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Contribution of fictitious forces to polarization drag in rotating media
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Models for polarization drag—mechanical analog of the Faraday effect—are extended to include inertial
corrections to the dielectrics properties of the rotating medium in its rest frame. Instead of the Coriolis-Faraday
term originally proposed by Baranova and Zel’dovich [Proc. R. Soc. London A: Math. Phys. Sci. 368, 591
(1979)], inertia corrections due to the fictitious Coriolis and centrifugal forces are here derived by considering
the effect of rotation on both the Lorentz and plasma dielectric models. These modified rest-frame properties
are subsequently used to deduce laboratory properties. Although elegant and insightful, it is shown that the
Coriolis-Faraday correction inferred from Larmor’s theorem is limited in that it can only capture inertial
corrections to polarization drag when the equivalent Faraday rotation is defined at the wave frequency of interest.
This is notably not the case for low-frequency polarization drag in a rotating magnetized plasma, although it is
verified here using the more general phenomenological models that the impact of fictitious forces is, in general,
negligible in these conditions.
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I. INTRODUCTION

In medium supporting right (R) and left (L) circularly
polarized eigenmodes, a linearly polarized wave sees its po-
larization rotate when the refractive indices nR and nL of
these modes differ [1,2]. Indeed, the difference in indexes
introduces a phase shift between the two eigenmodes such that
the change in polarization angle per unit length of a linearly
polarized wave obtained from the combination of these modes
is

δ(ω) = ω

2c
[nL(ω) − nR(ω)]. (1)

This phenomenon is referred to as circular birefringence, a
manifestation of optical activity, and δ is the specific rotatory
power [1]. Circular birefringence was most notably demon-
strated by Faraday in 1846 [3] for light propagating along
the direction of an externally imposed magnetic field, and
polarization rotation due to a background magnetic field is
commonly referred to as Faraday rotation.

Thomson postulated in 1885 that an equivalent phe-
nomenon should take place in rotating media [4]. The idea
was revisited a few decades latter by Fermi [5], who then
drew an analogy with the Fresnel drag experienced by light
propagating through a dielectric in linear motion [6–8]. Fermi
accordingly coined the name polarization drag for this me-
chanically induced polarization rotation. The existence of this
effect was only successfully demonstrated experimentally by
Jones in 1976 by studying a laser beam propagating through
a rotating glass rod [9]. Beyond demonstrating unequivocally
the effect, Jones’s experimental findings were found to sup-
port the corrections made at the time by Player to Fermi’s
theory to account for dispersion [10]. In light of this apparent
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agreement, Player’s theory has since then been used to ex-
amine the effect of rotation on waves carrying orbital angular
momentum [11]. It was also used more recently to model the
effect of rotation on media exhibiting an anisotropic dielectric
response in their proper reference frames [12], with the goal
of studying polarization drag in rotating magnetized plasmas
[12–14]. These developments were key in underlining both the
possible effect of polarization drag in pulsar magnetospheres
and how it may enable determining the rotation direction
of pulsars [12], and the opportunities rotating magnetized
plasmas may offer for the development of high-performance
nonreciprocal elements [13]. Understanding polarization drag
may also be important for poloidal magnetic field diagnostics
in tokamaks [15,16]. Indeed the mechanical contribution to
polarization rotation associated with plasma rotation could,
in principle, complexifies polarimetry data by adding up to
Faraday rotation, similarly to what has been shown for the
Cotton-Mouton effect [17].

In building on Player’s work [10], the above theoreti-
cal contributions on polarization drag, however, all have in
common that they assume that the dielectric properties in
the medium’s proper reference frame (or rest frame) are not
modified by rotation. The fact that this simplification may be
a problem was raised by Baranova and Zel’dovich [18], in
relation with Jones’s and Player’s work [19]. On the basis of
Larmor’s theorem asserting a first-order equivalence between
the effect of a uniform rotation at angular frequency � and of
a homogeneous magnetic field B∗ = 2m�/q on the dynamics
of a particle of charge q and mass m [20,21], they proposed
to add an extra term—the Coriolis-Faraday term—to Player’s
formula. Leaning on Larmor’s theorem, they postulated that
this additional term should take the form of an equivalent
Faraday rotation due to the magnetic field B∗. However, while
the estimate Baranova and Zel’dovich obtained for Jones’s
experiment appears to question the classic (ng − n−1

φ ) Fresnel
hybrid scaling derived by Player [10] and identified by Jones
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[9], this apparent contradiction, and from there uncertainty
both on the effect of inertia on polarization drag and on
Player’s formula, remains. This was notably noted by Woerd-
man et al. [22] in studying analogies between Faraday rotation
and polarization drag [23].

