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Driven dust-charge fluctuation and chaotic ion dynamics in the plasma
sheath and presheath regions

Mridusmita Das , Suniti Changmai, and Madhurjya P. Bora
Department of Physics, Gauhati University, Guwahati 781014, India

(Received 4 January 2023; accepted 15 September 2023; published 5 October 2023)

Possible existence of chaotic oscillations in ion dynamics in the sheath and presheath regions of a dusty
plasma, induced by externally driven dust-charge fluctuation, is presented in this work. In a complex plasma,
dust charge fluctuation occurs continuously with time due to the variation of electron and ion currents flowing
into the dust particles. In most of the works related to dust-charge fluctuation, theoretically it is assumed that the
average dust-charge fluctuation follows the plasma perturbation, while in reality, the dust-charge fluctuation is
a semirandom phenomenon, fluctuating about some average value. The very cause of dust-charge fluctuation in
a dusty plasma also points to the fact that these fluctuations can be driven externally by changing electron and
ion currents to the dust particles. With the help of a hybrid-particle in cell-Monte Carlo collision (h-PIC-MCC)
code in this work, we use the plasma sheath as a candidate for driving the dust-charge fluctuation by periodically
exposing the sheath-side wall to UV radiation, causing photoemission of electrons, which in turn drive the
dust-charge fluctuation. We show that this driven dust-charge fluctuation can induce a chaotic response in the
ion dynamics in the sheath and the presheath regions.
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I. INTRODUCTION

Even after decades of active and fruitful research, com-
plex plasmas and plasma sheath continue to enjoy immense
attention in present-day plasma physics research. In this work,
we bring together the important domains of complex plas-
mas (also known as dusty plasma), plasma sheath, and the
rich tapestry of nonlinear dynamics. While dusty plasma
deals with the physics of plasmas with relatively massive and
charged dust particles, electrons, ions, and neutrals, it can
very well be studied in the context of a plasma sheath, as the
presence of charged dust particles significantly modifies the
sheath properties and can unravel complex plasma behavior
in the sheath and presheath regions [1–7]. Through a hybrid-
particle in cell-Monte Carlo collision (h-PIC-MCC) code, in
this work we use the plasma sheath as a candidate to drive
the dust-charge fluctuation, which in turn induces a chaotic
response in the ion dynamics in the vicinity of the sheath.
The h-PIC-MCC code in question has been developed by two
of the authors of this paper, which can handle dusty plasma
dynamics with various boundary conditions and has already
been benchmarked for different electron and ion dynamics
in the electron-plasma, ion-acoustic, and dust-ion-acoustic
timescales [8–10]. As a nonlinear plasma environment is
essentially multidimensional, the possibility of chaos is in-
variably there. However, it is quite difficult to directly observe
chaotic oscillations in naturally occurring plasmas as well as
laboratory plasmas in contrast to carefully controlled plasma
environments with some kinds of driving mechanisms. We
note that chaotic oscillations are observed in various configu-
rations such as in plasma-diode experiments [11], filamentary
discharge plasmas in the presence of plasma bubbles [12],
etc. Theoretically, numerous works explore the possibility of

chaos in different plasma environments. Such examples can be
found in chaotic Alfvén waves in the context of driven Hamil-
tonian systems [13], wave-wave interaction [14], quasilinear
diffusions [15], etc. Chaotic signals are usually quite common
in driven systems, which can be found over a wide range of
disparate physical configurations. For example, chaotic sig-
nals can be detected in a driven NbSe3 charge-density wave
conductor, as reported by Levy et al. [16,17].

So far as the dust-charge fluctuation in a complex plasma
is concerned, we realize that in reality, the amount of charge
acquired by the dust particles in a plasma is never constant,
but fluctuates continuously, owing to the changing electron
and ion currents to the dust particles. While the semirandom
nature of dust-charge fluctuation in time is quite natural and
occurs due to the nonlinear nature of the plasma, theoreti-
cally it has been customary to assume these fluctuations to
be closely following the plasma perturbation present in the
system [5,6,9,10,18]. As the amount of charge on a dust
particle varies according to the electron and ion currents to
the dust particle, one can also externally drive the fluctuation
by varying these currents. One such situation is to expose the
dust particles to intermittent (or periodic) bursts of charged
particles which can cause the dust-charge to fluctuate. Due
to the nonlinearity present in the system, there is a possibility
that this driven dust-charge fluctuation can induce a chaotic re-
sponse in the dynamics of the system. Though such a situation
in the dust-acoustic regime has been considered by Momeni
et al. [19], where they have shown a chaotic regime to exist in
the oscillation of the dust density, the subject has been largely
unexplored. The case of driven dust-charge fluctuation can
also be compared to the effect of charged debris moving in
a plasma, usually relevant in space plasmas, which has been a
subject of some recent studies [20,21].
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A. Significance of the work

At this point, it is worthwhile to review the physical con-
ditions, especially in our model, which lead to a chaotic
response. As mentioned in the Sec. I, we note that like all
multidimensional systems, a plasma system is also prone to
chaotic oscillations when the number of dependent variables
increases, resulting in distinct dynamical equations. Techni-
cally, any multidimensional system having dimensions three
or more can exhibit chaos [22]. There are usually three
routes [22] via which a periodic oscillation can become a
chaotic one: (1) period-doubling, which usually follows a
Hopf bifurcation, (2) intermittency, and (3) quasiperiodicity
(Ruelle-Takens-Newhouse route) [23]. Out of these three, the
intermittency route is usually associated with forced vibra-
tion and noise [24]. Right from the time when Lorenz first
discovered chaos in 1963, we now know that many natu-
ral dynamical systems exhibit chaos [22]. However, a very
systematic demonstration of chaotic oscillations is possible
often in a controlled environment, where parameters can be
adjusted. In this work, we show that by creating periodic
bursts of high-energy electrons through photoemission from
a sheath-side wall, we can indeed induce a chaotic response
in the ion dynamics which is localized to the sheath and the
presheath regions. In this work, our purpose is to demonstrate
the existence of chaos in a plasma environment which is well
realizable in laboratory. Although there are various examples
of chaos in plasmas [25], the way we try to induce these
oscillations in a plasma system to the best of our knowledge
has not been done before, neither theoretically nor experi-
mentally. Beside the fact that our numerical experiment can
be easily translated into a real experiment as the parameters
and timescales that we use in this work are standard for many
low-temperature laboratory plasmas, this work also opens up
a regime of nonlinearity in the dust-ion-acoustic domain.

