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Hydrodynamic cumulation mechanism caused by quantum shell effects
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The computational and theoretical analysis carried out in this article demonstrates the existence of a nontrivial
mechanism for the compression of a submicron-sized gas bubble formed by a gas of classical ions and a gas
of degenerate electrons. This mechanism fundamentally differs from conventional compression mechanisms.
It is shown that taking into account the quantum effect of a large spatial scale in the distribution of electrons
qualitatively changes the character of cumulative processes. Because of a large-scale electric field caused by
quantum shell effects, the compression process is characterized by the formation of multiple shock waves. The
values of gas temperature and pressure achieved during compression occur higher by two orders of magnitude
as compared with the classical adiabatic regime. The analysis is carried out within the framework of the
following model: the dynamics of the electron subsystem is described by equations of a quantum electron fluid,
while the hydrodynamic approximation is adopted for the ionic subsystem. The large-scale effect is taken into
account by means of effective external field acting on electrons. The theoretical analysis carried out within this
approach clarifies the nature of the cumulative process in the system under consideration; some quantitative
characteristics obtained with numerical simulation are presented. The possibility of experimental observation
of this cumulative mechanism is analyzed. It is suggested that the manifestation of the effect can be observed
during laser compression of a system of submicron targets by measuring the neutron yield.

DOI: 10.1103/PhysRevE.108.045203

I. INTRODUCTION

One of the most promising methods to realize controlled
thermonuclear fusion (CTF) is an inertial confinement fusion
(ICF). This approach is based on the shell deuterium-tritium
(DT) target implosion caused by x-ray radiation in a hohlraum
at the NIF facility (USA) [1–3] and Laser Megajoule (France)
[4], or direct laser irradiation at the Russia megajoule facility
[5,6], or some other sources [7–9]. All of these ways suggest
the classical hydrodynamic compression idea. The ablation
of the outer target’s shell produces several implosive shock
waves that cumulate with the formation of a hot and dense
region (hot spot) in the target center, where thermonuclear
fusion starts. Despite recent record-breaking experiments at
NIF [3] СTF is still far from being successfully implemented.
An optimal target compression regime is one of the key issues
in ICF. Consideration of some nontrivial but often omitted
effects may improve our understanding of the cumulation
process or even help us to propose alternate regimes of cu-
mulation. An example of nontrivial effects is macroscopic
quantum phenomena [10–12], which should be included in
hydrodynamics simulation to find another way to realize CTF.

Previously, in Refs. [13,14], a unique nontrivial manifes-
tation of quantum effects in a spherical mesoscopic system
of degenerate electrons (with a number of electrons Ne ∼
104 − 109) was demonstrated. An unexpected absence of the
simple tendency toward a uniform distribution of the electron
density was found, which was tacitly assumed in the limit of
large Ne. It has been shown that the electron density has a large
spatial scale which is of the order of the system size and is
much larger than another spatial scale—the Fermi wavelength
of the electron gas. This large-scale effect clearly manifests

itself in the appearance of an electric field acting on the
ionic system. The spatial distribution of the potential has an
oscillating behavior with several extrema.

One of the possible manifestations of this effect is a non-
trivial mode of compression of gas bubbles containing a
mixture of a gas of degenerate electrons and a gas of classical
ions, which is fundamentally different from the conventional
gas compression. This circumstance was pointed out in [13].
The spherical symmetry of the system or proximity to it is of
fundamental importance for the appearance of the effect.

Most research in the ICF areas is devoted to the compres-
sion of millimeter-sized targets. However, quantum effects
show up best on submicron scales. Thus, in the present work,
we investigate the hydrodynamic processes occurring during
the compression of a nanoscale gas bubble with the effect of
a large-scale spatially oscillating electric field. We will show
that in such a regime the gas temperature and density in the
hot-spot region is two orders of magnitude higher than without
taking into account quantum effects. This increment can lead
to launching thermonuclear fusion.

This paper is organized as follows. In Sec. I, we provide the
approximate model that describes the hydrodynamics with the
discussed effect. In Sec. II, we present both analytical and nu-
merical investigation of such a system. In the Conclusion, we
also discuss the possibility of the experimental confirmation
of this effect.

II. FORMULATION OF THE MODEL

The common way of describing ICF-target dynamics is
a hydrodynamics approach accounting for some process,
e.g., radiation transfer, thermal conduction, thermonuclear
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reactions, electron-ion interaction, and some other plasma
effects. Here we adopt such an approach for consideration of
a cumulation accounting for the quantum effect that leads to
the emergence of a macroscopic spatial scale in the electron
distribution.

The object to be studied is a submicron-sized hydrogen
bubble formed by a gas of degenerate electrons (εF > 0.1 kT)
and a gas of classical ions. Such conditions can be realized in
the range of pressure values p ∼ 0.1 − 2 TPa and temperature
T < 1 eV.

Under these assumptions, the radius of the bubble R satis-
fies the following inequality:

R

V e
F

� 1

N
1
3 Vi

,

where V e
F is the Fermi velocity of electrons, N is the number

of electrons, and Vi is the ion velocity. This condition provides
instant adjustment of the electronic subsystem to the profile
of the ionic subsystem. That is, each current profile of the
spatial distribution of ions corresponds to a certain spatial
distribution of electrons. The emerging nonzero electric field
acts on the ionic subsystem as a spatially distributed force.
The ionic subsystem is compressing under this force and also
an external force is applied to the outer surface of the bubble.
Since the mean free path of ions is much less than the charac-
teristic size of the system, their motion can be described in the
hydrodynamic approximation taking into account an external
force that depends on the ion concentration.

The problem is studied at a high concentration of particles,
ne = 1024 cm−3, or more so that the hydrogen atoms (to be
considered) are so close to each other that the screening radius
becomes smaller than the Bohr radius and the bound electron
states disappear [15]. Therefore, under such conditions, hy-
drogen is completely ionized and is in the metallic state (Mott
transition). This justifies the calculation of electron density
distribution in the framework of the density functional theory
(DFT) method using the “jelly” model in which ions are
approximately represented as a continuous homogeneous dis-
tribution of positive charge and electrons are not bound to ions
as they are in ordinary metals. Thus, to simulate accurately
the compression of the gas bubble, it is necessary to solve
self-consistently the following three problems (self-consistent
formulation of the model):

(1) the quantum mechanical problem of determining the
distribution of electrons against the background of ions by the
DFT method;

(2) determining the emerging electric field which forms a
force acting on the ionic subsystem by solving the Laplace
equation;

(3) the hydrodynamic problem of the motion of the ionic
subsystem in the presence of the force.

Such statement of the problem is associated with signifi-
cant computational complexities and requires vast computa-
tional resources due to the quantum mechanical part dealing
with solving the Schrödinger equations for the mesoscopic
number of electrons Ne ∼ 109. The computation time in nu-
merical simulations drastically increases as soon as it becomes
necessary to make repeated calculations of the quantum me-
chanical task ∼103 to ∼104 times per one gas-dynamic step
to ensure the required accuracy. Therefore, we use a simpler

problem statement where the hydrodynamic equations of a
quantum electron fluid [16] are solved for the evolution of
the electron subsystem rather than the quantum mechanical
problem. Such an approach, for example, is successfully used
in modeling a quantum electron gas in plasma [17–21] and
in various semiconductor electronic devices [22–24]. The va-
lidity of this approach for the system analyzed in the present
work is discussed below.

In Sec. II A, we propose a mathematical model that de-
scribes the hydrodynamic motion of the considered system.
Section II B is devoted to the effective field which is intro-
duced to take into account the large-scale effect. In Sec. II C,
we justify our effective field estimations.

A. Mathematical model

The mathematical model of hydrodynamic motion to be
considered consists of the following three parts.

(1) The system of equations that determines the distribu-
tion of electrons looks as follows:

∂ρe

∂t
+ 1

r2

∂

∂r
(r2ρeve) = 0, (1)

∂ve

∂t
+ ve

∂ve

∂r
= − 1

ρe

∂ pe

∂r
− e

me

∂

∂r
(ϕ + Ueff ), (2)

dee

dt
+ pe

d (1/ρe)

dt
= 0. (3)

Here r is the distance from the origin, located in the center
of the spherical bubble, ϕ is the electrostatic potential, pe

is the quantum-statistical pressure of the degenerate electron
gas and ee is its internal energy, ρe and ve are density and
velocity, and e and me are the charge and mass of an electron.
Fundamentally, an interesting feature of this model is the
presence of an effective field Ueff in the equations of motion
for the electrons, which models the large-scale effect. It will
be described in detail below in Sec. II B.