To complicate things further, as pointed out by Baranova
and Zel’dovich themselves [18], the proposed Coriolis-
Faraday analogy for polarization drag only holds when the
ionic response is negligible. Because it is only concerned
with the Coriolis force, it also only holds at frequencies
where centrifugal effects are negligible. For these reasons, it
seems inapplicable to capture inertia effects on polarization
drag for the case of low-frequency waves in a rotating mag-
netized plasma that was recently considered [12,13]. If for
no other reason, the direct application of this analogy for a
two-species plasma would also lead to two different B∗ for
the same �. Yet, this inapplicability of the Faraday-Coriolis
analogy does not a priori guarantee that inertial effects are
not important. Here we address this issue by considering the
effect of “fictitious” forces on the microscopic description of
the medium—similarly to the work of Shiozawa [24,25]—to
obtain the medium’s dielectric response corrected for inertia
in its rest frame. These inertia-corrected rest-frame properties
can then be used to derive a general expression for polariza-
tion drag. Note that while they have in common to compute
the dielectric properties in the rotating frame to deduce po-
larization drag properties in the laboratory frame, this paper
differs from the study of polarization drag in super-rotors
[26–28] in that rotation is here considered around a common
axis, whereas each super-rotor’s molecule rotates around its
own axis.

This paper is organized as follows. First, we recall in
Sec. II how Player’s method [10] allows us to determine the
polarization rotation observed in the laboratory frame from
rest-frame dielectric properties, and how it has since then
been extended to media with gyrotropic rest-frame proper-
ties. Then, in Sec. III, phenomenological models for Lorentz
dielectrics and plasmas are used to determine the dielectric
response of these media when rotating at angular frequency
� and in the presence of a background magnetic field B0. It
is shown that this response conveniently takes a form anal-
ogous to that of a gyrotropic medium if �||B0, allowing us
to use Player’s extended method to derive laboratory-frame
properties. Putting these pieces together in Sec. IV, the lim-
its of applicability of the Coriolis-Faraday analogy are first
confirmed. These models are then used to quantify inertial
corrections to low-frequency polarization drag in a rotating
magnetized plasma, where Coriolis-Faraday is inapplicable.
The main findings of this paper are finally summarized in
Sec. V.

II. CIRCULAR BIREFRINGENCE FROM
REST-FRAME SUSCEPTIBILITY

In this section, we briefly recall how circular birefringence
induced by rotation—i.e., polarization drag—can be derived
from the rest-frame dielectrics properties of the medium,
and underline under which hypotheses on the form of the
rest-frame susceptibility tensor and wave vector analytical
expressions are readily available.

For this, we consider a medium that rotates with constant
angular frequency �. We note, respectively, � and �′ the
laboratory frame and the medium rest frame, and use a prime
notation to refer to variables expressed in �′. Without loss of
generality, we take ẑ = �/|�| the unit vector along the axis
common to both �′ and �.

Propagation properties observed in � can be derived from
the dielectric properties in �′ following the method first
introduced by Player [10]. This method uses as inputs the
constitutive relations in �′. Then, by considering the Lorentz
transform of the fields (D′, B′, E′, H′) in �′ to (D, B, E, H)
in � for the instantaneous velocity v = � × r [29], one ob-
tains equivalent constitutive relations in �. Finally, Maxwell’s
equations in the laboratory frame can be used to derive a wave
equation D(χ′, ω, k) · F = 0 for a given field F. The non-
trivial solutions det[D(χ′, ω, k)] = 0 are the eigenmodes as
seen from the laboratory frame, with corresponding dispersion
relations.

A number of restrictive hypotheses are, however, needed
to make this derivation tractable. Player’s original derivation
assumed, for instance, an isotropic dielectric with rest-frame
susceptibility χ ′

‖(ω′) = χ‖(ω′) and a wave vector k = kẑ
aligned with the rotation axis. Under these assumptions, he
showed that the eigenmodes in the laboratory frame are circu-
larly polarized with waves indexes

n2
R/L(ω) = 1 + χ‖(ω′) ∓ 2�

ω
χ‖(ω′), (2)

with ω′ = ω ∓ � the Doppler shifted wave frequency [30].
In the limit of slow rotation � � ω and for nφ (ω′) �= 0, the
wave index difference then leads to first order to a polarization
rotation

δrig(ω) = �

c

[
ng(ω) − 1

nφ (ω)

]
, (3)

where nφ = √
1 + χ‖ and ng = nφ + ω(dnφ/dω) are, respec-

tively, the phase and group index. Here, the index rig stands
for rigid-body polarization rotation, in the sense that inertial
effects are neglected. Indeed, χ‖ is here simply the suscep-
tibility in the medium at rest, since, as indicated earlier,
Player considered the dielectric properties to be unaffected
by rotation. Examining Eq. (3), two distinct contributions
can be identified. One is the kinematic term (nφ − n−1

φ ) ini-
tially found by Fermi [5]. The other is the dispersive term
(ωdnφ/dω) derived by Player [10]. This dispersive term was
later interpreted by Woerdman et al. as the intrinsic rotation
contribution of the individual microscopic systems [22].