In the context of our driven-dust-charge-fluctuation model,
we would particularly like to refer to an earlier experimental
work by Nezlin [26], where chaotic oscillations were shown
to have existed in an argon discharge plasma, which appears
due to the noise in an external ion source. Subsequently, it
has been argued that chaotic oscillations are the result of the
interplay between the intrinsic stochasticity of the system and
periodically forced oscillation (through the ion beam) [24].
Apparently we shall see that this is what we observe in this
work. In Sec. IV we show the stochastic nature of the ion
velocity, which turns chaotic in the presence of forced oscilla-
tions induced through the plasma sheath.

In Sec. II we develop a dusty plasma model for the plasma
sheath, where we describe the sheath structure and develop the
sheath equations. In Sec. III we consider the case for driven
dust-charge fluctuation and develop our chaotic ion-dynamics
model induced by the driven fluctuations. In Sec. IV we de-
scribe the h-PIC-MCC simulation of the driven dust-charge
fluctuation and present the required results. Finally, in Sec. V
we conclude.

II. A DUSTY PLASMA MODEL FOR PLASMA SHEATH

Our plasma model consists of electrons, ions, and neg-
atively charged dust particles. The characteristic timescale

of interest is dust-ion-acoustic, where the dust particles are
involved in the plasma dynamics only through Poisson’s equa-
tion and the dust-charge fluctuation equation, due to their
massive inertia. This is particularly true in our case, as the dust
density remains constant which is a reasonable approximation
in the dust-ion-acoustic time scale [27,28]. The relevant equa-
tions (in one dimension) are ion continuity and momentum
equations, with Boltzmann electrons (owing to their negligible
mass)

∂ni

∂t
+ ∂

∂x
(niui ) = 0, (1)

∂ui

∂t
+ ui

∂ui

∂x
= − 1

mini

∂ pi

∂x
− e

mi

∂φ

∂x
, (2)

ne = n0eeφ/Te , (3)

where the symbols have their usual meanings and the temper-
ature is expressed in energy units. The ion equation of state is
used as

pi ∝ nγ
i , (4)

where γ is the ratio of specific heats. The final equation of the
model is Poisson’s equation,

ε0
∂2φ

∂x2
= e(ne − ni + zd nd ). (5)

The dust charge is qd = −ezd , where we have assumed that
the dust particles acquire a net negative charge. Note that
the presence of dust grains is incorporated into the model
through Poisson’s equation only. We use a normalization
where the densities are normalized by their respective equi-
librium values, n j → n j/n j0, where the subscript “0” refers
to the equilibrium values and j = e, i, d , respectively, for
electrons, ions, and dust particles. The ion velocity ui is nor-
malized with the ion-sound velocity cs = √

Te/mi, where Ti,e

are the ion and electron temperatures, measured in the units
of energy and are held constant. The length is normalized
with the electron Debye length, and time is normalized by
the inverse of ion-plasma frequency (ion-plasma period). The
potential φ is normalized with (Te/e). The dust-charge number
zd is normalized with its equilibrium value zd0 = zd |φ=0. The
normalized equations are now

∂ni

∂t
+ ∂

∂x
(niui ) = 0, (6)

∂ui

∂t
+ ui

∂ui

∂x
+ γ σnγ−2

i

∂ni

∂x
= −∂φ

∂x
, (7)

ne = eφ, (8)

∂2φ

∂x2
= ne − δini + δd zd , (9)

where δi = ni0/ne0 and δd = nd zd0/ne0 are the ratios of equi-
librium densities of ions and dust particles to that of electrons.
The quasineutrality condition is given as δi = 1 + δd . Note
that the dust density remains constant, while the dust-charge
fluctuates.

The dust charge qd for spherical dust particles can be
expressed in terms of the dust potential ϕd ,

qd = C 	V = 4πε0rdϕd , (10)
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where C is the grain capacitance and ϕd = φg − φ, φg being
the grain potential. We define the equilibrium dust-charge
number zd0 in terms of the magnitude of the equilibrium dust
potential ϕd0 = |ϕd |φ=0|,

zd0 = 4πε0rde−1ϕd0, (11)

where e is the magnitude of electronic charge and rd is the
radius of a dust particle. By using the relation qd = −ezd , we
can normalize the expression for dust potential

zd = −αϕd , (12)

with

α = 4πε0rd Te

e2zd0
∼ ND, (13)

which approximately represents the total number of dust par-
ticles ND, inside a dust Debye sphere. We now consider the
dust-charging equation

dqd

dt
= Ie + Ii, (14)

where Ie,i are the electron and ion currents to the dust particles,
which can be written as (dimensional) [6]

Ii = 4πr2
d eni

(
Ti

2πmi

)1/2(
1 − eϕd

Ti

)
, (15)

Ie = −4πr2
d ene

(
Te

2πme

)1/2

exp

(
eϕd

Te

)
. (16)

Assuming Boltzmann electron density ne = eφ , the normal-
ized dust-charging equation (14) can be written as

dϕd

dt
= Ie0

[
δiδmσ 1/2ni

(
1 − ϕd

σ

)
− exp(φ + ϕd )

]
≡ f (ni, φ, ϕd ), (17)

where

Ie0 = rd e2ne0

εoTeωpi

(
Te

2πme

)1/2

(18)

is the normalized equilibrium electron current to the dust par-
ticles, δm = √

me/mi ≈ 0.023, and σ = Ti/Te. Time evolution
of average dust-charge zd as obtained from the hybrid-PIC-
MCC simulation (see Sec. IV for a brief description of the
h-PIC-MCC model) is shown in Fig. 1 [9]. In the code,
both electrons and ions are considered as thermal particles,
distributed with their respective distributions. The simula-
tion parameters correspond to a typical laboratory situation
with plasma density n0 ∼ 1016 m−3, electron and ion temper-
atures to be, respectively, Te ∼ 1 eV and Ti ∼ 0.01 eV, and
an e-i mass ratio of (me/mi )−1 ∼ 1835.16. This corresponds
to the electron Debye length of the plasma as λDe ∼ 7.4 ×
10−5 m. A typical run can have a simulation box length of
0.001–0.1 m, and each species is represented with 105–107

macroparticles [8–10] having particle weighting. The simu-
lation is carried out with equally spaced 1D cells with a cell
number of 600–1000. For example, in a simulation box length
of 0.004 m, with 105 macroparticles for both electrons and
ions, equally spaced 600 cells, and the evolution time step of
∼10−11 s, we can have full spatial resolution with a temporal
resolution of the order of the electron timescale.