It should be noted that the Bohmian term,

ϕBohm = h2

2me
√

ne
∇2√ne,

in the above equation of motion (2) for the electron quantum
liquid was neglected due to its smallness compared to Ueff .

(2) The system of equations describing the ionic subsys-
tem has the form

∂ρi

∂t
+ 1

r2

∂

∂r
(r2ρivi ) = 0, (4)

∂vi

∂t
+ vi

∂vi

∂r
= − 1

ρi

∂ pi

∂r
− e

mi

∂

∂r
ϕ, (5)

dei

dt
+ pi

d (1/ρi )

dt
= 0. (6)

where the notation is analogous to the system (1)–(3) and the
subscript i indicates parameters related to ions. Here there is
no effective field, because it affects electrons only.

(3) The Poisson equation which determines the force act-
ing on the ionic system is

�ϕ = e

ε0
(ni − ne). (7)
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The system of Eqs. (1)–(7) is greatly simplified as applied
to the problem under study. We consider the compression of
the gas bubble in the neutral condition when ni

∼= ne at any
moment since the characteristic time of the motion of the
ion subsystem is much greater than the relaxation time of the
electron subsystem. Within this approximation, the system of
Eqs. (1)–(7) can be rewritten as follows:

0 = − 1

ρe

∂ pe

∂r
− e

me

∂

∂r
(ϕ + Ueff ), (8)

∂ρi

∂t
+ 1

r2

∂

∂r
(r2ρivi ) = 0, (9)

∂vi

∂t
+ vi

∂vi

∂r
= − 1

ρi

∂ pe

∂r
− 1

ρi

∂ pi

∂r
− e

mi

∂

∂r
(Ueff ), (10)

dei

dt
+ pi

d (1/ρi )

dt
= 0. (11)

In subsequent sections the system of Eqs. (9)–(11) is used
for the analysis of cumulative processes during the compres-
sion of a submicron-sized gas bubble. Equation (8) is then
used to determine the electrical potential, which, in turn, is
important for substantiating the correctness of the used form
of the effective potential. Below we consider the modeling of
an effective potential.

B. Modeling of the effective potential Ueff

Quantum shell effects in the system under consideration
appear as large-scale inhomogeneity in the spatial distribu-
tion of the electron gas. The proposed formalism of quantum
hydrodynamics is intended for taking into account such fea-
tures of spatial distribution in the description of a mesoscopic
system of degenerate electrons. This is achieved by means
of introduction of an external effective potential Ueff in the
equations of electron motion (8): Accordingly, for the model
considered, it is vitally important to determine correctly the
shape of this potential.

The dependence of the potential on the radius r can be
determined in terms of the density nfree

e of free degenerate
electrons in the potential well that is calculated within the
DFT method. The averaged distribution of the electron
density 〈nfree

e 〉 is then calculated based on nfree
e by means of

a smoothing procedure that smears out small-scale density
fluctuations (on scales of the order of the Fermi length) while
preserving large-scale structures. The distribution 〈nfree

e 〉
found in this way allows us to calculate Ueff with the aid of
the following relation:

1〈
nfree

e

〉 ∂ pe
(〈

nfree
e

〉)
∂r

= −e
∂

∂r
[Ueff (r)], (12)

which results from Eq. (8) in the absence of an electric field,
i.e., for ϕ = 0.

The smoothing procedure can be carried out in various
ways detailed as follows. Previously, in [13,14] we calculated
the electric potential of an electrically neutral system as a
whole consisting of a noninteracting gas of free degenerate
electrons and an ionic spatially homogeneous ball. The po-
tential is conventionally calculated by numerical integration
of the charge density represented by a set of values in the grid

nodes with the Green’s function of the Laplace equation. After
that the averaging is performed. Then, using the averaged
potential, we determine the electron density from the Poisson
equation. As a result, the electron concentration averaged over
small-scale fluctuations is obtained.

Here we use a more straightforward method, consisting
in direct averaging of the density found in the framework
of a quantum mechanical calculation. Appendix A demon-
strates the equivalence of the two averaging approaches and
presents results of calculating Ueff (r) within our method. Fig-
ures 14–18 (see Appendix A) represent the calculated values
of the effective potential depending on the dimensionless fac-
tor kF R0 and normalized by the parameter (3π )2/3

25/3
h̄2

mR2
0
, where

k f is p f

h̄ , h is the Planck constant, and m is the mass of an
electron.

The obtained results allow us to draw the following conclu-
sion about the shape of Ueff (r). The potential consists of two
qualitatively different terms,

Ueff (r) = Uosc(r) + Ubar (r), (13)

where Uosc(r) is the effective oscillating potential acting in the
almost bulk of the inner region of the bubble (r < R0) exclud-
ing a thin “skin”—in the vicinity of its border r = R0, while
Ubar (r) is the effective barrier potential. On the contrary, the
latter is constant with high accuracy in the almost bulk of the
inner region of the bubble (r < R0) and is sharply changing in
a narrow boundary region (r ∼ R0).

The shape of the potential Uosc(r) has an oscillating charac-
ter; it depends on the number of particles and has from one to
three bumps. A certain periodicity in the shape of the potential
can be observed, considering its dependence on the number
of particles with a characteristic period approximately equal
to �kF R0 ∼ (1.3–1.4) (see Figs. 14–20 in Appendix A) The
amplitude of the effective potential is proportional to 1

R2
0

and
weakly depends on N (N is the total number of electrons).

The shape of the potential Ubar (r) has a stepwise profile
and practically does not depend on the number of particles.
The amplitude of the potential Ubar (r) is proportional to 1

R2
0
.

The ffective potential can be approximated by convenient
simple analytical expressions (see Appendix B for details):

Ubar (r) = W

1 + exp
( r−Rws

a

) ,
Uosc (r) =

M∑
m

Cmcos

(
πm

r

R0

)
, (14)

where Rws, Cm, and a are the adjustable constants. These
approximations are used in numerical simulations in Sec. III.
In the next subsection we validate the described estimations.

C. Validation of the effective potential approach:
Analytical estimates

Strictly speaking, an approach based on the introduction
of an effective field is a kind of assumption, which has to be
validated. In this subsection we show that the approximations
defined in Sec. II B make it possible to obtain satisfactory
quantitative results for the amplitudes of the main functions
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obtained in [13] with extended calculations by the DFT
method.

Firstly, we note that Appendix A presents the calculated
electrostatic potential ϕfree

electr that arises in the electrically neu-
tral system of a gas of degenerate noninteracting electrons and
a spatially homogeneous ball of ions. Figures 20–22 (see Ap-
pendix A) show the results of averaging ϕfree

electr. The averaged
potential qualitatively coincides with Ueff (r); it depends on the
number of particles and has from one to three local bumps.

We introduce the following quantities characterizing the
system considered:

Uosc(r): effective oscillating potential;
ϕfree

electr: electric potential of electrically neutral system
composed of noninteracting electrons and a spatially homo-
geneous ball of ions;

ϕinteract
electr : the same as above except that electrons are consid-

ered to be interacting [ϕinteract
electr = ϕ from Eq. (8)];

δnfree(r): deviation from the average value of the electron
density;

δninteract (r): the same as above except that electrons are
considered to be interacting.

Then we proceed as follows. Using the simplest model for
the electrostatic potential, ϕfree

electr = ϕfree
0 electrsin (α r

R0
), α = 3π ,

and the results of [13], we determine an analytical approxi-
mation for the amplitude U osc

0 of Uosc(r) in the following way
[U osc

0 = C3 from Eq. (14)].
Assuming that in the bulk of the volume, the deviation of

the electron density from the average value is small, we obtain〈
nfree

e

〉 = n0 + δn(r),

pe = (3π2)
2
3

5

h̄2

me
n

5
3 = (3π2)

2
3

5

h̄2

me
n

5
3
0

(
1 + 5

3

δn

n0

)
.