A number of Player’s original assumptions have never-
theless been lifted since then. Götte et al. considered, for
instance, the case where the wave vector is not aligned with �

[11], so as to underline the phenomenon of image rotation for
orbital angular momentum carrying waves [31]. More relevant
to our work here, Gueroult et al. [12] generalized Player’s
derivation to media with an anisotropic Hermitian dielectric
tensor in the rest frame of the form

χ′ =
⎛
⎝χ ′

⊥ −iχ ′
× 0

iχ ′
× χ ′

⊥ 0
0 0 χ ′

‖

⎞
⎠. (4)
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In this case, it was shown that the refractive indices of R-
and L-circularly polarized eigenmodes propagating along the
rotation axis write

n2
R/L(ω) = 1 + χ ′

⊥(ω′) ± χ ′
×(ω′)

− �

ω
[χ ′

×(ω′) ± χ ′
⊥(ω′) ± χ ′

‖(ω′)], (5)

with again ω′ = ω ∓ � the Doppler shifted wave frequency.
The analytical expression from polarization drag can thus be
derived from Eqs. (1) and (5) for as long as the rest-frame
susceptibility tensor takes the form given in Eq. (4). Although
this was done for the purpose of studying rotating magnetized
plasmas, we will show in the next section that this same form
Eq. (4) fortuitously captures inertia effects in the medium’s
rest frame.

III. REST FRAME DIELECTRIC RESPONSE CORRECTED
FOR INERTIA

In this section, we examine the response of a rotating
dielectric to a harmonic wave perturbation in its rest frame
for two different dielectric models. To do so, we write the mo-
mentum conservation equation in the rest frame of a rotating
dielectric, which by virtue of working in the rotating frame
includes fictitious forces. This equation is then linearized to
write the current j′ as a function of the electric field E′.
The rest-frame susceptibility tensor χ′ is then immediately
deduced from the definition

j′ = ε0χ
′ · ∂t E′ (6)

for a linear dielectric (see, e.g., Landau et al. [32]).
Note that the mass, density, and external magnetic field

used in the momentum equation written in the medium rest
frame in this section should be those measured by an observer
in �′, and thus should be primed. Similarly, the plasma and
cyclotron frequencies used in the rest-frame dielectric tensor
should be primed. Yet, to keep things simple, and because
our interest is in the nonrelativistic limit γ → 1, we drop the
prime notation, which accounts for an error of at most a factor
γ = [1 − (v/c)2]−1/2.

A. Rotating Lorentz oscillator

A dielectric medium (solid or gas) can be seen as a cloud
of electrons bound to and surrounding a positive nucleus
(subscripts e and n, respectively), which are deformed in
the presence of electric fields. Following Lorentz [33] and
Sommerfeld [34], each electron-nucleus couple can be seen
as a driven harmonic oscillator with an elastic restoring force.
This force is characterized by a frequency ω0 which represents
the proper frequency of the electron moving in the spher-
ically symmetric potential of its nucleus. The macroscopic
response is obtained from superposition on all oscillators [35].
Although it describes a classical, phenomenological behavior,
we note that this Lorentz model is able to capture the essential
physics and match the quantum results for the polarization
phenomena we are interested in [36].

Let (r′
e, v

′
e) be the Lagrangian position and velocity of an

electron in response to an electromagnetic perturbation E′ and
B′ in the rest frame �′. Let us also assume that the nuclei are

FIG. 1. The rotating Lorentz model in the laboratory frame.

not affected by the perturbations, and are therefore in uniform
rotation. One then has v′

n = 0 and vn = � × rn, as shown in
Fig. 1. Taking into account the restoring force, an external
background magnetic field B′

0 ≈ B0, and the fictitious forces
due to the rotation, the momentum conservation equation for
electrons writes in �′ as

me
dv′

e

dt
= −e[E′ + v′

e × B̃′] − meω
2
0(r′

e − r′
n) + F′, (7)

where me and −e are, respectively, the mass and charge of
electrons, B̃′ = B′ + B0 is the total magnetic field seeing from
the rest frame, and

F′ = −me[2� × v′
e + � × (� × r′

e)] (8)

represents the fictitious force exerted on the electrons. Here
2� × v′

e is the Coriolis force and � × (� × r′
e) is the cen-

trifugal force, which are, respectively, linear and quadratic
in �.

As we consider only the linear response, the second-order
perturbative term v′

e × B′ in Eq. (7) can be neglected. Consid-
ering harmonic time-dependence fields (∝ e−iω′t ) and using
dyadic notations, the momentum equation can then, after
some algebra (see Appendix A), be rewritten in compact form:

me

e

[(
ω′2 + �2 − ω2

0

)
I + iω′�∗ × I − ��

] · v′
e = −iω′E′.

(9)

Here we introduced �∗ = 2� − eB0/me, the effective cy-
clotron frequency, which takes into account both the medium
angular rotation frequency � and the unsigned electronic cy-
clotron frequency �ce = e|B0|/me. Inverting the tensor on the
left side of Eq. (9) gives v′

e as a function of E′.
Now, because the global response of the dielectric is simply

obtained by superposition of the responses of each oscillator,
one finds, in particular, j′ = −eNe〈v′

e〉 with Ne the mean elec-
tronic density. Putting these pieces together, we get a relation
of the form of Eq. (6), from which the components of the
dielectric susceptibility tensor can be readily identified. As
detailed in Appendix B, one finds from Eq. (9)

χ′ = χ′
†
−

χ′
†
· �� · χ′

†

1 + T � · χ′
†
· �

, (10a)
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where

χ′
†

= −ω2
pe

ω′2I − �∗�∗ − iω′�∗ × I

ω′2 − �∗2 (10b)

and � is a row vector such that

�� = − 1

ω2
pe

[(
�2 − ω2

0

)
I − ��

]
, (10c)

with ωpe = [e2Ne/(ε0me)]1/2 the electron plasma frequency.
Although all nine components of χ′ are, in general, nonzero,
one verifies that χ′ reduces to the Hermitian form given in
Eq. (4) when the background magnetic field B0 vanishes, but
also when B0 ‖ �. As it happens that the latter corresponds
precisely to the aligned rotator case previously studied for
plasmas [12,13], we focus on this configuration and find