FIG. 1. Charging of dust particles in a dusty plasma. The time
is measured in units of the ion-plasma period (inverse of ion-plasma
frequency).

A. Sheath equations and sheath structure

Consider now a plasma sheath in a steady state. Far away
from the sheath, the plasma potential vanishes and other
plasma parameters approach their bulk (equilibrium) val-
ues: x → ∞, φ → 0, ui → u0 ≡ M, pi → 1, ni → 1, zd =
zd/zd0 → 1. M is the Mach number, which is the ratio of the
ion velocity far from the sheath to that of ion-sound velocity.
For a stationary sheath, the steady-state equations are

∂

∂x
(niui ) = 0, (19)

ui
∂ui

∂x
+ γ σnγ−2

i

∂ni

∂x
= −∂φ

∂x
, (20)

ui
∂ϕd

∂x
= f (ni, φ, ϕd ). (21)

From the continuity equation, we have

ni = M/ui. (22)

Integration of Eq. (20) thus results in the conservation of
total energy flux, which is a combination of the kinetic flux,
enthalpy flux, and electrostatic flux,

φ = 1

2n2
i

M2
(
n2

i − 1
) + γ σ

(γ − 1)

(
1 − nγ−1

i

)
. (23)

An expression for ni as a function of φ can be found from
Eqs. (20) and (22), ni = F (φ). For arbitrary γ , the above
equation has to be solved numerically. For γ = 3, however,
we can find an analytical expression for ni(φ) as

ni = 1

2
√

3σ

{
[(M +

√
3σ )2 − 2φ]1/2

− [(M −
√

3σ )2 − 2φ]1/2
}
. (24)

The signs in front of the square roots are fixed through the
boundary condition on ni (see the Appendix for an analysis on
how different values of γ might affect the results). As the ion
density can be expressed as a function of the plasma potential,
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ni ≡ ni(φ), Poisson’s equation can be integrated to get

1

2

(
dφ

dx

)2

+ V (φ, ϕd , M, σ, γ ) = 0, (25)

where V (φ, ϕd , M, σ, γ ) is the equivalent Sagdeev potential
or pseudopotential for a sheath, given by

V (φ, ϕd , M, σ, γ )

= 1 − eφ + δi

∫ φ

0
ni(φ) dφ − δd

∫ φ

0
zd (φ) dφ. (26)

For real solution, we must have

V (φ, ϕd , M, σ, γ ) < 0 (27)

for all values of φ. We can also determine the minimum
velocity for the ions (u0 ≡ M) at the sheath boundary (the
Bohm condition) from this condition. The boundary condition
on V is, at φ = 0, V (φ) = 0.

A few noteworthy points are in order. If the dust-charge
fluctuation is absent, it means the electron and ion currents to
the dust particles always balance each other so that at all times
we have

f (ni, φ, ϕd ) = 0. (28)

This equation can be numerically solved for zd (or for ϕd ) as
a function of φ, and the Sagdeev potential can be constructed
numerically. However, in the presence of dust-charge fluctu-
ation, the problem has to be solved numerically. Multiplying
Eq. (21) with ni and using Eq. (19), we can write

∂

∂x
(niuiϕd ) = ni f (ni, φ, ϕd ), (29)

where we note that M = niui. Thus, using Poisson’s equation,
Eq. (26), and the above equation, one can summarily construct
the following numerical model:

d2φ

dx2
= eφ − δini − αδdϕd , (30)

dϕd

dx
= ni

M
f , (31)

ni = F (φ). (32)

This problem is a coupled boundary and initial value problem
involving a nonlinear Poisson’s equation, which needs to be
solved with a hybrid approach. We have solved this model
with a finite-difference algorithm with a Newton iteration
for the nonlinear Poisson’s equation with Dirichlet boundary
conditions. During every Newton iteration of the boundary
value problem, we use a single, fourth-order Runge-Kutta step
for the initial value equation, Eq. (31). Of course, in every
step, the nonlinear algebraic equation, Eq. (32), needs to be
solved for ni, which we have solved using a nonlinear solver.
However, as we shall see, although the boundary values for
Poisson’s equation can be estimated quite accurately, the same
can not be said for the initial value for Eq. (31). This has to be
estimated iteratively following the negativity condition (27)
for a numerically constructed Sagdeev potential.

The boundary values for the plasma potential can be esti-
mated by considering the current at the wall and infinity. Far
from the sheath, the plasma potential must approach the bulk

potential, i.e., zero, φ|x→∞ = 0. Assuming the current at the
wall be zero, for a stationary sheath we have

je + ji + jd = 0, (33)

where je,i,d are the electron, ion, and dust currents to the wall.
However, in view of the inertia of the massive dust particles in
comparison to the electrons and ions, it can be safely assumed
that in the electron and ion timescale, the contribution to the
wall current by the dust particles is negligibly small,

je + ji ≈ 0, (34)

for all practical purposes. The electrons, which reach the wall
with a minimum velocity vmin by overcoming the negative
potential at the wall φw, contribute to electron current at the
wall. So we have

vmin =
(

−2eφw

me

)1/2

, (35)

so that for the electron current, we have

je = −e
∫ ∞

vmin

∫ ∞

−∞

∫ ∞

−∞
v fe(v) dv, (36)

where fe(v) is the electron velocity distribution function. For
a Maxwell velocity distribution, we have the expression

je = −ne0e

(
Te

2πme

)1/2

exp

(
eφw

Te

)
. (37)

The ion current at the wall is given by

ji = eni0ui

(
Te

mi

)1/2

= en0u0

(
Te

mi

)1/2

, (38)

where u0 is the ion velocity (the Mach number) at the sheath
boundary. From the neutrality condition (34), we can solve for
the wall plasma potential (normalized) as

φw = −2.84 + ln M. (39)