Substituting the resulting expression into Eq. (12), we find
the relation connecting the functions δn(r) and Uosc:

−eUosc(r) = (3π2)
2
3

5

h̄2

me
n

2
3
0

5

3

δn(r)

n0
. (15)

Using the Poisson equation

1

r2

∂

∂r

(
r2 ∂ϕelectr

∂r

)
= e

ε0
δn,

one can get

−ϕfree
0 electrsin

α

R0

[
2rsin

(
α r

R0

)+ r2 α
R0

cos
(
α r

R0

)
r2

]
= e

ε0
δn.

From Eq. (15), we can then obtain the following expression
for the amplitude of the oscillating part:

U osc
0 = ϕfree

0 electr
(3π2)

2
3

3

h̄2

e2 me

ε0

n
1
3
0

(
α

R0

)2

.

Taking into account that according to DFT calculations
ϕfree

0 electr = 0.02 eN0.45

4πε0R0
[13], we finally get the following expres-

sion for the effective potential amplitude:

U osc
0 = 0.06

h̄2

e me

N0.117

R2
0

(3π2)
2
3

12π

(
4

3
π

)1/3

α2. (16)

This value is in good qualitative and quantitative agreement
with the results obtained in Appendixes A and B.

Similarly, within the framework of the proposed approach
Eqs. (8)–(11) with the aid of Eq. (16), one can calcu-
late the amplitudes of other functions ϕinteract

electr , δnfree(r), and
δninteract (r):

δninteract (r) = 0.06
N0.117α2

4πR2
0

n
1
3
0 ,

ϕinteract
0 electr ∼ 0.02

eN0.45α2

4πε0R0
(

4
3π
)1/3 ,

δnfree(r) ∼ 0.06
N0.45α2

4πR3
0

.

These expressions also are in good agreement with the
results obtained earlier in [13,14] for the amplitudes of the
corresponding functions (see Figs. 4 and 9 in [13]).

Thus it is shown that the approach based on the hydrody-
namic description of an electron gas taking into account the
effective potential allows us to describe principal features of
the system obtained within the DFT method. This proves the
validity of the proposed approximate approach for the analysis
of the system considered in the present article.

It is important to note that this simplification, however,
took into account the fundamentally important, in this study,
quantum effect, which is a consequence of the shell structure.
Recall that as it was shown [13], the coordinate dependence
of the electron density of a mesoscopic system exhibits certain
inhomogeneities on a large spatial scale comparable to the size
of the system itself. This feature is taken into account in the
present study by introducing some effective potential into the
hydrodynamic equations used to describe the quantum elec-
tron fluid. Note that the comparison with the results of more
accurate models, including various versions of the DFT, made
in Ref. [13] substantiates the possibility and effectiveness of
such a simplification. The most significant advantages of this
simplified approach are a significant reduction in computa-
tional time and, at the same time, the absence of the need
to use huge computing resources. Moreover, with an increase
in the number of particles in the system, the computational
complexity of the presented approach does not increase so
dramatically as is the case of conventional DFT approaches.

III. PECULIARITIES OF HYDRODYNAMIC
CUMULATION CAUSED BY QUANTUM SHELL EFFECTS

In this section, a mechanism of hydrodynamic cumulation
initiated by quantum shell effects is theoretically investigated
within the framework of the model formulated above. We
consider two different problems that demonstrate the basic
mechanism of shock wave formation.

The first problem is related to the “relaxation process” in a
gas bubble being initially at rest when the effective potential
is instantaneously switched on.

The second problem is the “adiabatic compression pro-
cess” of a gas bubble where the densities of electrons and ions
are assumed to practically coincide and have initially a non-
monotonic spatial density profile with several local extrema.
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Any of the possible mechanisms of gas bubble compression
can be represented as a combination of these two processes.

Theoretical analyses presented in Secs. III A and III B are
aimed to separate study of the relaxation and adiabatic com-
pression processes. Thus we reveal the causes of forming
multiple shock waves and discuss conditions for the occur-
rence of this phenomenon. In Sec. III C we provide the results
of numerical simulation which demonstrates quantitatively the
influence of the large-scale effect on the temperature values
reached during the cumulation process. This simulation takes
into account both processes.

A. Process of relaxation

The first problem is related to the relaxation process in
the system with a nonmoving boundary being initially at rest
(ne = ni = n0 = const), in which the effective potential is in-
stantaneously switched on. Such a situation can be realized,
for example, under impact action on a metal cluster, in which
the initial crystal lattice of ions is transformed into a plasma
state. The final result of the process is formation of the static
equilibrium (vi = 0) state of the system.

Relaxation process in the system is governed by the set of
the following equations:

0 = − 1

ρe

∂ pe

∂r
− e

me

∂

∂r
(ϕ + Ueff ),

∂ρi

∂t
+ 1

r2

∂

∂r
(r2ρivi ) = 0,

∂vi

∂t
+ vi

∂vi

∂r
= − 1

ρi

∂ pi

∂r
− 1

ρi

∂ pe

∂r
− e

mi

∂

∂r
(Ueff ),

dei

dt
+ pi

d (1/ρi )

dt
= 0,

pe = (3π2)
2
3

5

h̄2

me
n

5
3 ,

pi = nikTi.

The first-order perturbation theory approximation reads

n(t ) = n0 + �n(r, t ),

vi = �vi(r, t ),

Ti = T 0
i + �Ti(r, t ),

pe = (3π2)
2
3

5

h̄2

me
n

5
3

= (3π2)
2
3

5

h̄2

me
n

5
3
0

(
1 + 5

3

�n

n0

)
.

As a result, the equations that govern the evolution of the
system take the form

∂�n(r, t )

∂t
+ ∂

∂r
[n0�vi(r, t )] + 2

r
[n0�vi(r, t )] = 0, (17)

∂�vi

∂t
= − k

mi

∂�Ti(r, t )

∂r
− kT 0

i

min0

∂�n(r, t )

∂r

− 1

min0

(3π2)
2
3

3

h̄2

me
n

2
3
0

∂�n(r, t )

∂r
− e

mi

∂

∂r
(Ueff ),

(18)

3k

2mi

(
∂�Ti

∂t

)
− kT 0

i

min0

(
∂�n

∂t

)
= 0. (19)

The initial conditions are �n(r, 0)=0, �vi(r, 0) = 0,
�Ti(r, 0) = 0.

The inhomogeneous wave equation for �n(r, t ) follows
from Eqs. (17)–(19) straightforwardly:

∂2�n

(∂t )2 − c2
0

r

∂2(r�n)

(∂r)2 = en0

mi

1

r

∂2(rUeff )

(∂r)2 , (20)

where

c2
0 = 5kT 0

i

3mi
+ 1

mi

(3π2)
2
3

3

h̄2

me
n

2
3
0 .

Let us first consider the relaxation dynamics of the system
caused by the oscillation potential, for which we adopt the
simplest model form:

Uosc(r) = β

[R(t )]2 cos

[
α

r

R(t )

]
,

β = 0.02
h̄2

e me

4
√

N
(3π2)

2
3

12π

(
4

3
π

)1/3

α2.

Taking into account the initial conditions, the solution to
Eq. (20) has the form

�n(r, t ) = n0e

mic2
0

β

(R0)2 cos

(
α

r

R0

) [
−1 + cos

(
α

c0t

R0

)]
,

�vi = e

c0mi

β

(R0)2 sin

(
α

r

R0

)
sin

(
α

c0t

R0

)
.

The obtained expressions imply the applicability of the
perturbation theory for the nanometer range bubbles,

�n

n0
= e

mic2
0

0.02 h̄2

e me

4
√

N (3π2 )
2
3

12π

(
4
3π
)1/3

α2

(R0)2 ∼ 10−1,

as well as the expression for the speed of sound,

с = c0 + c0

3

e

mic2
0

β

(R0)2 cos

(
α

r

R0

) [
−1 + cos

(
α

c0t

R0

)]
.

(21)

The formation of shock waves in the class of flows (21)
is described in detail in the classical textbook [25]. The time
of the shock wave formation in such a spherically symmetric
system of radius R0 is estimated as

t = R0

πc0
�n
n0

∼ R0 memic2
0(R0)2

c0 h̄2 4
√

N
.