χ ′
‖(ω′) = − ω2

pe

ω′2 − ω2
0

(11)

the Lorentz’s constant dielectric susceptibility, and

χ ′
⊥(ω′) = −(ω′2 + �2 − ω2

0 )ω2
pe(

ω′2 + �2 − ω2
0

)2 − ω′2(2� − �ce)2
, (12a)

χ ′
×(ω′) = ω′(2� − �ce)ω2

pe(
ω′2 + �2 − ω2

0

)2 − ω′2(2� − �ce)2
. (12b)

In the limit of zero magnetic field (�ce = 0), we recover the
formulas found by Shiozawa in Ref. [24] (other than for the
unexplained absence of the centrifugal contribution in the
numerator of χ ′

⊥ but not elsewhere in Ref. [24]). If one further
considers � → 0, then ω′ → ω, and one verifies as expected
that χ ′

⊥(ω′) → χ‖(ω) and χ ′
×(ω′) → 0, that is, the classical

Lorentz oscillator isotropic response.

B. Rotating magnetized plasma

A plasma cannot be modeled as a superposition of Lorentz
oscillators because electrons are free instead of bound to a
nucleus, inducing collective effects that must be modeled
through kinetic or fluid descriptions. Here we consider the
simple case of a collisionless cold plasma (index e and i for
electrons and ions, respectively). The momentum conserva-
tion equation for each fluid s in its rest frame in response to a
perturbation (E′, B′) then writes

dv′
s

dt
= qs

ms
[E′ + v′

s × B̃′], (13)

where ms and qs are the mass and charge of the particles of
species s, and v′

s is the fluid’s Eulerian velocity at a given fixed
position r′

s in �′. Here the effect of rotation is hidden in the
total derivative, which following Thyagaraja and McClements
[37] writes

dv′
s

dt
= ∂t v′

s + v′
s · ∇′v′

s + 2� × v′
s + � × [� × r′

s]. (14)

Here ∂t v′
s + v′

s · ∇′v′
s is the classical Lagrangian derivative

(capturing fluid convection) and the next two terms are the
Coriolis and centrifugal contributions. Similarly to what was
done for the linearized perturbation obtained for dielectrics,

we then invert this relation (see Appendix B) and sum the
response of each species to get the plasma dielectric tensor

χ′ =
∑

s

[
χ′

†s
−

χ′
†s

· �s�s · χ′
†s

1 + T �s · χ′
†s

· �s

]
, (15a)

where

χ′
†s

= −ω2
ps

ω′2I − �∗
s �

∗
s − iω′�∗ × I

ω′2 − �∗
s

2 , (15b)

�s�s = − 1

ω2
ps

[�2I − ��], (15c)

and we have introduced �∗
s = 2� + qsB′

0/ms, the effective
cyclotron frequency generalized to any species. Taking again
B0 ‖ � to obtain the simpler form Eq. (4), we finally find

χ ′
‖(ω′) = −

∑
s

ω2
ps

ω′2 ∼ −ω2
pe

ω′2 , (16)

the static cold plasma’s susceptibility constant, and

χ ′
⊥(ω′) =

∑
s

−(ω′2 + �2)ω2
ps

(ω′2 + �2)2 − ω′2(2� + εs�cs)2
, (17a)

χ ′
×(ω′) =

∑
s

ω′(2� + εs�cs)ω2
ps

(ω′2 + �2)2 − ω′2(2� + εs�cs)2
, (17b)

where εs = qs/|qs|, ωps = [q2
s Ns/(ε0ms)]1/2 is the plasma

frequency and �cs = |qs|B0/ms is the unsigned cyclotron fre-
quency. We verify that neglecting the ionic contribution gives
back the results of Shiozawa [25], and that keeping only
the contribution of the Coriolis force leads to the rest-frame
susceptibilities already identified by Engels and Verheest [38].

C. Analogies

Comparing Eqs. (11) and (12) with Eqs. (16) and (17)
shows that the rotating Lorentz oscillator and the rotating
magnetized plasma models can be unified in a single model
in the limit of a high-frequency wave (that is when the ionic
contribution in plasmas can be neglected). Indeed, writing

χ ′
‖(ω′) = − ω2

pe

ω′2 − ω2
k

, (18a)

χ ′
⊥(ω′) = −(

ω′2 + �2 − ω2
k

)
ω2

pe(
ω′2 + �2 − ω2

k

)2 − ω′2(2� − �ce)2
, (18b)

χ ′
×(ω′) = ω′(2� − �ce)ω2

pe(
ω′2 + �2 − ω2

k

)2 − ω′2(2� − �ce)2
, (18c)

one recovers the rotating Lorentz oscillator susceptibility
Eqs. (11) and (12) for ωk = ω0 and the rotating magnetized
plasma susceptibility Eqs. (16) and (17) for ωk = 0. Although
it is not surprising in that ωk = 0 corresponds to a harmonic
oscillator with a zero-frequency restoring force, that is, a free
particle, this notation will prove convenient to study the rele-
vance of the Coriolis-Faraday equivalence in the next section.
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IV. INERTIAL CORRECTIONS TO POLARIZATION DRAG