As the plasma potential vanishes far away from the sheath,
we can determine the dust potential as well, from the charging
equation as at ∞, ∂ϕd/∂x → 0, so that f (ϕd )|x→∞ = 0. This
determines the ϕd |x→∞ = ϕd∞ as

ϕd∞ = σ − W (z), (40)

where W (z) is the Lambert W function with

z = σ 1/2

δiδmni
eσ . (41)

Numerically, however, it is not possible to use this value as
an initial value for solving the dust-charging equation as we
need to start at a very large distance from the wall. We realize
that although the dust current at the wall is negligible, the
dust potential ϕdw at the wall need not be so and is expected
to be small and negative. So we continue solving the whole
model starting with ϕdw = 0 iteratively with the condition
that the Sagdeev potential V (φ, ϕd , M, σ, γ ) < 0 [29] in the
entire sheath region for the defined parameters. The results
of this calculation are shown in Fig. 2, where we plot the
plasma potential φ and the dust potential ϕd as we go away
from the sheath to the bulk plasma. The solid lines in each
panel indicate the theoretical curves obtained for γ = 5/3 for
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FIG. 2. Normalized plasma potential φ and dust potential ϕd with dust-charge fluctuation. The length x is measured in the units of electron
Debye length λDe.

M = 1.5, and the dots indicate the equivalent results from
the h-PIC-MCC simulation with the parameters as mentioned
before. We must note that in the simulation, there is no fixed
Mach number for the ions as they enter the sheath with differ-
ent Mach numbers starting with the minimum.

III. DRIVEN DUST-CHARGE FLUCTUATION AND CHAOS

A dynamical model demonstrating chaos in dusty plasma
driven by dust-charge fluctuation was formulated by Momeni
et al. [19,30]. In their work, they reduced the dusty plasma
dynamical model to a single, second-order, nonautonomous
differential equation in dust density, which exhibits chaotic
dynamics in the dust-acoustic regime. This single differential
equation is described as a Van der Pol–Mathieu (VdPM) equa-
tion owing to its Van der Pol-like term and a Mathieu-like
nonautonomous term

d2nd

dt2
− (

α − βn2
d

)dnd

dt
+ ω2

0(1 + h cos γ t )nd = 0, (42)

where nd is the dust density, and ω0 ∼ ωpd is the characteristic
oscillation frequency of the system of the order of dust-plasma
frequency ωpd . The nonautonomous term results from the
time-dependent dust-charge fluctuation term, represented by
h cos γ t , with h as the amplitude of the fluctuation and γ as
the fluctuation frequency. As seen from the equation, the dust-
charge fluctuation term is supposed to oscillate harmonically.
The authors assumed that the dust particles are continuously
created and destroyed through a source term αnd and a loss
term βn3

d/3 in the 1D dust continuity equation [19]

∂nd

∂t
+ ∂

∂x
(nd ud ) = αnd − 1

3
βn3

d , (43)

where the source term is assumed to appear due to the produc-
tion of charged dust grains through electron absorption and the
loss term is due to a three-body recombination term.

It is important to realize that in the above work, though
the authors do not describe why the time-dependent dust-
charge fluctuation term is harmonic, it can be argued to be
originating from an externally driven source, such as photoe-
mission, which is what we are investigating in this work. In

this work, we provide a prescription where chaotic oscillations
are experimentally realizable. Our parameters are, however,
in the ion-acoustic (and dust-ion-acoustic) regime, unlike the
above model. In what follows, we construct a model which
can demonstrate chaotic ion dynamics through driven dust-
charge fluctuation. There is, however, an important difference
between the above-mentioned work and ours, that here we are
using the dust-charge fluctuation as a mechanism to drive the
chaotic dynamics in ion velocity, whereas, in the former, it is
the dust density which shows chaotic behavior.

A. A chaotic ion-dynamics model

We now construct an ion-dynamical model from Eqs. (6)–
(9) for the driven dust-charge case, which can exhibit chaos.
We introduce a scaled time τ = t − x/v0 so that the equa-
tions can be converted to a single variable, where v0 is the
velocity of the comoving frame from where the observations
(numerical) are being made. In terms of the scaled variable,
we have ∂/∂t ≡ ∂/∂τ and ∂/∂x ≡ −v−1

0 ∂/∂τ . So Eqs. (6),
(7), and (9) become

∂ni

∂τ
− 1

v0

∂

∂τ
(niui ) = 0, (44)

∂ui

∂τ
− ui

v0

∂ui

∂τ
− 2

σ

v0

∂ni

∂τ
= 1

v0

∂φ

∂τ
, (45)

1

v2
0

∂2φ

∂τ 2
= ne − δini + δd zd (τ ), (46)

where for simplicity we assumed γ = 2 (see the Appendix for
a justification). Equation (44) can be integrated to obtain the
ion density

ni = v0 − u0

v0 − ui
, (47)

where we have assumed that at infinity ui(τ ) → u0 and
ni(τ ) → ni0 ≡ 1 (note the normalization). Similarly, Eq. (45)
can be integrated to obtain the plasma potential

φ = 1

2

(
u2

0 − u2
i

) − v0(u0 − ui ) + 2σ

(
1 − v0 − u0

v0 − ui

)
, (48)
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FIG. 3. Periodic oscillations of the system, represented by Eq. (49) in the absence of dust-charge fluctuations (left). On the right, the same
oscillations with driven dust-charge fluctuation is presented where the sensitivity to the initial conditions can be clearly seen. All plasma
parameters are as in the case of h-PIC-MCC simulation. The time t and the scaled time τ are in units of the ion-plasma period, and the velocity
is in units of ion-sound speed.

where we have imposed the condition that at infinity (bulk
plasma), φ(τ ) → 0. Using Poisson’s equation and the above
expressions, we finally arrive at a coupled 2D nonlinear
differential equation in ui,

üiA + u̇2
i B + C = 0, (49)

where the “·” denotes d/dτ and

A = 1

v2
0

(
μi − 2σ

μ0

μ2
i

)
, (50)

B = − 1

v2
0

(
1 + 4σ

μ0

μ3
i

)
, (51)

C = δi
μ0

μi
− eφ − δd zd (τ ), (52)

with μ0 = v0 − u0 and μi = v0 − ui. With an autonomous
term involving the time-varying dust-charge zd (τ ), Eq. (49)
fulfills all the basic characteristics which are necessary for the
exhibition of chaotic dynamics. The driven dust-charge term
zd (τ ) can be designed as

zd (τ ) = � cos(νt )	, (	 ∈ integer), (53)

where � is the amplitude and ν is the frequency of the driven
dust-charge fluctuation. It can be numerically shown that in
the absence of any dust-charge fluctuation, i.e., when zd ≡ 1,
for v0 > u0, Eq. (49) admits periodic solutions (see Fig. 3).