For the values of R0 ∼ 1 nm, this time is comparable with
the time required for sound waves to propagate over a distance
of the order of the gas bubble size which is about t ∼ 10−14 s.
Thus a system of shock waves can be generated in nanometer
gas bubbles, which can lead to a significant cumulation of
compression.
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The possibility of formation of shock waves in a bubble
with internal content initially at rest is associated with the ex-
istence of an electrostatic potential ϕinteract

0 electr ∼ 0.02 eN0.45α2

4πε0R0( 4
3 π )

1/3

in the system at the initial moment, and accordingly, with
the stored electrostatic energy, which is transformed into the
kinetic energy of motion with velocity of the order

V ∼
√

e2

ε0miR0
∼ 10 km/s.

Note that under conditions of spherical cumulation, the
value of the velocity can grow significantly in the central
regions of the bubble.

The above analysis demonstrates the formation of shock
waves caused by the oscillatory part of the effective potential.
Now we analyze the influence of the barrier potential on the
cumulation mechanisms. The electrical charge

Q = en04π (R0)2δ,

is distributed at the initial moment over a spherical boundary
layer whose thickness δ is of the order of several interatomic
distances. The following estimate,

E ∼ Q2

4πε0R0
,

is obvious for the electrostatic energy associated with this
charge distribution. This energy is transformed into the kinetic
energy of the bubble ions:

K =
4
3π (R0)3 min0V 2

2
.

From here, the estimate for the ion mass velocity V follows
straightforwardly:

V ∼
√

e2n1/3
0

ε0mi
∼ 10 km/s.

This analysis clarifies that a set of shock waves forms due
to the presence of the effective potential in the system during
the process of relaxation. The possibility of the formation
of shock waves in a bubble with interior initially at rest is
associated with the existence of an electrostatic potential in
the system at the initial moment, and accordingly, the stored
electrostatic energy, which transforms into the kinetic energy
of motion.

B. Adiabatic compression process

In the second problem, the compression of the gas bubble
with the boundary evolution R(t ) = R0 − U0t is considered.
The adiabatic compression mode is assumed. This implies
the fulfillment of the following conditions: (i) The boundary
velocity U0 is much less than the speed of sound in the gas
bubble, and (ii) the characteristic compression time t is much
longer than the time R0/C0 of the propagation of the sound
wave through the bubble. In contrast to the standard mode, we
take into account the large-scale effect.

There exists an exact solution that describes the regime of
classical adiabatic compression of this system in the absence

of an oscillatory potential:

ρ0
i (t ) = Mgas

4
3π [R(t )]3 ,

n0(t ) = ρ0
i (t )

mi
,

T 0
i (t ) = [

ρ0
i (t )

] 2
3

T 0
i (0)[

ρ0
i (0)

] 2
3

,

ui(r, t ) = −U0
r

R(t )
.

The presence of the oscillatory potential is taken into ac-
count in the framework of the first-order perturbation theory
approximation:

n(t ) = n0(t ) + �n(r, t ),

vi = ui(r, t ) + �vi(r, t ),

Ti = T 0
i (t ) + �Ti(r, t ).

Note that the unperturbed temperature T 0
i (t ) and concen-

tration n0(t ) depend on time here, in contrast to Sec. III A. In
addition, the unperturbed velocity ui(r, t ) is nonzero.

Pe = (3π2)
2
3

5

h̄2

me
n

5
3

= (3π2)
2
3

5

h̄2

me
n

5
3
0

(
1 + 5

3

�n

n0

)
.

Within this approximation, the equations of motion of ions
become

0 = − 1

men0(t )

(3π2)
2
3

3

h̄2

me
n

2
3
0

∂�n(r, t )

∂r

− e

me

∂

∂r
(Ueff ) − e

me

∂

∂r
ϕ, (22)

∂�n(r, t )

∂t
+ ∂

∂r
[n0(t )�vi(r, t ) + �n(r, t )ui (r, t )]

+ 2

r
[n0(t )�vi(r, t ) + �n(r, t )ui(r, t )] = 0, (23)

∂�vi

∂t
+ ui(r, t )

∂�vi

∂r

= −�vi
∂ui(r, t )

∂r
− k

m

∂�Ti(r, t )

∂r
− kT 0

i (t )

mn0(t )

∂�n(r, t )

∂r

− 1

mn0(t )

(3π2)
2
3

3

h̄2

me
n

2
3
0

∂�n(r, t )

∂r
− e

mi

∂

∂r
(Ueff ),

(24)

3k

2m

[
∂�Ti

∂t
+ ui(r, t )

∂�Ti

∂r

]
− kT 0

i (t )

mn0(t )

[
∂�n

∂t
+ ui(r, t )

∂�n

∂r

]
= k

mn0

∂n0(t )

∂t

[
−T 0

i (t )
�n

n0
+ �T

]
− uie

mi

∂

∂r
ϕ. (25)
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In the adiabatic compression mode, the profile �n(r, t ) will
adjust to the profile Ueff . Therefore, we attempt to look for a
solution of the above system of equations in the form

�n(r, t ) = A(t )cos

[
α

r

R(t )

]
+ D(t )rsin

[
α

r

R(t )

]
, (26)

�T (r, t ) = B(t )cos

[
α

r

R(t )

]
+ E (t )rsin

[
α

r

R(t )

]
, (27)

�vi(r, t ) = C(t )rcos

[
α

r

R(t )

]
+ F (t )r2sin

[
α

r

R(t )

]
. (28)

Within the ansatz (26)–(28), Eqs. (22)–(25) lead to the
identical relations that are presented below.

Collecting the terms with cos[α r
R(t ) ] we obtain

∂A(t )

∂t
+ 3

[
n0(t )C(t ) − A(t )

U0

R(t )

]
= 0,

− k

m
B(t ) − kT 0

i (t )

mn0(t )
A(t ) − 1

mn0(t )

(3π2)
2
3

3

h2

me
n

2
3
0 A(t )

− e

mi

β

[R(t )]2 = 0,

3k

2m

[
∂B(t )i

∂t

]
− kT 0

i (t )

mn0(t )

[
∂A(t )

∂t

]
= k

mn0

∂n0(t )

∂t

[
−T 0

i (t )
A(t )

n0
+ B(t )

]
.

It follows from here that

C(t ) = 0, B(t ) ∼ R(t )A(t ) ∼ 1

[R(t )]2 ,

A(t ) = 0.06α2 N0.45

4πR3
0

.

We estimate the applicability of the perturbation theory as
follows:

�n

n0
∼ 0.02α2

N0.55
∼ 0.05 � 1.

It is clear that the applicability condition holds with a large
margin.

Similarly, collecting the terms with sin[α r
R(t ) ] one obtains

∂D

∂t
− A(t )α

U0

[R(t )]2 + 4n0(t )F (t ) − 4D(t )
U0

R(t )
= 0,

− kE (t ) − kT 0
i (t )

n0(t )
D(t ) − 1

n0(t )

(3π2)
2
3

3

h2

me
n

2
3
0 D(t ) = 0,

3k
∂E (t )

∂t
− kT 0

i (t )

n0(t )

[
∂D(t )

∂t

]
= k

n0

∂n0(t )

∂t

[
−T 0

i (t )
D(t )

n0
+ E (t )

]
,

+ U0

R(t )

⎧⎨⎩α
βe

[R(t )]3 + 1

n0(t )

(3π2)
2
3

3

h2

me
n

2
3
0 A(t )

α

R(t )

⎫⎬⎭.

Hence, we get F (t ) = 0.06α3

12R2
0

U0
N0.55 .

Now let us estimate the time of the shock wave forma-
tion by considering the trajectory of the Lagrangian particle
r(t, r0) with the initial coordinate. The equation of motion has
the following form:

dr(t, r0)

dt
= ui[r(t, r0), t] + �vi[r(t, r0), t].

Applying the method of successive approximations, we
obtain

r(t, r0) = r (0)(t, r0) + r (1)(t, r0),

r(t, r0) = [R0(0) − U0t]
r0

R0(0)

+ 0.06α3

12N0.55

r2
0

[R0(0)]2 cos

[
α

r0

R0(0)

]
× [R0(0) − U0t]ln

(
[R0(0) − U0t]

R0(0)

)
.

The condition for the occurrence of a shock wave is the
intersection of the trajectories of Lagrangian particles:

r(t, r0) = r(t, r0 + �) for � �= 0.

Hence, taking into account the smallness of � � r0, we
have

� = 0.01α3

N0.55

r2
0

R0(0)
cos

[
α

r0

R0(0)

]
cos

[
α

�

R0(0)

]
× ln

[
R0(0) − U0t

R0(0)

]
.