The macroscopic models capturing the effect of rotation
derived in Sec. III can now be plugged in the formulas for
the laboratory frame circular birefringence theory recalled in
Sec. II to determine the refractive indices of L and R waves
in the aligned rotator configuration (k ‖ B0 ‖ �), taking into
account inertial effects, and that for any wave frequency. The
impact of inertial effect on polarization drag is then quantified
by introducing the inertial rotation angle δiner ≡ δmech − δrig,
where δmech and δrig are, respectively, the rotation polarization
per unit length along k with and without fictitious forces.

A. High-frequency Faraday rotation in a static
magnetized medium

Before studying the rotatory case, and because it will come
in handy to discuss later the relevance of the Coriolis-Faraday
analogy, let us first show how classical results on Faraday
rotation in the presence of a background magnetic field (see,
e.g., Sommerfeld [34]) can be recovered from Eq. (18).

Assuming a nonrotating medium (� = 0), the two frames
of reference � and �′ merge, and we can temporarily drop the
prime notation. Equation (5) then reduces to the well-known
dispersion relation of electromagnetic waves in a gyrotropic
medium n2

R/L(ω) = 1 + χ⊥(ω) ± χ×(ω). Taylor expanding
Eq. (18) for �ce/ω � 1, it comes from Eq. (1)

δmag(ω, B0) = e3

2cε0m2
e

NeB0

nφ

ω2(
ω2

k − ω2
)2 + O

([
�ce

ω

]2
)

,

(19)
with

nφ = √
1 + χ‖ =

[
1 − ω2

pe

ω2 − ω2
k

]1/2

. (20)

This first order approximation of Faraday rotation, valid at
high frequency, is commonly expressed by introducing the
Verdet constant V such that δmag = V B0 [39]. By identifica-
tion, one gets

V (ω) = e

2cme
ω

dnφ

dω
. (21)

This relation was derived by Becquerel [40] and is also recov-
ered by quantum models [36].

B. Validity of Coriolis-Faraday for high frequency
waves in rotating medium

Our interest being in evaluating possible contributions of
inertia to polarization drag, a natural first step is to examine
how the predictions of the phenomenological models devel-
oped here compare with the original effort in this direction
from Baranova and Zel’dovich [18].

For reference, Baranova and Zel’dovich postulated that
inertia should be the source of an extra contribution to polar-
ization drag compared to Player’s formula [10], and surmised
on the ground of Larmor’s theorem that this contribution
should be indiscernible—at least at high frequency—from
the Faraday rotation computed for the equivalent magnetic
field B∗ = −2me�/e. In other words, and using our notation,

Baranova and Zel’dovich predicted that

δiner (ω,�) = δmag(ω,−2me�/e). (22)

Using this analogy, one could, in principle, determine the in-
ertial contribution to polarization rotation from the definition
δmag = V B0 given the Verdet constant of the material. In fact,
this is precisely what was done by Baranova and Zel’dovich
[18] to estimate inertia effects in Jones’s experiment [9].

Consistent with Baranova and Zel’dovich’s hypothesis, we
focus first on the electronic response only and begin by con-
sidering the simpler case of an unmagnetized medium. We
thus take as our starting point Eq. (18) with �ce = 0. Plugging
these susceptibilities into Eq. (5), Eq. (1) then yields to first
order in � � ω (i.e., retaining only the Coriolis contribution),

δmech = �

c

[
ng − 1

nφ

]
+ �(ξ − 1)

c

[
nφ − 1

nφ

]
, (23a)

where

ξ (ω) = ω2
k − 2ω2

ω2
k − ω2

∼
{

1− for ωk � ω

2+ for ωk � ω.
(23b)

Note though that, as pointed out earlier, this expansion is
only valid if the refractive index nφ (ω ∓ �) does not vanishes
when �/ω goes to zero.

Examining Eq. (23), the first term on the right-hand side
corresponds precisely to the mechanical polarization rotation
δrig derived by Player [10]. The second term on the right-hand
side in Eq. (23) must thus correspond to the inertial (Coriolis,
as we limited ourselves to first order corrections in �) contri-
bution δiner. Expanding this last term with the definition of ξ

and nφ gives

δiner(ω,�) = − e2

cε0me

Ne�

nφ

ω2(
ω2

k − ω2
)2 , (24)

which we verify from Eq. (19) is precisely
δmag(ω,−2me�/e). This is thus exactly the Faraday-Coriolis
equivalence predicted by Baranova and Zel’dovich [18].

Also, similarly to what was done through the definition of
the Verdet constant in Eq. (21), the inertial correction can be
rewritten as

δiner(ω,�) = −�ω

c

dnφ

dω
. (25)

One finds that this term term precisely balances the dis-
persive part of δrig obtained when expanding the group
index ng = nφ + ω(dnφ/dω) in Eq. (23). The total spe-
cific polarization rotation δmech thus reduces to its kinematic
part (�/c)(nφ − n−1

φ ), a result anticipated by Baranova and
Zel’dovich [18] and explained in terms of angular momentum
exchange by Woerdman et al. [22].