1. Bifurcation analysis

For the purpose of bifurcation analysis, we convert the
nonautonomous system represented by Eq. (49) into a system
of autonomous equations by introducing two dummy vari-
ables x(t ) and y(t ),

u̇i = v, (54)

v̇i = −(v2B + C)/A, (55)

ẋ = x(1 − x2 − y2) − νy, (56)

ẏ = y(1 − x2 − y2) + νx, (57)

where cos(νt ) in Eq. (53) is replaced by x(t ). Note that the
last two equations of the above system have stable and unique
solutions

x(t ) = cos(νt ), y(t ) = sin(νt ). (58)

The above system has two nontrivial equilibrium points
(u0, 0, 0, 0) and (u∗

i , 0, 0, 0) in the (ui, vi, x, y) hyperplane,
with u∗

i < 0. Out of these two, the first one is an equilibrium
point of type “center” [22], around which stable periodic or-
bits exist. The second one is an interesting point around which
a saddle-node bifurcation occurs. Though a linear analysis of
the above system does not indicate a saddle-node, a numerical
solution does reveal the existence of a saddle-node bifurca-
tion. This saddle-node bifurcation finally leads to the chaotic
behavior. A similar behavior is also seen in a driven nonlinear
Alfvén system, where a saddle-node bifurcation ultimately
leads to chaotic trajectories [31].

2. v0 � u0

We now explore the regime v0 � u0 in the presence of
driven dust-charge fluctuation. Our parameters are � ∼ 0.1,
which is a small positive quantity and ν ∼ 0.4. We take u0 ∼
10−4 and v0 ∼ 1. The parameter 	 is set to 2. Note that when
v0 � u0, it is as if τ ∼ t and the variables are almost constant
in space. This points out to a localized disturbance where
chaotic oscillation might be observed. The rest of the plasma
parameters are as in the case of the simulation. The results of
this analysis are presented in Figs. 3 and 4. The left panel of
Fig. 3, shows the periodic oscillations when zd = 1 or equiv-
alently when � = 0, i.e., no dust-charge fluctuation. The right
panel shows the same oscillations (in black and red) when
� = 0.1 (the other parameters are as mentioned before). One
can clearly see the sensitivity of the oscillations where both
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FIG. 4. Maximal Lyapunov exponent l of the system with numerical time step T (left), shown for the first τ ∼ 500 and the phase portrait
in the chaotic regime (right). The value of l ∼ 0.033. Velocities are normalized by the ion-sound speed.

of these differ by a factor ∼10−5 in the initial conditions. We
carry out a Lyapunov exponent calculation [22] on Eq. (49)
for these oscillations, and the results are presented in Fig. 4,
where the left panel shows the maximal Lyapunov exponent of
the system l ∼ 0.033, which is positive signifying chaos, and

in the right panel, the phase portrait of the system is shown.
In calculating the Lyapunov exponent, we have evolved the
system for τ � 2000 with a step size of 0.01, gathering about
2 × 105 points. The corresponding Poincaré plots [22] are
shown in Fig. 5, which shows the typical characteristics of

FIG. 5. Poincaré plots for the system in the chaotic regime. Subsequent panels are zoomed-out plots of the corresponding regions shown
in the first plot. The velocities are normalized by the ion-sound speed.
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FIG. 6. Saddle-node bifurcation of the system [Eq. (49)] against
the parameter v0. All variables are normalized as before.

a fractal construction, signifying chaos. In Fig. 6, we have
presented the bifurcation of the equilibrium point u∗

i against
the parameter v0, which shows the existence of a saddle-node
bifurcation in the system.

IV. HYBRID-PIC-MCC SIMULATION OF DUSTY PLASMA

Our simulation model comprises a 1D electrostatic
particle-in-cell (PIC) code with the capability of having vari-
ous boundary conditions including periodic boundary [8–10].
We note that the usual PIC model does not have any collisional
transfer of momenta. Also, the particles in a PIC model are
macroparticles comprising a number of real-life particles. As
such, any collision implemented under the PIC formalism will
actually account for collisions en masse. However, in a lim-
ited way, collisions can be implemented in a PIC formalism
through PIC-Monte Carlo collision (PIC-MCC) algorithm. It
consists of using a randomized probability to account for the
collisions based on the theoretical estimation of the collision
cross sections. A multistep Monte Carlo collision is also
another way of including collisions [32]. We rather use a
hybrid method to estimate the collisions of dust particles with
electrons and ions, which is described as the hybrid-PIC-MCC
(h-PIC-MCC) method [9,10]. In this code, the computational
dust particles are named dust sites, which are fixed in space.
Altogether, we use about ∼2500–3000 dust sites which ac-
count for an equivalent dust density of ∼1012 m−3 (see the
next section for details). We have used a plasma density of
1016 m−3, which is simulated with 105 numbers of compu-
tational particles each for ions and electrons. The domain of
simulation is ∼0.01 m. The details of this algorithm and the
code are described in the two papers by Changmai and Bora
[8,9].

A. Dust-charge fluctuation and plasma sheath

In order to account for the dust charge fluctuation in our
simulation, we assume that whenever a collision of the dust
particle with an electron occurs, it contributes to an increase
of negative charge on the surface of the dust particle [9,10].
This is effected by decreasing the number of electrons in the
simulation domain accompanied by an equivalent increase of

FIG. 7. Ion velocity distributions in the sheath region (up to
about x � 10λD) with and without dust-charge fluctuation. While
the black points indicate the distribution with constant dust charge,
the red points indicate the same with dust-charge fluctuation. See
the accompanying text for an explanation about the different regions
indicated in the figure. The sheath is on the left (x = 0), and the “−”
sign indicates left-moving ions going toward the sheath. The velocity
is normalized with the ion-sound speed.

electron dust charge number zd . The accumulation of positive
charge on the surface of a dust particle is, however, mod-
eled by assuming that whenever an ion-collision occurs, an
electron is ejected from the dust particle which causes zd to
decrease (equivalently charging the dust particle positively)
and an increase of a plasma electron in the simulation box.
Hence, the total ion number in the simulation domain remains
constant while the total electron number and dust charge fluc-
tuate depending on the type of collisions. Without loss of any
generality, this process can be extended up to any number of
dust particles, thereby simulating an environment of a dusty
plasma.