It follows that, under the requirement � = R0(0)
10 for the

formation of a shock wave in the bubble volume r0
R0(0) ∼ 0.5,

shock waves can only be formed under the unrealistic condi-
tion R0(0)−U0t

R0(0) ∼ 10−2. That is, during adiabatic compression
of a relaxed system, shock waves are not formed.

Thus quantum shell effects in hydrodynamic processes
manifest themselves only in the processes of system relax-
ation.

C. Numerical simulation results

In this subsection, we present results of numerical simula-
tion that confirm the existence of a nonclassical mechanism of
the compression of a submicron gas bubble. Suppose cold gas
fills a spherical cavity, surrounded by a dense medium, e.g.,
diamond. The diamond is a good insulator, so its border acts
as a quantum well potential with high amplitude. The effect
described above emerges. When the system is compressed
by external pressure, the effective force due to the quantum
nature of the degenerate electronic component appends to
gradients of pressure.

In simulations we consider the compression of hydrogen
gas inside a cavity with R = 1 nm. The boundaries of the
cavity converge toward the center with constant velocity. Ini-
tially gas has uniform density, ρ = 5 g/cm3, so the system is
taken unrelaxed to a new external force. Initial temperature
T = 0.1 eV. Simulations are carried out in a one-temperature
single-fluid approximation (the dynamics of the ionic com-
ponents is simulated explicitly). Details of the numerical
code used are given in Appendix C and [26]. Such set-up
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FIG. 1. Radial dependence of density ( g/cm3) for successive
times t = 0.005, 0.01, 0.015 (early stage of compression) accounting
for the Ueff and without the Ueff .

goals demonstrate the maximum possible impact by exter-
nal force, which allows us to estimate the prospect of the
effect.

Two calculations of submicron bubble compression are
performed. The ionic system at the initial moment is taken
to be unrelaxed in these calculations.

The first calculation is carried out with the effective poten-
tial Ueff (r) = Uosc(r) + Ubar (r), where Uosc(r) and Ubar (r) are
the oscillator and barrier potentials, which are modeled by the
following expressions:

Ubar = − eV0

1 + exp [(R0 − r)/δ]
,

Uosc = C

(
n̄

1030

)1/3 R0(0)

R0(t )
f [r, R0(t )].

In the second problem, we calculate the compression of
the ion gas without taking into account the influence of the
effective field (Ueff = 0). Comparison of the obtained results
allows one to evaluate the magnitude of the effect.

The numerical calculations are carried out in dimensionless
variables. The corresponding scales and transformation of the
main hydrodynamic variables to the dimensionless form are
described in Appendix C.

The following parameters are chosen for numerical
calculations: the bubble radius is 1 nm; the gas den-
sity ρ = 5 g/cm3; the velocity at the outer boundary
of the bubble uw = −2 km/s is adopted; time inter-
val tc = 0.45, which corresponds to 90% gas compres-
sion; the barrier and oscillation potential parameters are
fixed at the values δ= 0.1R0 and C = 10 eV, V0 =
1 V.

The results of numerical simulation are shown in
Figs. 1–4. Radial dependencies of density, velocity, pres-
sure, and temperature are plotted for three successive time
points corresponding to the initial stage of compression
(about 3%).

FIG. 2. Radial dependence of velocity (km/s) for successive
times t = 0.005, 0.01, 0.015 (early stage of compression) with ac-
count for the Ueff and without the Ueff .

Let us compare the results of calculations without Ueff (r)
and with the presence of Ueff (r). In the absence of Ueff (r)
compression evolves in accordance with the theory of classi-
cal gas dynamics, with the formation of a shock wave moving
toward the center (shown by arrows in the figures). A qual-
itatively different picture arises if the effective potential is
taken into account. The motion of the wall brings the system
out of equilibrium, and the resulting field strongly affects the
motion of the ions. A compression wave appears by the time
t = 0.005, and the amplitude of the wave is several orders of
magnitude higher than the amplitude of the shock in a purely
gas-dynamic calculation. At subsequent moments, this wave
overshoots forming a shock wave with the relative amplitude
of about 1000. The velocity in the wave reaches the value of
20 km/s.

FIG. 3. Radial dependence of pressure for successive times t =
0.005, 0.01, 0.015 (early stage of compression) accounting for the
Ueff and without the Ueff .
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FIG. 4. Radial dependence of temperature (103 K) for successive
times t = 0.005, 0.01, 0.015 (early stage of compression) accounting
for the Ueff and without the Ueff .

Reaching the center, the wave causes a focusing of energy
with a sharp rise in pressure and temperature in the center.
This is seen in Figs. 5–7, which show the time dependence
of the density, pressure, and temperature at the center of the
spherical bubble.

Calculations without Ueff (r) indicate the pressure increase
by about two orders of magnitude when the shock wave
focuses. Taking Ueff (r) into account enhances this effect by
almost 1000 times (Fig. 6). Similar effects emerge on the
temperature graph. The temperature at the center increases by
two orders of magnitude, reaching a value of ∼1000 (103 K),
at the moment of focusing of the shock wave which formed
as a result of the compression wave overshooting due to the
field.

FIG. 5. Time dependence of density ( g/cm3) at the center of a
spherical bubble accountingfor the Ueff and without the Ueff .

FIG. 6. Time dependence of pressure at the center of the spheri-
cal bubble accounting for the Ueff and without the Ueff .

The process of compression of the electron-ion system
is accompanied by a series of multiple reflections of shock
waves from the surface of the spherical bubble and subsequent
focusing at the center.

Thus comparison of the results of calculations reveals that
taking into account the quantum effect of a large spatial scale
in the distribution of electrons qualitatively changes the nature
of the cumulative processes.

Due to the large-scale electric field caused by quantum
shell effects, the compression process is characterized by the
formation of multiple shock waves. The values of gas temper-
ature and pressure reached during compression turn out to be
approximately two orders of magnitude higher as compared
with the ordinary compression regime.

FIG. 7. Time dependence of temperature (103 K) at the center of
the spherical bubble accounting for the Ueff and without the Ueff .
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IV. CONCLUSION

A mechanism of hydrodynamic cumulation caused by
quantum shell effects in a mesoscopic system consisting of
a gas of degenerate electrons and a gas of classical ions has
been identified and studied extensively.

The direct formulation, which implies self-consistent cal-
culation of the gas-dynamic motion of ions and solving the
quantum mechanical problem for determining the spatial dis-
tribution of the mesoscopic number of electrons, encounters
significant computational complexity. Therefore, the simpli-
fied approach was elaborated upon. The main ingredients of
such an approach are hydrodynamic description of the ionic
and electronic subsystems and introduction of an external ef-
fective field acting on the electronic subsystem. This effective
field allows one to take into account quantum effects in a
simplified manner. The obtained results demonstrate validity
and efficacy of the developed approach for the analysis of the
considered class of problems.

The developed approach demonstrates that due to the pres-
ence of a large-scale electric field caused by quantum shell
effects the process of gas bubble compression is accompanied
by formation of the multiple shock waves. This drastically
changes the character of the cumulative processes. The values
of temperature and pressure in the central region increase by
several orders of magnitude compared to the conventional
compression regime.

The experimental study of the described effect is among
the key future tasks. The temperature increasing in the bubble
due to this effect could lead to the launching of thermonuclear
reactions. Therefore, detection of fusion neutrons can be con-
sidered as strong evidence in favor of the effect discussed. The
preliminary simplified calculations showed that cumulation in
a nanoscale diamond target with a DT-ice central cavity could
generate some neutrons. In this case, the energy spent on the
generation of one neutron is comparable to the neutron energy
cost in the record-breaking experiments at NIF [3]. In turn,
the absence of the effect means the impossibility of ignition
of thermonuclear fusion in such a system.

A difficult issue is the choice of a source for irradiating
such a target. The direct laser irradiation requires the use of an
extremely short wavelength laser due to the diffraction limit.
On the other hand, the hohlraum experiment could break the
implosion symmetry that is crucial for the effect considered.
Moreover, the x-ray radiation could preheat the DT-ice cavity
and hence violate the necessary conditions.