Generalizing now this finding to the case of a magnetized
medium with an external background magnetic field B0, one
verifies using Eq. (18) (this time with �ce �= 0), Eqs. (5) and
(1), that

δ(ω) = δmag(ω, B0) + δrig(ω,�) + δmag(ω,−2me�/e) (26)

to lowest order in �/ω and �ce/ω. Here the first term on
the right-hand side δmag(ω, B0) is the usual high-frequency
Faraday rotation expected absent rotation whereas the sec-
ond term δrig(ω,�) represents the mechanical contribution
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due to rotation when neglecting the inertia correction to the
rest-frame properties and magnetic field. The third term there-
fore represents the inertial correction to polarization drag,
demonstrating that the Coriolis-Faraday analogy Eq. (22) also
holds true in this regime. We note here that for the probe
wavelength, poloidal rotation frequency and magnetic field
of 100 μm [16], 10 kHz [41], and 1 T typical of poloidal
magnetic field diagnostic in tokamaks the conditions ω �
�ce and ω � � are expected to hold, supporting in turn the
validity of the Coriolis-Faraday in this case. Furthermore, be-
cause the equivalent field |B∗| = 2me�/e computed for these
parameters is many order of magnitude smaller than the back-
ground field B0, this result suggests that the inertial correction
δiner should be negligible compared to the Faraday rotation
δmag(ω, B0) in Eq. (26). However, it must be stressed that this
does not necessarily imply that the mechanical contribution
δrig is negligible.

In summary, our results are consistent with the Coriolis-
Faraday term for high-frequency (ω � �ce and ω � �)
polarization drag both in unmagnetized and magnetized rotat-
ing medium, supporting Baranova and Zel’dovich predictions
in these regimes [18].

C. Intrinsic limits of the Faraday-Coriolis equivalence:
Magnetized rotating medium

Although attractive and effective in the high-frequency
regime considered above, a closer examination reveals a num-
ber of intrinsic limitations to the Coriolis-Faraday analogy to
quantify the effect of inertia on polarization drag.

A first limitation of the Faraday-Coriolis analogy, or at
least its implementation using the Verdet constant as done
by Baranova and Zel’dovich [18], arises for wave frequencies
such that the Faraday rotation due to the equivalent magnetic
field B∗ = −2me�/e is nonlinear in B∗. From Sec. IV A, this
occurs when eB∗/me approaches ω, that is, when 2� becomes
comparable to ω. Yet, because for most materials and regimes
we are typically interested in, the wave frequency is orders of
magnitude larger than the rotation frequency, andthis limit is
not particularly constraining

A second and more limiting problem of the Faraday-
Coriolis analogy is found when the properties of a medium in
rotation are such that two circularly polarized eigenmodes are
found for a given wave frequency ω, but that the properties
of this same media at rest in the presence of the equivalent
magnetic field B∗ do not allow for at least one of these modes
at this same frequency. In this case one is indeed left with
polarization drag but no corresponding equivalent Faraday
rotation. This is, for instance, what is found in an underdense
(i.e., ωpe � �ce) rotating magnetized plasma in the limit that
ωpe � �.

To see this, recall that the cutoffs for right- and left-
circularly polarized eigenmodes propagating along B0 in an
electron-ion plasma write

ωR = �ce − �ci

2
+

[(
�ce + �ci

2

)2

+ ωpe
2 + ωpi

2

]1/2

(27a)

FIG. 2. Bandwidth where polarization rotation is at play in an
underdense rotating magnetized plasma (grey, top), versus those for
which the equivalent Faraday rotation would be defined considering
the Larmor equivalence for electrons (red, middle) and ions (blue,
bottom). For ωc � ω � ωpe, polarization rotation in an underdense
rotating magnetized plasma occurs, but the equivalent Faraday rota-
tion is not defined.

and

ωL = �ci − �ce

2
+

[(
�ce + �ci

2

)2

+ ωpe
2 + ωpi

2

]1/2

.

(27b)
For the underdense plasma considered here, ωR → �ce

and ωL → �ci, and, as a result, propagation of both modes
is possible at any frequency in the limit ωpe/�ce → 0. In
Refs. [12,13], it was shown that this holds true when account-
ing for rotation, other than for the existence in this case of a
mechanically induced low-frequency cutoff:

ωc ∼ [
ω2

pe�
]1/3 � �ci. (28)

As illustrated in Fig. 2, it was further shown that polarization
rotation occurs primarily due to the mechanical rotation just
above the cutoff, and conversely primarily due to the magnetic
field at higher frequency, with a crossover for a frequency

