
(a2) nearly indistinguishable, while the finite-difference errors
of method (a3) are even larger than in the case of the H lattice
shown in Fig. 7(a).

It is important to note that when performing finite dif-
ferences of the spDFT free energies, care must be taken
to adhere to the constant-χ convention, see Sec. III B. It
requires keeping the splitting energies χk the same for all
ionic displacements. It should be borne in mind that χk are
measured relative to the Fermi level. The latter must be de-
termined self-consistently for each new ionic configuration.
As a result, the absolute values of the splitting energies must
be adjusted concurrently. It needs to be pointed out that

FIG. 7. Comparison between pressure calculated by finite differ-
ences of free energies with respect to volume change, versus analytic
derivatives. (a) Comparing two finite difference schemes, one using
variational and the other nonvariational free energy expressions. The
three methods (a1)–(a3) are desribed in the text. (b) Comparing two
finite difference schemes, one using the constant-χ convention for
the splitting energies at different ionic configurations, and the other
using splitting energies selected from Eq. (78), independently for
each ionic configuration. The three methods (b1)–(b3) are described
in the text.

applying sharp spectral splitting with τs = 0 affects the ap-
proach to self-consistency. While this approach is somewhat
slowed when the splitting energies are self-consistently deter-
mined according to Eq. (78), it stalls completely when χk are
kept consistent with the values at another ionic configuration.
In fact, the pressure calculations reported for the H lattice in
Fig. 7(a) could not use the algorithm outlined in Sec. III A
for the choice of χk because the finite-difference calcula-
tions would not converge in the constant-χ mode for τs = 0.
Instead, the calculations were conducted by selecting a sin-
gle k-independent splitting energy, which must be kept fixed
throughout finite ionic displacements. Increasing the splitting
energy corresponds to increasing the number of variational
KS bands Nκ . The latter is not known beforehand. Rather

045204-18



SPECTRAL-PARTITIONED KOHN-SHAM DENSITY … PHYSICAL REVIEW E 108, 045204 (2023)

it is evaluated at self-consistency by tallying the number of
occupied KS bands. It should be pointed out that for sharp
spectral splitting with τs = 0, even this simpler approach may
fail to reach self-consistency. We thus conclude that smooth
spectral splitting is necessary for robust and reliably conver-
gent calculations.

To quantify the significance of the constant-χ convention
for keeping calculations along an ionic trajectory consistent,
we compare in Fig. 7(b) three methods for computing the
pressure of the Be lattice in this study at temperatures ranging
from 100 to 1000 eV: (b1) finite differences of the varia-
tional free energy �SP with respect to volume change, using
the constant-χ convention for the splitting energies of the
displaced configurations, (b2) direct calculations of pressure
using the analytic expression in Eq. (113), and (b3) finite
differences of the variational free energy �SP with respect to
volume change, with the splitting energies determined inde-
pendently for each volume using Eq. (78). All calculations
apply a smooth spectral splitting with the broadening width
τs = 0.2 eV. Figure 7(b) illustrates clearly that the methods
(b1) and (b2) yield indistinguishable results, while method
(b3) deviates from the other two for smaller Nκ .

While it is important to understand the errors intro-
duced by independent applications of Eq. (78) to different
ionic configurations, one should also be cognizant that for,
e.g., thermostatted molecular-dynamics simulations, the er-
rors introduced by method (b2) may become negligible upon
averaging. Also, as described in Sec. III B, constant-χ is only
one of many techniques that can be used to achieve inter-
nal consistency between calculations involving different ionic
configurations. We leave further investigation of these issues
for future work.

D. Incompleteness of the PAW basis set at high temperatures
and correction by spDFT

In Sec. IV A, we elaborated on how to best incorporate
spDFT-HEG in the PAW context and developed the two
approaches PC-spDFT-HEG and AE-spDFT-HEG, with the
former being easier to implement but yielding less accurate
PAW total free energies. Thus far, we have only presented
calculations using the simpler PC-spDFT-HEG scheme, as it
allows for a rigorous convergence study of the spDFT-HEG
technique itself in the context of the PAW methodology. In this
section, we present calculations within the AE-spDFT-HEG
approach, which is always more accurate than the PC-spDFT-
HEG method and no more computationally costly. The main
reason we have not adopted it before is that AE-spDFT-HEG
corrects some of the shortcomings of the PAW method itself,
and hence it mixes errors of the spDFT-HEG method with
those of the PAW. We thus now examine the corrections
afforded by the AE-spDFT-HEG approach to the PC-spDFT-
HEG results, which sheds light on the accuracy of standard
PAW parametrizations for calculations at elevated electron
temperatures.