Nevertheless, the main problem of such an experiment is
that a single target generates a number of neutrons that is
well below the detectability threshold of the neutron detec-
tors at currently operating laser facilities. The intuitive desire
to increase the number of targets and place them into the
hohlraum faces a number of serious technical problems. The
fulfillment of the requirement of symmetry and synchronic-
ity depends on how large the number of targets placed into
the hohlraum is. It seems that a possible way to meet these
requirements is to embed targets into a sub-critical-density
plastic or carbon foam. It has been shown, however, both
theoretically [27] and experimentally [28] that the laser gen-
erated heat front propagation velocity in such foams turns out
to be microstructure dependent. Anyway the development of

the experiment idea is a nontrivial task and is beyond the
scope of this paper. It could be the subject of a separate
study.
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APPENDIX A: EFFECTIVE POTENTIAL

The effective potential is determined from the relation

1

nfree
e

∂ pe
(
nfree

e

)
∂r

= −e
∂

∂r
[Ueff (r)], (A1)

which is a consequence of the Euler equation of motion for
the electron fluid and the spherical symmetry of the problem.

The electronic subsystem is considered within the Fermi
gas model. Accordingly, the pressure and density of the elec-
tronic subsystem are related in the following way:

pe = (3π2)2/3

5

(
h̄2

m

)
n5/3

e . (A2)

In further calculations, it is convenient to use the dimen-
sionless concentration ñe defined by the relation

ñe = 4πR3
0 ne, (A3)∫ 1

0
ñeζ

2dζ = Ne, (A4)

where ζ = r/ R0 is the dimensionless radial coordinate, and
Ne is the number of electrons. The equation

(3π )2/3

25/3

h̄2

mR2
0

dñ2/3
e

dζ
= dUeff

dζ
(A5)

follows directly from relations (A1)–(A4). This equation has
the obvious solution

Ueff = (3π )2/3

25/3

h̄2

mR2
0

ñ2/3
e + const. (A6)

Due to the smallness of the density fluctuations δñe as com-
pared with the mean value ñ0

e , formula (A6) can be simplified:

Ueff = (3π2)2/3

25/3

h̄2

mR2
0

(
ñ0

e + δñe
)2/3

≈ (3π2)
2
3

2
5
3

h̄2

mR2
0

⎡⎣(ñ0
e

) 2
3 + 2

3

δñe(
ñ0

e

) 1
3

⎤⎦. (A7)

Approximation (A7) loses its accuracy and becomes in-
applicable near the wall (r ∼ R0, or ζ ∼ 1), which is due to
vanishing of the electron density on the wall in accordance
with the accepted boundary condition of the impenetrability
of the wall in the quantum mechanical problem.

Figures 8–10 show examples of nonaveraged dependences
ũ = ñ2/3

e − (ñ0
e )2/3 for different values of the parameter

kF R0 ∼ N1/3 (k f = p f /h̄). The electron density is determined
by means of direct summation over all the occupied states of
electrons in the spherical potential well with infinite walls.
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FIG. 8. Radial dependence of the effective potential for different
values of kF R0.

Another technique based on the Green’s function approach is
also suitable for numerical calculation of the electron density.
The method of constructing the Green’s function based on
two linearly independent solutions occurs rather conveniently
for this purpose. As shown in Ref. [14] the results, obtained
in these two ways, coincide with high accuracy. In itself the
extent to which these results are consistent can be considered
as an indicator of the accuracy of the numerical calculations.

With an appropriate choice of the constant in (A7), the
quantity ũ is proportional to Ueff and can be considered as
a dimensionless effective potential. Since the gas-dynamic
calculation implies the use of averaged values over a large
number of particles, the direct use of the value (A7) for such
purposes is not correct. The density determined in the frame-
work of quantum mechanics must be preliminarily averaged
in a suitable way and only then should it be included in
gas-dynamic calculations. The averaging procedure looks as

FIG. 9. Radial dependence of the effective potential for different
values of kF R0.

FIG. 10. Radial dependence of the effective potential for differ-
ent values of kF R0.

follows. Due to spherical symmetry the averaging should be
performed over a radial variable. For these purposes, we use

averaging with the Gaussian weight function: exp[− (r−r′ )2

a2 ].
The mean values of a certain quantity have the form

f̄ (r) = 1

C(r)

∫ R0

0
exp[−(r − r′)/a2] f (r′)dr′, (A8)

where 1
C(r) is the normalization factor,

C(r) =
∫ R0

0
exp[−(r − r′)/a2]dr′.

Due to the finiteness averaging interval [0, R0] the factor
C(r) is coordinate dependent, which should be taken into
account when calculating derivatives of f (r).

Results of the averaging procedure (A8) with different
values of the smearing parameter a = 300hr , 600hr , 800hr ,
and 1000hr (hr is the increment of uniform radial grid; the
total number of grid nodes is equal to 10 000, correspondingly
hr = R0/10000) are presented in Figs. 11–13. It can be seen
that for a = 1000hr , convergence in the averaged potential is
achieved. This value of a was adopted below.

Figures 14–18 demonstrate the results of averaging of the

function ũ = ñ2/3
e − (ñ0

e )
2
3 for kF R0 ∼ (28.0–33.0). This func-

tion differs from the effective potential by a constant factor
only. The obtained results allow us to note the following pat-
terns of behavior of Ueff . The shape of the effective potential
depends on the number of particles and has from one to three
bumps. There is some periodicity of the potential shape (see
Fig. 18) when changing the number of particles. The charac-
teristic period is approximately equal to �kF R0 ∼ (1.3–1.4) in
this dependence. The amplitude of the effective potential Ueff

is proportional to 1
R2

0
and weakly depends on N. The behavior

is similar for other values of kF R0 (see Fig. 19).
The electrostatic potential of the electronic subsystem is

calculated in the usual way:

Uc =
∫

V

e

4πε0

1

|r − r′|ne(r′)d3r′. (A9)
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FIG. 11. Radial dependence of the electron density and aver-
aged ones obtained with different values of the smearing parameter;
kF R0 = 27.

Spherical symmetry simplifies Eq. (A9):

Uc = e

4πε0

1

R0

{
1

ζ

∫ ζ

0
ñe(ζ ′)ζ

′2dζ ′ +
∫ 1

ζ

ñe(ζ ′)ζ ′dζ ′
}

.

(A10)

The first term in Eq. (A10) is the potential on the surface
of the ball of radius r and the second one is the potential of a
spherical layer on its inner boundary.

We also calculate large-scale spatial oscillations ϕfree
electr −

the electric potential of an electrically neutral system consist-
ing of noninteracting electrons and a spatially homogeneous
ball of ions. This value allows one to estimate the shape and
magnitude of the electric force acting on the ionic system.

FIG. 12. Radial dependence of the electron density and aver-
aged ones obtained with different values of the smearing parameter;
kF R0 = 600.

FIG. 13. The same as in Fig. 12, but with an enlarged scale along
the vertical axis.

It should be emphasized that the electrostatic potential
defined by Eqs. (A9) and (A10) is not directly connected with
effective potential (A1).

The potential (A10) should be supplemented with the po-
tential created by ions. Within the approximate model, a
homogeneous ion background is considered, and accordingly
its potential is that of a uniformly charged ball. In this case,
the following circumstance should be taken into account. The
zero boundary condition on the wall of the cavity in the
quantum mechanical problem causes vanishing of the electron
density on the wall. This circumstance should be taken into
account in the model ionic density. Namely, the ionic density
is modeled by a uniformly charged ball with a slightly smaller
radius than R0. The reference point for choosing the ion distri-
bution radius is zeroing of the total potential of electrons and
ions on the wall (i.e., at r = R0).

Averaging, similar to that applied to Ueff , should also be
applied to UC . It should be noted that the radial dependence
of the unaveraged potential UC differs significantly from
Ueff , This is due to Ueff being proportional to ñ2/3

e , which is
a rapidly oscillating function, while UC is defined through
integration of ñe in (A10). Integration smears out these high-
frequency oscillations. Nevertheless, the uniformity of the
approach implies that averaging should be applied to UC also.

Figures 20–22 show the results of averaging the electric po-
tentials ϕfree

electr (made dimensionless by the parameter e
4πε0

1
R0

)
for different values of the parameters kF R0 ∼ N1/3. It can be
seen from Figs. 20–22 that the behavior of the potential ϕfree

electr
is in qualitative accordance with the shape of the potential
Ueff .

Based on the calculated values UC the electron densities for
the systems with kF R0 = 27600 are computed by means of the
Poisson equation. These results are presented in Figs. 23 and
24.