ω ∼ η
[
�3

ce�
]1/4

, (29)

with η2 the electron to ion mass ratio. Note that this was
done neglecting inertia corrections, but this result will be
confirmed a posteriori in this paper. Meanwhile, by the def-
inition of B∗ = 2ms�/qs, one finds �∗

cs = 2qs/|qs|�, with
�∗

cs the cyclotron frequency computed for the equivalent field
B∗. If one further makes the reasonable assumption ωpe � �,
then necessarily ωpe � �∗

cs, which implies that the plasma is
overdense for the equivalent magnetic field B∗. In this case,
using Eqs. (27a) and (27b), both eigenmodes are only found
below ωL → �∗

ci = 2� and above ωR → ωpe. Accordingly,
the Faraday rotation due to the equivalent field B∗ is only de-
fined for ω � 2� and ω � ωpe. Putting these pieces together,
we are left with the finding that although polarization drag is
at play in our underdense plasma for ωc � ω � �ci (top panel
in Fig. 2), the Coriolis-Faraday equivalence cannot be used to
quantify inertial corrections in this frequency band. Because it
is precisely in this frequency band that both polarization drag
in the rotating magnetosphere of pulsars [12] and enhanced
mechanical polarization drag [13] are expected, we will now
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TABLE I. Baseline plasma parameters used to estimate inertial
corrections to polarization drag in an underdense plasma, taken from
Ref. [13].

Plasma density Ne 1020 m−3

Magnetic field B0 103 T
Rotation frequency � 100 Hz

examine mechanical corrections using the models developed
in Sec. III.

D. Inertial corrections to low frequency polarization drag
in a rotating magnetized plasma

Having seen that the Faraday-Coriolis cannot account for
inertia corrections to low-frequency polarization drag in a
rotating magnetized plasma, we now would like to assess
whether inertia corrections are important in this regime. For
this, we take as a reference the underdense plasma properties
already considered in Ref. [13], which are recalled in Table I.

Plugging the dielectric tensor components of the magne-
tized plasma model Eqs. (16) and (17) from Sec. III B in
Eq. (5) yields the wave indices for L- and R-circularly polar-
ized modes,

n2
R/L(ω) = 1 −

∑
s

ω2
ps

ω′2

[
ω′3

ω(ω2 ± εs�csω′)
∓ �

ω

]
, (30)

with again ω′ = ω ∓ � the rotating Doppler shift. For a
frequency below the ion cyclotron frequency but above the
mechanically induced cutoff ωc, i.e., ωc � ω � �ci, one
shows that this leads to a specific rotatory power to first order
in �:

δmech ∼ δrig − �c

v2
A

. (31)

In other words, the inertial correction to polarization drag
writes δiner = −�c/v2

A with vA the Alfvén speed. Note that it
is independent of the wave frequency to this order. This behav-
ior and the scaling are confirmed when obtaining numerically
the polarization rotation angle obtained from Eq. (30), as
shown in Fig. 3. We also verify in this same figure that the in-
ertial correction cannot be deduced from the Faraday-Coriolis
equivalence, whether it is considering ions or electrons.
Indeed, as previously discussed in either case, the Faraday-
Coriolis term is not defined below ωpe.

This inertial contribution should now be compared to the
two scalings valid below the ion-cyclotron frequency [13],
namely, δrig ∼ −ω2

pe�/(2cω2) for the mechanically dom-
inated polarization rotation at low frequency, and δrig ∼
ω2

piω
2/(2c�3

ci ) for the higher frequency Faraday-dominated
polarization rotation. Inertial corrections to the mechanically
dominated region thus write

δiner = 2η2ω2

�2
ci

δrig. (32)

This implies that inertial corrections add up to the rigid so-
lution. Since this is valid for low-frequency ω � �ci, these
corrections are, however, small, and in effect independent
of � when neglecting second-order effect (centrifuge terms).

FIG. 3. Inertial correction to polarization drag computed from
Eq. (30) for the plasma parameters given in Table I (in black). The
horizontal grey dashed curve corresponds to the asymptotic result
−�c/v2

A. The red and blue curves represent the correction deduced
from the Faraday-Coriolis equivalence for these same parameters
and considering the equivalent magnetic field B∗ for, respectively,
electrons and ions, confirming the nonapplicability of this analogy
for low-frequency polarization drag.

Meanwhile, inertial corrections to the Faraday dominated po-
larization rotation write

δiner = −2�ci�

ω2
δrig. (33)

Inertial corrections thus subtract from the rigid solution in
this limit, with inertial corrections in the same direction as
the mechanical contribution but opposite to Faraday rotation.
We note that inertial corrections can be here more marked,
especially for larger � approaching �ci.

These trends are finally confirmed when solving numer-
ically for the relative contribution of inertial corrections to
polarization rotation as a function of the angular frequency
� as shown in Fig. 4. Consistent with Eqs. (32) and (33), one
verifies that the ratio δiner/δrig remains independent of � just
above the cutoff ωc, that is, in the polarization drag dominated
regime, but grows with � above the crossover frequency ω.
Furthermore, for the latter and for � approaching �ci, cor-
rections of O(1) are observed as expected. Note though that
because as shown in Eqs. (28) and (29), both ωc and ω grow
with �, the frequency band over which polarization rotation is
defined and the region over which polarization drag dominates
over Faraday rotation varies with �. In fact, this dependence
on � is actually more complex, as these two frequencies are
also affected by inertia. Yet, while the crossover frequency
ω clearly deviates from the simple scaling Eq. (29) for large
rotation, and even starts to decrease with � past a point,
we observe in Fig. 4 that inertial corrections to the cutoff
frequency ωc are minimal.