In our simulation, we, however, assume that the dust par-
ticles are cold and stationary, which is consistent with the
characteristic timescale of the simulation, i.e., a dust-ion-
acoustic timescale, and this is also what we consider in the
theoretical buildup. We also introduce a randomized prob-
ability pi,e, which determines whether a charged particle is
absorbed by a dust particle in the event of a collision, hence
the name h-PIC-MCC. At this point, it should be noted that
every binary collision in this formalism is a collision between
two macroparticles, which in reality does not happen. Nev-
ertheless, in the dust-ion-acoustic timescale, this procedure
is able to capture the essential physics involving dust-ion-
acoustic (DIA) dynamics. For all practical purposes, the dust
particles act as collections of electrons, assuming that the
dust particles charge to a net negative potential as the plasma
attains its equilibrium. Our prescription for dust charging con-
serves the plasma quasineutrality condition

ni = ne + zd nd . (59)

The dust macroparticles are uniformly distributed in the do-
main with zero net charge. The dust radius is fixed at rd ∼
10−2λDe. As mentioned before, in Fig. 1, the average charging
of a single dust particle is shown, calculated from the total
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count of electron depletion in the simulation domain. As can
be seen from the figure, on average, a single dust particle
attains an equilibrium net charge of about Qd ∼ −1000e. The
equivalent dust number density can be calculated from the
quasineutrality condition as nd ∼ 2.1 × 1012 m−3.

We now present the results of our h-PIC-MCC simulation
on the effect of dust-charge fluctuation. We note that the
Bohm criterion for a plasma sheath with cold ion and constant
dust charge is M > Mc = √

δi, which gets modified for dust-
charge fluctuation [6]

M2
c = −δi + 2qd0 +

√
(3δi − 2qd0)2 + 8(δi − 1)[2 − (3δi − 2)/qd0]

2[1 − (δi − 1)/qd0]
, (60)

where qd0 is the normalized dust charge at the sheath edge.
For the plasma parameters as mentioned in the previous para-
graph, Mc � 1.12 for constant dust charge and gets modified
to Mc � 1.25 in the presence of dust-charge fluctuation. In
Fig. 7 we show the ion velocity distribution in the sheath
region. Note that the sheath region extends only up to about
∼10λD (see the first panel in Fig. 2). In Fig. 7 we show the
distributions for dust particles with constant charge (black
dots) and with charge fluctuation (red dots). As expected, the
penetrating velocity of the ions into the sheath increases in
the presence of dust-charge fluctuation. Different regions indi-
cated in the figure represent the presheath region, sheath edge
for constant dust charge, and sheath edge with dust-charge
fluctuation. The respective sheath edges are defined through
the values M = Mc and the presheath region is defined when
the ion velocity is just zero demarcating the left- and right-
moving ions. So, in this case, we define the presheath region
as where ions have just started to move toward the left, i.e.,
toward the sheath. The number of ions in the figure is normal-
ized by its maximum value.

B. Driven dust-charge fluctuation: Chaotic ion dynamics

We now consider the case for driven dust-charge fluctu-
ation, where we drive the dust-charge fluctuation through a
controlled emission of photoelectrons from the sheath-side
wall by periodically exposing the wall to strong UV radiation.
The periodic emission of photoelectrons can be mathemat-
ically represented (in the photoemission current to the dust
particles) as

Ihν = � cos(νt )2	, 	 � 1 (integer), (61)

where 2π/ν is the periodicity of the photoemission burst
(see Fig. 8) and � is its amplitude. In our case, ν−1 ∼ 0.04,
time being normalized by ω−1

pi . Equation (61) is the same as
Eq. (53), except that it is now in the photoemission current to
the dust particles which has the same role in our simulation
scenario as Eq. (53) in the theoretical formalism.

As we have periodic photoelectron bursts from the sheath-
side wall, the plasma sheath oscillates between a classical
sheath and an inverse sheath. This oscillation can be clearly
seen from the reconstruction plots of the ion velocity distri-
bution as shown in Fig. 9. The first panel of the plots shows
the time evolution of the ion distribution function in the near-
sheath region, while the second panel shows the evolution of
the sheath as one moves away from the wall. We can clearly
see the periodic formation of ion-velocity peaks in the first
panel. In the second panel, we can see that the ion velocity
distribution gradually approaches a Maxwell distribution as

one goes away from the wall. In Fig. 10 we show the chaotic
evolution of the ion velocity distribution in the sheath and
the near-sheath region. It should, however, be noted that in
the presence of the driven photoemission, there is no clear
sheath boundary as the sheath itself oscillates in time. We
show the power spectral density P of these oscillations (first
panel, first row of Fig. 10) in the second panel of the third
row of Fig. 10. The spectral density shows a dominant peak at
the frequency ∼0.354 corresponding to an angular frequency
of ω ∼ 2.22, which is the large-scale oscillation that we see.
The second dominant peak in P away from the large-scale
oscillations is at a frequency ∼3.47 corresponding to an an-
gular frequency of ω ∼ 21.79 which represents the fine-scale
oscillations. These fine-scale oscillations actually correspond
to the frequency of the driven photoemission bursts frequency
shown in Fig. 8, represented by Eq. (61). So what we see
is that the periodic bursts of photoemission of electrons are
exciting very low-frequency large-scale oscillations in ion
velocity through dust-charge fluctuations.