The closeness of the results confirms the similarity of the
two methods of averaging.
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FIG. 14. Radial dependence of the oscillation potential for sev-
eral values of kF R0.

FIG. 15. Radial dependence of the oscillation potential for sev-
eral values of kF R0.

FIG. 16. Radial dependence of the oscillation potential for sev-
eral values of kF R0.

FIG. 17. Radial dependence of the oscillation potential for sev-
eral values of kF R0.

FIG. 18. Radial dependence of the oscillation potential for sev-
eral values of kF R0.

FIG. 19. 3D plot of the dimensionless effective potential as
a function of the radial coordinate and the parameter (kF R0).
Quasiperiodicity appears in the (kF R0) dependence.
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FIG. 20. Radial dependence of the Coulomb potential for several
values of kF R0.

APPENDIX B: MODEL APPROXIMATION
OF THE EFFECTIVE POTENTIAL

A characteristic feature of the effective potential Ueff is its
fluctuating behavior near the mean value, and a sharp drop to
zero at the cavity boundary. To convey the abrupt behavior in
the near-wall region, the Woods-Saxon function for the barrier
potential can be used:

fWS(r) = W

1 + exp [(r − RWS)/a]
,

where RWS is the distribution radius, a is diffuseness, and the
parameter W determines the average value inside the cavity.
By varying these three parameters, we achieve the best repro-
duction of Ueff , by means of minimizing the sum of squared
deviations of Ueff values on the grid from the approximant

FIG. 21. Radial dependence of the Coulomb potential for several
values of kF R0.

FIG. 22. Radial dependence of the Coulomb potential for several
values of kF R0.

fWS. That is we are looking for:

min

(
N∑

i=1

[Ueff (ri ) − fWS(ri )]
2

)
,

on the grid {ri }N
i=1. This part of the effective potential is

referred to as the barrier potential. The next step in the ap-
proximation is to take into account oscillations of Ueff near
the mean value inside the cavity. Bearing in mind the use
of this potential in the gas-dynamic calculation, it should, as
noted above, be averaged over high-frequency oscillations in
order to reveal large-scale dependencies. Thus the approxi-
mant should reproduce not high-frequency fluctuations, but
rather a smoothed behavior. To do this, a rapidly changing
quantity [Ueff (ri) − fWS(ri)] was preliminarily averaged with

FIG. 23. Radial dependence of the electron density obtained by
means of the averaging procedure (A8) and that from the averaged
Coulomb potential; kF R0 = 27.
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FIG. 24. Radial dependence of the electron density obtained by
means of the averaging procedure (A8) and that from the averaged
Coulomb potential; kF R0 = 600.

a Gaussoid (see (A8). The averaged values obtained in this
way for the quantity [Ueff (ri ) − fWS(ri )] are much smoother,
and the characteristic spatial scale of their change is compa-
rable to the size of the cavity. It is convenient to approximate

this dependence by a partial sum of the Fourier series with
the retention of five to ten terms depending on the desired
accuracy:

[Ueff (ri) − fWS(ri)] ≈
M∑

m=0

Cmcos

(
πm

r

R0

)
.

This part of the effective potential is referred to as the
oscillation part. It should be noted that averaging and rep-
resentation by a partial sum of the Fourier series should be
carried out only after separation of the barrier potential. The
point is that the origin of the barrier potential is related to
the boundary condition, which is rather rigid (vanishing of the
wave functions on the cavity wall) and is not the effect of the
appearance of a large scale in the oscillating part of Ueff .

Table I shows the values of the coefficients C̃m that dif-
fer from the Fourier coefficients in the above formula by
a constant factor Cm = (3p)2/3

25/3
h2

mR2
0
C̃m. The choice of param-

eter values kF R0 corresponds to the dependencies shown in
Figs. 14 –17.

As calculations demonstrate it is sufficient to keep the
first few terms of the Fourier series to provide a good ap-
proximation and the use of a partial sum which includes
the first five to six terms is sufficient in most cases (see
Figs. 25–29).

TABLE I. Expansion coefficients of the Fourier series of the oscillation potential for several values of kF R0.

kF R0 C̃0 C̃1 C̃2 C̃3 C̃4 C̃5

28.0 −0.3894 −0.7383 −2.8435 −2.3562 −0.9652 −0.8250
28.2 2.9122 0.6681 3.6358 −2.1092 −1.0644 −0.8042
28.3 −3.1570 2.9068 6.5422 0.7503 0.4930 0.4791
28.7 0.4062 −2.6594 0.8154 2.3031 1.6555 0.2033
28.9 −0.3627 −0.1521 −1.0935 −0.0176 0.9988 0.1052
29.2 −0.3176 −5.7909 1.7601 −0.7042 0.8527 0.3029
29.4 0.6283 −5.9594 1.9040 −0.7174 −1.0703 −0.0243
29.6 1.7177 −5.9279 −1.5893 −2.1648 −0.6561 0.2338
29.7 −0.0855 0.4883 1.0883 −2.2426 −1.0793 −0.2200
29.9 −2.4844 1.7689 0.7406 1.7640 1.0054 −0.2371
30.3 1.5828 −1.7354 1.0854 −1.1616 0.4130 0.0061
30.6 −0.6460 −7.3809 1.8339 0.0736 −0.3225 0.1087
30.8 −0.4265 −3.4219 1.1895 −1.9458 −1.3187 −0.2825
30.9 0.1190 −3.8300 −2.3894 −3.1061 −0.7394 −0.0401
31.1 2.7634 −2.1295 −2.5225 −2.1742 −1.4719 −0.8770
31.2 0.7209 −4.6133 −5.7273 −1.6699 −0.6225 −0.9914
31.4 0.2390 −2.9134 1.1446 −1.2851 −0.4283 −0.9020
31.5 −2.3328 4.4380 6.9176 2.0165 1.6176 0.1689
31.6 −2.1147 5.0537 4.7025 −0.4851 1.6173 0.1854
31.7 −1.8350 0.2293 4.9661 1.0755 0.6322 0.4484
32.1 −1.7792 −0.5736 1.3271 0.1972 1.3385 0.6589
32.2 −2.7766 2.7040 0.0689 −2.0208 0.4551 0.3902
32.3 −2.0369 −1.6110 −1.4754 −0.2839 0.4066 0.1129
32.4 −1.6902 −9.7029 −1.7350 −0.3147 1.1100 0.1335
32.6 −0.9042 −4.4818 −0.9866 −1.6367 0.1355 −0.4134
32.8 −0.1031 −9.3432 −0.5977 −0.1401 −0.8784 −0.1079
32.9 1.7022 −2.4418 −0.0656 −2.1678 −0.9110 −0.3942
33.0 −1.6393 5.0189 5.0646 0.1092 0.2522 0.0300
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FIG. 25. Radial dependencies of the averaged oscillation poten-
tial and its Fourier series partial sum; kF R0 = 28.

Table II shows the values of the coefficients for the barrier
potential. The choice of the values of parameter kF R0 corre-
sponds to the graphics in Figs. 14–17.

APPENDIX C: NUMERICAL ALGORITHM

We consider the sphere of the initial radius R0 consisting of
a gas of degenerate electrons with density ne(r, t ) and classi-
cal ions with density ni. It is assumed that the electron density
satisfies the equilibrium condition at each time moment:

−e
∂

∂r
(ϕ + Uosc − Ubar ) + 1

ne

∂ pe

∂r
= 0, (C1)

FIG. 26. Radial dependencies of the averaged oscillation poten-
tial and its Fourier series partial sum; kF R0 = 29.4.

FIG. 27. Radial dependencies of the averaged oscillation poten-
tial and its Fourier series partial sum; kF R0 = 30.8.

where Uosc and Ubar are the oscillating and barrier potentials,
respectively:

Uosc (r) =
M∑
m

Cmcos

(
πm

r

R0

)
,

Ubar (r) = W

1 + exp
( r−Rws

a

) , (C2)

where C and W are the characteristic amplitudes of the oscil-
lating and barrier potentials, and a is the size of the barrier
potential.

The electron pressure depends on the local electron density
and is determined by the following expression:

pe = (3π2)2/3

5

h̄2

me
(ne)5/3. (C3)

FIG. 28. Radial dependencies of the averaged oscillation poten-
tial and its Fourier series partial sum; kF R0 = 31.6.
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FIG. 29. kF R0 = 32.6 Radial dependencies of the averaged os-
cillation potential and its Fourier series partial sum.