To sum up, because both circularly polarized modes
propagate below �ci along the axis of an underdense rotat-
ing magnetized plasma in an aligned rotator configuration
(k||�||B0), polarization rotation occurs and could, in prin-
ciple, be affected by inertia. At such frequency though,
the Faraday-Coriolis equivalence is not applicable as the
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FIG. 4. Contribution of inertial effects to the polarization rota-
tion relative to the rigid body polarization rotation (i.e., without
inertial effects) for an angular velocity � between 10−6�ci and
�ci/10. Plasma conditions (Ne, B0) correspond to those given in
Table I. The white dash-dotted lines represent the cutoff ωc and
crossover ω frequency without inertial corrections, as given in
Eqs. (28) and (29). The large values near ω are simply the conse-
quence that δrig = 0 at the crossover frequency.

frequency falls within a cutoff band of the circularly polarized
modes obtained for the equivalent magnetic field B. Com-
puting this inertial contribution from the phenomenological
models developed in Sec. III, we show, however, that correc-
tions remain small in the polarization drag dominated regime
no matter how large the rotation, and that corrections are
also small in the Faraday dominated regime other than when
�/�ci = O(1). These results suggest that inertial corrections
can be safely neglected when considering the low-frequency
enhancement of polarization rotation near the mechanically
induced cutoff ωc [13].

V. CONCLUSIONS

In this paper, we examined possible inertial correc-
tions to the polarization drag—or mechanically induced
birefringence—experienced by light propagating along the
axis of rotation of a medium. More specifically, we considered
the effect associated with the inertial corrections induced by
rotation to the dielectric response of a rotating medium in its
rest frame. To do so, we included the fictitious Coriolis and
centrifugal forces into classical microscopic models for the
dynamics of a rotating Lorentz dielectric and of a cold rotating
plasma. The associated corrections to the circular birefrin-
gence as observed in the laboratory frame were then deduced
based on existing theory [8,12], relating rest-frame dielectric
properties to polarization drag in the laboratory frame.

These models confirm that for high-frequency waves (i.e.,
ω � �ce and ω � �), the inertial correction is precisely the
one obtained if considering, instead of rotation, the Faraday
rotation associated with the magnetic field obtained from
Larmor’s theorem, as originally suggested by Baranova and
Zel’dovich [18]. From this finding, we infer that for the
high-probe frequency used for poloidal magnetic field mea-
surements in tokamaks, the polarization rotation associated
with inertial corrections to polarization drag should be neg-
ligible. This, however, does not imply that polarization drag

itself is negligible. Addressing this important question will
require extending the theory laid out here to nonunderdense
regimes and more complex geometries.

On the other hand, the models developed here show not
only that this simple analogy fails at low frequency (as already
anticipated by Baranova and Zel’dovich) but also in rotating
magnetized media such as a rotating magnetized plasma. In
this particular case, it is, however, demonstrated that iner-
tial corrections to polarization drag below the ion cyclotron
frequency are, in general, negligible, therefore confirming a
posteriori the results obtained previously when neglecting
these effects [13].

Finally, although this paper does not provide elements that
could immediately weigh in on the apparent contradiction
between Jones’s experimental observations [9] and Baranova
and Zel’dovich’s predictions [18] for a rotating glass rod, as
one would need for microscopic models for a rotating molec-
ular dielectric, we note that the results obtained here could,
in principle, be used to confirm experimentally the existence
of inertial corrections to polarization drag in the case of a
rotating plasma.
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APPENDIX A: DYADIC NOTATION AND IDENTITIES

Let a and b be two vectors of R3. We note ab the dyadic
product generating the second-order tensor (ab)i j = aib j . The
dyadic unit I, whose corresponding matrix is the unit matrix,
verifies a · I = I · a = a. Now let F be a dyad and F j its jth
column written as a vector, then the jth column of the vector-
dyad cross product a × F is given by

(a × F) j = a × F j . (A1)

With these definitions and with c a vector of R3:

a × (b × c) = [a × (b × I)] · c, (A2)

a × (b × I) = ba − (a · b)I. (A3)

Using Eqs. (A2) and (A3) with a = b = � and c = r′
e, the

centrifugal contribution may be rewritten as

� × (� × r′
e) = (�� − �2I) · r′

e.

APPENDIX B: INVERSION OF THE DIELECTRIC TENSOR

Let us consider a tensor χ′ whose inverse is

χ′−1 = − 1

ω2
pe

[(
ω′2 + �2 − ω2

0

)
I + iω′�∗ × I − ��

]
.

To get the general expression of χ′, we first invert the Lorentz-
Coriolis contributions for which a method is known (see,
e.g., Ref. [38]). Assuming the reduced tensor can be written
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as χ′
†

= αI + β�∗�∗ + γ�∗ × I, with α, β, γ ∈ R; it comes

from χ′
†
· χ′

†
−1 = I that

χ′
†

= −ω2
pe

ω′2I − �∗�∗ − iω′�∗ × I

ω′2 − �∗2 .

Then, we use the Sherman-Morrison formula [43], which
states that for any second-order tensor F and a and b two

vectors of R3, if 1 + T b · F−1 · a �= 1, then

(F + ab)−1 = F−1 − F−1 · ab · F−1

1 + T b · F−1 · a
.

Applying this relation with F = χ′
†

and a = b = � gives
Eqs. (10) and (15).
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