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Thermorelaxing multicomponent flows investigated with a Baer-Nunziato-type model

Chao Zhang 1,* and Lifeng Wang1,2,†

1Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
2Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China

(Received 17 April 2023; accepted 25 August 2023; published 20 October 2023)

In inertial confinement fusion (ICF) implosions, mixing the ablator into the fuel and the hot spot is one of the
most adverse factors that lead to ignition degradation. Recent experiments in the Marble campaign at the Omega
laser facility and the National Ignition Facility demonstrate the significance of the temperature separation in
heterogeneous mixing flows [Haines et al., Nat. Commun. 11, 544 (2020)]. In the present work we provide
an approach to deal with thermally disequilibrium multicomponent flows with the ultimate aim to investigate
the temperature separation impact on mixing and fusion burn. The present work is twofold: (a) We derive a
model governing the multicomponent flows in thermal disequilibrium with transport terms and (b) we use the
derived model to study the Rayleigh-Taylor (RT) instability in thermally relaxing multicomponent systems. The
model is reduced from the full disequilibrium multiphase Baer-Nunziato model in the limit of small Knudsen
number Kn � 1. Velocity disequilibrium is closed with the diffusion laws and only one mass-weighted velocity
is retained formally. Thus, the complex wave structure of the original Baer-Nunziato model is simplified to
a large extent and the obtained model is much more computationally affordable. Moreover, the capability to
deal with finite-temperature relaxation is kept. Efficient numerical methods for solving the proposed model are
also presented. Equipped with the proposed model and numerical methods, we further investigate the impact of
thermal relaxation on the RT instability development at the ICF deceleration stage. On the basis of numerical
simulations, we have found that for the RT instability at an interface between the high-density low-temperature
component and the low-density high-temperature component, the thermal relaxation significantly suppresses the
development of the instability.
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I. INTRODUCTION

Mixing of the ablator into the fuel and the hot spot is
considered to be one of the most adverse factors that leads
to ignition degradation in inertial confinement fusion (ICF)
implosions. Mixing takes place at different scales driven by
different mechanisms. At the macroscopic scale where Kn =
λ/� � 1 (with λ and � being the mean free path and the
characteristic spatial scale), the hydrodynamic instabilities
[such as the Rayleigh-Taylor instability (RTI), Richtmyer-
Meshkov instability, and Kelvin-Helmholtz instability] play
predominate roles in causing mixing. With the continuous
development of the hydrodynamic instabilities, the flows tran-
sition into turbulence where mixing happens at very different
scales. At the small scale where Kn = O(1) the mass diffu-
sion is proceeding all the time as result of random molecular
motions (i.e., the kinetic effect). These two mechanisms have
fundamental difference and scaling laws. For example, the
mixing length caused by RTI and further induced turbulence
can be scaled as Lmix = αAgt2, where α is a constant, A is the
Atwood number, g is the acceleration, and t the time. In con-
trast, the mixing length caused by mass diffusion is expressed
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as Lmix = β
√

Dt , where D is the mass diffusivity and β is a
constant. Recent works demonstrate that the mass. diffusion
maybe the leading mixing mechanism for the implosion ex-
periments under moderate temperature and convergence [1].

The ICF mixing is usually categorized into two types, i.e.,
atomic mixing and chunk mixing. In the former the mixing of
the components takes place on the atomic scale, while in the
latter the constituents are separated from each other as either
at a rippled interface or in discrete clumps [2]. The ICF mix-
ing is intrinsically heterogeneous as a combination of atomic
mixing and nonatomic mixing. In the course of hydrodynamic
development towards turbulence, the chunk mixing dominate
the early stage and the atomic mixing takes over at later
times. Meanwhile, the mass diffusion is always producing
atomic mixing. From the perspective of numerical modeling,
to discriminate different types of mixing with direct numerical
simulation is a formidable task due to their very different char-
acteristic scales. Therefore, one has to rely on mixing models
that allow the coarse-grained description of the atomic mixing
on an affordable grid (Fig. 1). The grid does not resolve the
small scale mixing topology and the component mass fraction
span over several computational cells in the macroscopic de-
scription. In the mixing cells some closure relation is needed
to make the governing equations solvable. One of the most
frequently used closures is temperature equilibrium, which is
assumed in the ICF-relevant mixing models such as the k-L (k
and L stands for the energy per unit mass and the characteristic
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FIG. 1. The typical mass fraction distribution on the Eulerian
grid in the case of heterogeneous mixing.

dimension of the dominant eddies, respectively) model [3,4]
and the BHR (named after families of the first three authors,
i.e., Besnard-Harlow-Rauenzahn) model [5,6]. These models
have been successfully used to simulate some experiments on
the National Ignition Facility (NIF), e.g., see Refs. [7,8]. How-
ever, they mostly deal with planar experiments and struggle
when applied to implosions. Moreover, they give numerical
results that deviate from experimental measurements in the
case of temperature separation. The root of such failure is
attributed to the thermal equilibrium assumption, which has
been proved in subsequent experiments at the Marble platform
at NIF [9,10] (referred to as “Marble” henceforth).

As noted by Haines et al. [9,11], strong ion temper-
ature separation arises during the shock flash as well as
the compression heating of separated materials. Mechanisms
that drive the component temperatures towards equilibrium
include electron thermal conduction and local collision in
atomic mixing. They happen in a timescale comparable to that
of the ICF implosion (at least 1.6 ns for the Marble campaign
on the Omega facility [11]). Thus, the ion temperatures of
each species are not fully equilibrated in the course of ICF
implosions. This means that in numerical simulation the com-
ponents should have their own temperature in a mixing cell.