The derivation of the PAW scheme relies on the com-
pleteness of the partial-wave expansion within the atomic
augmentation spheres. However, for, e.g., PAW parametriza-
tions used in the popular VASP program package [68], at
most two projectors per angular-momentum channel are used

FIG. 8. (a) All-electron PAW charge in one augmentation sphere
of fcc Be as a function of electron temperature. For comparison, the
expected charge content of the augmentation sphere for a completely
homogeneous charge distribution is also shown. (b) Breakdown
of the total charge within each Be-atom augmentation sphere at
2 MK temperature into contributions from band occupations below
the splitting energy and from free-electron occupations above the
splitting energy.

for partial-wave expansion of the wave functions near the
nuclei. It is well-known that too many nonlocal projectors
can cause ghost states. This limits the ability of thus con-
structed PAW basis sets to represent high-energy eigenstates,
which become partially occupied at high electron tempera-
tures. This is illustrated in Fig. 8(a), where the total charge as a
function of electron temperature within one Be augmentation
sphere in the fcc lattice is depicted. One normally expects
an inhomogeneous charge distribution in materials with most
charge concentrating near the nuclei. As temperature rises the
charge distribution slowly homogenizes. However, as can be
observed in Fig. 8(a), the total charge within one Be sphere
drops dramatically as temperature is increased, and at a tem-
perature of about 2 MK, it is reduced to only 30% of an
equivalent homogeneous charge distribution. This can only be
explained by the fact that overlap between the PAW nonlocal
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FIG. 9. AE-spDFT-HEG corrections to (a) pressures and (b) free
energies of the Be lattice calculated via PC-spDFT-HEG.

projectors and the partially occupied highly excited orbitals
become vanishingly small; or in other words, the PAW partial
wave expansion within the Be atomic augmentation spheres
becomes exceedingly incomplete. This has also been ob-
served in conjunction with GW calculations within the PAW
framework [74].

Figure 8(b) illustrates the effect of spDFT-HEG on the
charge content of the atomic augmentation spheres in Be.
It is clearly shown that the deficiency of the PAW projec-
tors for highly excited orbitals can be corrected in this way.
However, representation of the high-energy orbitals by single
planewaves does introduce other errors. Of course, as we have
shown in this paper, spDFT is in no way limited to the HEG.
Its strength is in its flexibility to employ the most appropriate
ansatz for each spectral energy interval. The real message of
Fig. 8 is that projector expansions are only valid within a
finite spectral range, and outside of this range, they need to
be corrected through spectral partitioning.

Finally, we examine the corrections introduced by the
AE-spDFT-HEG to the PC-spDFT-HEG of the PAW free-
energy functional with the HEG at high spectral energies.
Figures 9(a) and 9(b) exhibit the differences in calculated
pressures and free energies between the two spDFT-HEG
approaches for the Be lattice at several temperatures ranging

from 100 to 1000 eV. They show clearly that the correction
magnitudes to both pressure and free energy increase when
Nκ is reduced. The relative improvements in pressure are
quite mild, at most about 0.1% at the highest temperature
T = 1000 eV, and increase to about 0.25% as temperature is
lowered to T = 100 eV. The free-energy corrections by the
AE-spDFT-HEG method are such that the AE-spDFT-HEG
free energies do not monotonically increase with decreasing
Nκ . In fact, especially at higher temperatures, the AE-spDFT-
HEG free energies can be lower than fully variational PAW
calculations, which is a manifestation of the incompleteness
of the standard two projectors per angular-momentum chan-
nel expansions of the occupied electron orbitals within the
augmentation spheres at high spectral energies.

In conclusion, use of the AE-spDFT-HEG framework in
the PAW method with the HEG at high energies offers not only
an accurate approximation at very low computational cost to
fully variational PAW calculations of the high-temperature
plasma, but also provides corrections for the incompleteness
of the PAW basis set within the atomic augmentation spheres
at these extreme conditions.