We initially perform two different tests for chaos on the
ion velocity distributions: (1) estimation of the dominant Lya-
punov exponent l from a time series with the help of Wolf’s
algorithm [33] and (2) performing 0-1 test for chaos. While
Wolf’s method calculates the dominant Lyapunov exponent
through reconstruction of the phase space (also referred to as
delay reconstruction) from the time series data and detection
of orbital divergence, the 0-1 test estimates the growth rate

FIG. 8. Periodic burst of photoemission. The time is measured in
the units of the ion-plasma period. The current is normalized by its
peak value.
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FIG. 9. Evolution of the plasma sheath in time (first panel) and in space (second panel) in terms of ion velocity distribution. In the first
panel, the ion velocity distribution is plotted in the near-sheath region in time, where the oscillation of the sheath (in terms of periodic peaking
of ion velocity) can be clearly seen. In the second panel, the ion velocity distribution function is plotted as one moves away from the sheath
(the wall is at x = 0). As before, x is measured in the units of electron Debye length λDe and velocity is normalized by the ion-sound speed.

of divergence from the time-averaged mean square displace-
ment of the time series data. We use Wolf’s algorithm as
provided by the authors through their very well-developed
Matlab/Octave interface. In the case of the 0-1 test, we use
a very recent work involving the Chaos Decision Tree Algo-
rithm by Toker et al. [34] to rule out stochasticity and random
noise. Briefly, in the 0-1 test, two 2D systems p(n) and q(n)
are derived from the 1D time series data v(n) for n = 1, 2, . . . :

p(n + 1) = p(n) + v(n) cos(cn), (62)

q(n + 1) = q(n) + v(n) sin(cn), (63)

where c ∈ [0, 2π ] is random. For a particular c, the solution
to Eqs. (62) and (63) requires

pc(n) =
n∑

j=1

v( j) cos( jc), (64)

qc(n) =
n∑

j=1

v( j) sin( jc). (65)

It can be shown that if v(n) are regular, p, q are bounded,
while they display asymptotic Brownian motion if v(n) are
chaotic. The time-averaged mean squared displacement of
p, q is then calculated as

Mc(n) = 1

N

N∑
j=1

{[pc( j + n) − pc( j)]2

+ [qc( j + n) − qc( j)]2} + σηn, (66)

where ηn ∈ [−1/2,+1/2] is a uniform random deviate and σ

is the noise level for a total of N number of sampled data in
the time series. Finally, the growth rate K is calculated as

K = lim
n→∞

logMc(n)

log n
. (67)

For chaotic data the median K → 1 and for periodic system
K → 0.

In Fig. 11 we show the determined values of l and K from
these two tests, and as can be seen, both tests point to the fact
that the sampled data are indeed chaotic in nature.

1. Recurrence plots

As a final test, we construct the recurrence plots [35,36]
for the oscillations shown in Fig. 10. The purpose of a re-
currence plot is to visualize the recurrences of a dynamical
system. It is a very powerful tool that enables us to construct
complex dynamical patterns from a single time series. In sum-
mary, a recurrence plot is based on the following recurrence
relation [36]:

Ri j =
{

1: xi ≈ x j,

0: xi �≈ x j
i, j = 1, 2, . . . , N, (68)

where the {xi}N
i=1 is a system in its phase space and N is the

number of considered states. Essentially Ri, j is a Heaviside
function which depends on a threshold condition ε which
determines whether xi ≈ x j . If we assume that the state of a
dynamical system x(t ) is specified by d components, we can
a form vector with these components [36]

x(t ) = (xi(t ))T , i = 1, 2, . . . , d (69)

in the d-dimensional phase space. In a purely mathematically
constructible setup, all these components are known and one
can easily construct the phase space. However, in experiments
and in a simulation like ours, we have only one time series
with only one observable, which in this case is the ion velocity.
So we have one discrete time series

ui, i = 1, 2, . . . , N, (70)

with 	t as the sampling interval on the basis of which we have
to reconstruct the phase space with the help of a time delay, as
mentioned before [36],

xi =
m∑

j=1

ui+( j−1)τ e j, ei · e j = δi j, (71)
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FIG. 10. First row: Two snapshots of the ion velocity distribution in the sheath and the near-sheath region for two different dust densities.
The first panel is for nd ∼ 2.1 × 1012 m−3, and the second one is for nd ∼ 1.5 × 1012 m−3. Both plots show the characteristics signature of
chaotic dynamics as confirmed by our chaos analysis. The shaded regions in both plots indicate initial transient regions as the distributions
evolve in time. The change in oscillation patterns in both plots corresponds to a change of ∼10−4 in the burst duration of the emission of
photoelectrons, and the periodicity of the bursts is same in all the cases. Second row: The ion distribution function in the sheath region
and in the bulk plasma. Third row: The ion distribution function in the presence of periodic photoemission bursts as in the first cases
but without any dust-charge fluctuation. The distribution is purely stochastic (left). The right panel shows the power spectral density P
of these oscillations shown in the left panel of the first row of this figure. All the parameters are in normalized units. See the text for
details.
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FIG. 11. Estimate of the dominant Lyapunov exponent as deter-
mined through Wolf’s algorithm (right axis) and the K values from
the 0-1 test (left axis) for the two sampled data shown in the first row
of Fig. 10. The velocity is normalized by the ion-sound speed.

where m is the embedding dimension, τ is the time delay, and
e j are the unit vectors that span an orthogonal system. For
m � 2D2 + 1, where D2 is the correlation dimension of the
underlying attractor, with the help of Taken’s theorem one can
show the existence of a diffeomorphism between the original
and the reconstructed phase space, or simply speaking, one
can use the reconstructed attractor to study the original one
but in a different coordinate system. So our recurrence plot is
then defined by the relation

Ri j (ε) = H (ε − ‖xi − x j‖), i, j = 1, 2, . . . , N, (72)

where N is the number of measured points, H (x) is the Heavi-
side step function, and ‖ · ‖ denotes norm. In our case we have
used an Euclidean L2 norm.

In Fig. 12 we have shown six recurrence plots for the
chaotic oscillations shown in Fig. 10. The embedding di-
mension is chosen to be 4 and the delay used is 5. The
threshold is used about ∼8.9% of the maximum amplitude of
the oscillations. Clockwise from the top in the figure, we have
used a sampling interval tsample = 2, 10, 50, 100, respectively,
over a total of 32 500 time steps 	t . We can see that as
the sampling interval increases, the plots increasingly reveal
the signature of a chaotic oscillation, signifying the small
fine-scale periodic oscillations in the first plot with geometric
recurrences when the sampling interval is small (the first plot
in the first row) and a fractal pattern in the last of these four
plots (the second plot in the second row). The first plot in
the third row is similar to the second plot of the second row
except that we have superimposed the corresponding plot with
a map having no threshold (all recurrences). The last plot in
the figure represents the one for ion velocity distribution time
series with constant dust charge, corresponding to the last plot
of Fig. 10. As one can see that this plot is similar to the one
with random dynamics similar to Brownian motion signifying
stochastic behavior [36].