The motion of the ion gas is a result of the action on the
ions from the electrostatic field created by the instantaneous
distribution of ions and electrons. The ion gas is assumed to be
ideal, i.e., the effects of viscosity and thermal conductivity are
neglected, and is calorically perfect with the equation of state
p = (γ − 1)ρζ , where γ = 5/3 is the adiabatic exponent, p
is the pressure, and ζ is the specific internal energy.

It can be shown that the influence of nonequilibrium be-
tween the distribution of ions and electrons takes place in
a very small neighborhood of the wall. Therefore, in the
gas-dynamics calculations described below, it is assumed that
there is a local equilibrium at all points inside the sphere ni =
ne. Then the electron pressure determines the ion distribution.

The medium inside the sphere is assumed to be electroneu-
tral, therefore at each moment the distributions of electrons
and ions satisfy the condition of zero total charge:∫ R0(t )

0
ne(r, t )r2dr =

∫ R0(t )

0
ni(r, t )r2dr, ni = ρ/mi,

where mi is the mass of ions.
The ion motion is described by the standard system of

Euler equations for gas dynamics under the assumption of
spherical symmetry. This system is supplemented by the right-
hand side corresponding to the change in momentum and
energy due to the electrostatic field produced by charged
particles in the gas (ions and free electrons):

∂ρ

∂t
+ ∂ (ρU )

∂r
= −2

r
ρU,

∂ (ρU )

∂t
+ ∂ (ρU 2 + p)

∂r
= −2

r
ρU 2 − e

mi
ρ

∂ϕ

∂r
, (C4)

∂ (ρE )

∂t
+ ∂ (ρUH )

∂t
= −2

r
ρUH − e

mi
ρU

∂ϕ

∂r
,

where e is the electron charge, E = 0.5U 2 + ζ is the specific
total ion energy, H = ζ + p/ρ is the specific total enthalpy,
ζ = p/ρ/(γ –1) is the specific internal energy of the ions,

TABLE II. Parameters of the barrier potential for several values
of kF R0.

kF R0 RWS/R0, 10−1 a/R0, 10−2 W

28.0 9.62 1.35 439.6
28.2 9.63 1.28 447.0
28.3 9.63 1.30 463.9
28.7 9.63 1.29 471.2
28.9 9.63 1.31 476.8
29.2 9.64 1.22 480.3
29.4 9.65 1.21 489.2
29.6 9.65 1.22 493.5
29.7 9.65 1.24 499.9
29.9 9.65 1.26 515.4
30.3 9.66 1.19 521.8
30.6 9.66 1.16 527.2
30.8 9.66 1.18 532.5
30.9 9.66 1.19 537.0
31.1 9.66 1.20 545.7
31.2 9.66 1.20 551.3
31.4 9.67 1.15 560.3
31.5 9.67 1.17 566.2
31.6 9.66 1.18 571.6
31.7 9.67 1.15 575.2
32.1 9.67 1.16 579.9
32.2 9.67 1.18 585.7
32.3 9.67 1.17 589.8
32.4 9.68 1.10 597.5
32.6 9.68 1.11 602.5
32.8 9.69 1.09 605.9
32.9 9.68 1.11 615.9
33.0 9.68 1.14 622.7

γ= 5/3, and 0 � r � R(t ). The potential is determined by the
Eq. (C1), where we use ne instead of ni.

We rewrite the system of Eqs. (C1) and (C4) in dimen-
sionless form. To do this, we introduce the scales of the
characteristic physical quantities in the following form:

ρ∗ = 103 kg/m3: density;
L∗ = 10−6 m: length;
U∗ = 103 m/s: velocity;
t∗ = L∗/U∗ = 10−9 s: time;
p∗ = ρ∗U 2

∗ = 109 N/m2: pressure;
ϕ∗ = miU 2

∗ /eV = 1.875 × 10−2 V: potential of electric
field;

∗ = miU∗/et∗ = 1.875 × 104 V/m: electric field.
The values of the physical parameters of the model are as

follows:
e = 1.6 × 10−19 Cl: electron charge;
mi = 3 × 10−27 kg: ion mass.
The system of Eqs. (C4) can be written in a conservative

form. In dimensionless variables, it has the following form:

∂r2ρ

∂t
+ ∂ (r2ρU )

∂r
= 0,

∂ (r2ρU )

∂t
+ ∂r2(ρU 2 + p)

∂r
= 2r p − ρr2 ∂ϕ

∂r
, (C5)

∂r2(ρE )

∂t
+ ∂r2(ρUH )

∂t
r = ρUr2 ∂ϕ

∂r
,
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where the gradient of the potential

∂ϕ

∂r
= K1ρ

−1/3 ∂ρ

∂r
+ K3

[
R0(0)

R0(t )

]2
∂Ubar

∂r
− K4

R0(0)

R0(t )

∂ f (r, R0(t ))

∂r
.

The dimensionless constants are as follows:

K1 = (3π2)2/3

3

h̄2

emeϕ∗
(n∗)2/3, n∗ = ρ∗/mi

K3 = h̄2

2emeϕ∗

(
3π2 ρ0

mi

)2/3[R0(0)

R0(t )

]2

,

K4 = C
10−10m

ϕ∗

(
ρ0

mi

)1/3

.

If we introduce the total pressure,

π = p + 3
5 K1(ρ)5/3,

the system of Eqs. (C5) can be rewritten as follows:

∂r2ρ

∂t
+ ∂ (r2ρU )

∂r
= 0,

∂ (r2ρU )

∂t
+ ∂r2(ρU 2 + π )

∂r
− 2rπ = ρr2

{
K3

[
R0(0)

R0(t )

]2
∂Ubar

∂r
− K4

R0(0)

R0(t )

∂ f [r, R0(t )]

∂r

}
,

∂r2(ρE )

∂t
+ ∂r2ρU (E + π/ρ)

∂r
= 3

5
K1(ρ)5/3 ∂r2u

∂r
− ρr2U

{
K3

[
R0(0)

R0(t )

]2
∂Ubar

∂r
− K4

R0(0)

R0(t )

∂ f [r, R0(t )]

∂r

}
, (C6)

Except for the right-hand side, the system of Eqs. (C6) coincides exactly with the classical system of equations of gas
dynamics with the equation of state (EOS) in the following form:

π = (γ − 1)ρe + 3
5 K1(ρ)5/3. (C7)

The numerical integration of (C6) can be performed by the Godunov method,

qn+1
i = 3(

rn+1
i+1/2

)3 − (
rn+1

i−1/2

)3

⎧⎨⎩
(
rn

i+1/2

)3 − (
rn

i−1/2

)3

3
qn

i − �t
[(

rn+1/2
i+1/2

)2
Fi+1/2 − (

rn+1/2
i−1/2

)2
Fi−1/2 + Sπ,i + SU,i

]⎫⎬⎭.

Here F denotes the fluxes in divergence terms of the system (C6), and

Sπ,i =

⎡⎢⎣ 0[(
rn+1/2

i+1/2

)2 − (
rn+1/2

i−1/2

)2
]
πi

0

⎤⎥⎦,

SU,i =

⎡⎢⎢⎣
0[(

rn+1/2
i+1/2

)3 − (
rn+1/2

i−1/2

)3
]
ρiS2,i[(

rn+1/2
i+1/2

)2
Ui+1/2 − (

rn+1/2
i−1/2

)2
Ui−1/2

]
3K1(ρi )5/3/5 +

[(
rn+1/2

i+1/2

)3 − (
rn+1/2

i−1/2

)3
]
ρiUiS3,i

⎤⎥⎥⎦.

(C8)

Here, the right-hand side of the equations is related with the barrier and oscillating potential, and the values at the edges of
the cells (half-integral indices) are determined from the solution of the Riemann problem. To solve the Riemann problem, we
use the local approximation of the EOS (C7),

π = (γ − 1)ρe + c2
0(ρ − ρ0), (C9)

where the parameters of the EOS are approximated from the value of the local density by the following relations:

ρ0 = 2
5ρ, c2

0 = K1ρ
2/3. (C10)

The Courant number is determined by the speed of sound of the system (C6) to provide stability of the numerical scheme.

c2 = γ (π + π0)ρe + 3
5 K1(ρ)5/3

ρ
, π0 = 2

5γ
K1(ρ)5/3. (C11)
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