VI. CONCLUDING REMARKS

In this paper, we have introduced the concept of spectral
partitioning of the DM in KS theory, a technique that allows
for decomposition of a DM into parts, each of which spe-
cialized to describe a particular spectral domain. We have
shown that given a spectral partition of unity, a variational
spDFT free energy can be derived together with an entropy
function associated with the chosen spectral partition. It is
proven that the variational spDFT free energy is an upper
bound to the exact (unpartitioned) KS-DFT free energy for
the unpartitioned DM.

The spDFT framework developed in the present work
has been motivated by problems that plague calculations
of equations of state of warm- and hot-dense matter. Con-
sequently, the derivations have been within the context of
finite-temperature DFT, and the Hilbert space has been de-
composed into two parts: A low-energy subspace spanned
by eigenfunctions of the self-consistent KS Hamiltonian and
a high-energy subspace spanned by orthogonal functions of
known form, e.g., planewaves.

However, the spDFT framwork is quite general. It can be
developed as well for generalized KS theories, such as hybrid
functionals [56–61]. It can also be applied to ensemble-DFT
functionals other than the Mermin functional, such as, e.g.,
one leading to Gaussian smearing of electronic occupations.
Furthermore, the number of spectral intervals are not limited
to two, and the variational degrees of freedom of the DM
expansions in different spectral domains can be freely chosen.
Hence, spectral-partitioning frameworks with arbitrary com-
plexities can be formulated for application to matter in a wide
range of conditions, from condensed matter to plasma.
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APPENDIX: NUMERICAL PROCEDURE
FOR CALCULATING Sη

k FUNCTIONS

Equation (52) provides a convenient numerical pathway to
generate the derivative of the entropy with respect to occu-
pation numbers Ṡη

k . This equation is solved independently for
each k-point. In this Appendix, we show a simple numerical
procedure for solving it. For brevity, we drop the k-indices,
and focus on the following equation for S(x):

x = 1

[1 + exp(Ṡ(x))][1 + B exp(AṠ(x))]
, (A1)

where A and B are constants. Bear in mind that for the appli-
cations discussed in this paper, A � 1 and B << 1. The range
of x is in the interval [0,1], while the range of the derivative
Ṡ(x) is unbounded, i.e., in the interval [−∞,∞]. It is easy to
deduce from Eq. (A1)

lim
x→0

Ṡ(x) → ∞, (A2)

lim
x→1

Ṡ(x) → −∞. (A3)

Taking into account that A � 1, then for x → 1, the second
factor in the denominator of Eq. (A1) approaches unity, and
as a result, we have

lim
x→1

Ṡ(x) = log

∣∣∣∣1

x
− 1

∣∣∣∣, (A4)

which is the same as Eq. (23) for the FD distribution. In the
opposite limit, for x → 0,

lim
x→0

Ṡ(x) → − ln |Bx|
1 + A

. (A5)

Integrating the above equation, one can evaluate the en-
tropy function in the vicinity of zero occupations,

lim
x→0

S(x) =
∫ x

0
Ṡ(x′) dx′ → x

1 + A
[− ln |Bx| + 1]. (A6)

All the parts are now in place for a complete algorithm for
calculation of the function S(x) defined in Eq. (A1). We start
by choosing a small number ε, such that ε � 1, which we use
to determine the bounds of a closed interval for Ṡ through the
conditions ε � B exp(AṠ) � 1

ε
. As a result, the two bounds

for this interval can be determined to be

Ṡmin = 1

A
ln

∣∣∣ ε

B

∣∣∣, (A7)

Ṡmax = − 1

A
ln |ε B|. (A8)

Now, generate a uniform mesh of Ṡ values in the range
[Ṡmin, Ṡmax] that contains N elements. Next, calculate for each
Ṡi in this set, its corresponding occupation xi using Eq. (A1).
Let us call x1 the occupation corresponding to Ṡmin and xN

the occupation corresponding to Ṡmax. The entropy S(x) at
x � x1 can thus be determined from Eq. (A6), while S(x) in
the interval [Ṡmin, Ṡmax] is evaluated by numerical integration.
Finally the entropy at x � xN becomes

S(x � xN ) = S(xN ) − SFD(xN ) + SFD(x), (A9)

where SFD(x) is the FD-entropy defined in Eq. (22).
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