V. CONCLUSION

To summarize, in this work in brief, we consider a plasma
model where electrons and ions are both thermal particles
having cold and stationary dust grains with constant dust
density. The time scale of our interest is the dust-ion-acoustic
time scale. We develop the sheath equations and solve them
numerically with a hybrid approach coupling the initial value
problem of the dust-charging equation with the boundary
value problem of the nonlinear Poisson’s equation. The whole
theoretical formalism has been also replicated using a hybrid-
PIC-MCC simulation, and the theoretical results are found to
be in good agreement with the simulation results.

Next, we consider the case for driven dust-charge fluctu-
ation, which is the primary focus of this work. We use the
plasma sheath as a candidate to induce periodic dust-charge
fluctuation through photoemission. The photoemission occurs
when the sheath-side wall is exposed to UV radiation. So, by
externally exposing the wall to UV radiation, the dust-charge
fluctuation can be driven at an external frequency. Here, in
the dust-ion-acoustic regime, we focus on the ion dynamics
in the sheath and the presheath regions. We show that the rel-
atively high-frequency, of the order of about ∼3.5ωpi, bursts
of photoemission of electrons from the plasma sheath excite a
chaotic superharmonic large low-frequency wave in ion veloc-
ity through dust-charge fluctuation, which is confined to the
sheath and the presheath regions. With the help of appropriate
analysis, we have established that the oscillations are indeed
chaotic which owes its existence to the harmonic variation of
the dust-charge fluctuation. The oscillations remain stochastic
for constant dust-charge showing that in the absence of dust-
charge fluctuation, the sheath oscillations cannot effectively
propagate to the plasma.

As the topic of this work is exploratory in nature, we
provide a future prospect for the work in brief. Going by
the number of hydrodynamic equations of this electrostatic
model, Eqs. (44)–(46), along with Eq. (53) for externally
driven dust-charge fluctuation, it can be termed as a four-field
fluid model. Naturally, any extra physics in terms of dust parti-
cle dynamics or introduction of an external magnetic field will
increase the dimensionality of the system and which in turn
will provide more exploratory ground for nonlinear phenom-
ena. In particular, as any wave associated with dust dynamics
will be necessarily extremely low frequency (compared to the
ion-acoustic frequency), we expect some interesting dynam-
ics in the dust-acoustic domain. Any interaction among dust
particles might also lead to interesting physics as in the dust-
acoustic regime, there are many reports about the formation of
dust-crystal or lattice-like structures [37–39]. How an external
driving force interacts with these structures remains to be
seen in the near future and might lead to the design of new
and innovative experiments. In this context, self-organization
and transition of strongly coupled dusty plasma, forming a
2D dusty plasma under periodic substrate, is also noteworthy
[40–43].

There are also many studies involving oblique magnetic
field and plasma sheath [44–46]. However, how an external
driving mechanism changes the sheath structure is a topic
about which we still do not have much knowledge. As a
magnetic field essentially restricts particle movement in the
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FIG. 12. First and second rows: Recurrence plots for the chaotic oscillation shown in Fig. 10 for different sampling intervals. Third row:
Same as the second plot of the second row, superimposed with a map with no threshold, displaying all recurrences (left) and a plot for a
nonchaotic oscillation with constant dust-charge, displaying the signature for Brownian motion-like pattern.

perpendicular direction, we might observe suppression of
these chaotic oscillations with an oblique (with respect to the
sheath) magnetic field, but the subject, however, is beyond the
purview of the present work.

Another related phenomenon is the avalanche excitations
of fast particles in a quasi-2D cold dusty plasma liquid.
In these systems, noise can even induce spatiotemporal
coherence [47–49]. It will be interesting to see signatures of

chaos in these systems, though they are vastly different from
what we consider in this work.
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APPENDIX: CALCULATION OF ARBITRARY γ

Equations (44) and (45) for arbitrary γ are given by

∂ni

∂τ
− 1

v0

∂

∂τ
(niui ) = 0, (A1)

∂ui

∂τ
− ui

v0

∂ui

∂τ
− γ σnγ−2

i

1

v0

∂ni

∂τ
= 1

v0

∂φ

∂τ
. (A2)

Integration of Eq. (44) [or Eq. (A1)] and using the boundary
conditions ui(τ ) → u0 and ni(τ ) → ni0 ≡ 1 at infinity, we
have, as before

ni = v0 − u0

v0 − ui
. (A3)

Equation (A2) can be integrated to have

φ = 1

2

(
u2

0 − u2
i

) − v0(u0 − ui ) − γ σ

(γ − 1)

[
1 −

(
u0

ui

)γ−1
]
,

(A4)
where we have used the condition that

M = niui ≡ u0. (A5)

Equation (A4) reduces to Eq. (48) for γ = 2.
Let’s now find out by how much φ differs, if we deviate

from γ = 5/3, the standard value for a monoatomic gas. Let
us denote the difference between γ and the standard value 5/3

as δ,

δ = γ − 5
3 . (A6)

Inserting γ in terms of δ in Eq. (A4) and expanding around
δ → 0, we obtain the correction term in φ to the order O(δ) as

φcorrection =
∣∣∣∣∣δσ

{
5

2

(
u0

ui

)2/3

ln

(
u0

ui

)
+ 9

4

[
1 −

(
u0

ui

)2/3
]}∣∣∣∣∣.
(A7)

Let us now assume that the ion velocity ui differs from its
value at infinity u0 by an amount 	u = ui − u0 at any point of
time. If we now consider the limiting values of φcorrection when
either 	u → 0 or 	u → ∞ (� 1), we have

lim
	u→0

φcorrection = 0, (A8)

lim
	u→±∞

φcorrection = 9

4
δσ. (A9)

The value of the latter for δ = 1/3 (if we take γ = 2 instead
of 5/3) and σ = 0.01 (the typical value of sigma used in these
calculations) is ∼0.0075, which is � |φwall|, considering the
fact that at the wall only φ can attain its maximum value.
Note that 	u is also expected to be maximum only at the
wall.

The above calculation shows that even if we replace γ =
2 for these calculations, this is not expected to make a huge
difference in the results obtained.
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