We aim to develop a multicomponent model to describe the
temperature separation in mixing. Note that the phenomenlo-
hgical two-field turbulence models [12–15] has the potential
to deal with turbulence mixing with finite-temperature re-
laxation. However, here we adopt a more direct and strict
derivation from a fully disequilibrium model—the BN model
[16]. Due to the complexity and relaxation stiffness of the
original BN model, a hierarchy of reduced models has been
established (Fig. 2). Reduced models are derived in the
limit of instantaneous relaxation of corresponding variable
(chemical potential, pressure, velocity, and temperature). For
example, in the case where the phase velocities relax instan-
taneously, one can derive the u-eq model via the asymptotic
analysis. Starting from the u-eq model, one can further derive
the up-eq model (i.e., the Kapila’s five-equation model [17])
on the basis of the instantaneous phase pressure relaxation.
Following such a procedure, a full hierarchy of reduced mod-
els can be obtained. A similar hierarchy has been described by
Lund [18]; however, the velocity disequilibrium that is vital
for modeling mass diffusion is neglected there.

The applicability of a particular reduced model is deter-
mined by the corresponding assumption on relaxation rates. In
most applications the thermal relaxation time is smaller than
the mechanical (pressure and velocity) relaxation times, and
thus models in the right subsidiary are scarcely used. In term
of the current work, we need a model that retains the thermal

FIG. 2. The hierarchy of the reduced models of the Baer-
Nunziato model.

disequilibrium. Moreover, since mass diffusion is related to
the species velocity difference, the velocity disequilibrium
should also be maintained. Thus, the possible models to sat-
isfy these requirements are the original BN model and the
p-eq model. Here we focus on reformulation of the former by
invoking the diffusion laws to close the velocity difference and
abandoning the terms of order O(Kn2). Formally, the derived
model has one velocity, i.e., the mass-weighted velocity. In
fact, the hyperbolic subsystem of the model coincides with
the six-equation model presented in Ref. [19], which is more
robust than the Kapila’s five-equation model in numerical
implementation. This reduction significantly simplifies the
wave structure of the hyperbolic subsystem of the model, thus
improving the computational efficiency.

We propose second-order methods for solving the
hyperbolic-parabolic-relaxation system. The numerical meth-
ods are validated against some benchmark problems. Being
equipped with the model and numerical methods, we then
investigate the RTI in the thermally relaxing multicomponent
flows, especially the dependence of the mixing length on the
thermal relaxation rate and the initial temperature separation.

The rest of the article is organized as follows. In Sec. II
we derive the reduced temperature-disequilibrium model with
diffusions. In Sec. III the numerical methods for solving
the proposed model are briefly described. In Sec. IV some
numerical results for validating the numerical methods are
presented. Analysis of the RTI problem is performed in partic-
ular detail to investigate the impact of the thermal relaxation.

II. MODEL FORMULATION

A. The BN-type seven-equation model

The starting point of the following model formulation is the
complete BN-type seven-equation model [16,20–22]. It reads

∂αkρk

∂t
+ ∇·(αkρkuk ) = 0, (1a)

∂αkρkuk

∂t
+ ∇·(αkρkuk ⊗ uk − αkT k )

= −T I ·∇αk + Mk, (1b)

∂αkρkEk

∂t
+ ∇·(αkρkEkuk − αkT k·uk )

= −uI ·(T I ·∇αk ) + uIMk − pIFk + Qk + qk + Ik, (1c)

∂αk

∂t
+ uI ·∇αk = Fk, (1d)
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where the notations used are standard: αk, ρk, uk, pk, T k ,
and Ek are the volume fraction, phase density, velocity, pres-
sure, stress tensor, and total energy of phase k.

The BN-type formulation can also be derived by averaging
the one-phase governing equations [23–25]. Within such a
framework the volume fraction αk is the spatially average
characteristic function Xk , which takes the value of 1 (or 0)
in the presence (or absence) of the kth component, i.e.,

Xk (r, t ) =
{

1, the point r in the material k,

0, otherwise.

Then, we have

αk = 1

V

∫
V

XkdV = Vk

V
.

The volume fraction αk can be perceived as a macroscopic
measure of spatial mixing extent when the microscopic inter-
faces cannot be accurately resolved. Moreover, the BN model
can be used for describing both miscible and immiscible flows
according to different interpretations of αk and other variables
[26].

For the sake of clarity we restrict our discussions within
the scope of two-phase flows, k = 1, 2. The phase density
ρk is defined as the mass per unit volume occupied by kth
phase. The mixture density ρ is the sum of the partial densities
αkρk , i.e., ρ = ∑

αkρk . The last equation [Eq. (1d)] is written
for only one component thanks to the saturation constraint
for volume fractions

∑2
k=1 αk = 1. The total energy is Ek =

ek + Kk , where ek and Kk = 1
2 uk·uk are the internal energy

and kinetic energy, respectively.
The variables with the subscript “I” represent the variables

at interfaces, for which there are several possible definitions
[20,22,27]. Here we choose the following:

uI = u =
∑

ykuk, pI =
∑

αk pk,

τ I =
∑

αkτ k, T I = −pI I + τ I ,

where yk denotes the mass fraction yk = αkρk/ρ and u is the
mass-fraction-weighted mean velocity. Here we have used the
mass-weighted velocity u to approximate the interface veloc-
ity uI . Other possible definitions for uI as convex combination
of component velocities will result in the same reduced model
since (uI − u) = O(Kn), as to be shown in Sec. II C.

The interfacial stress τ I is defined in such way that the
thermodynamical laws are respected. In the present work we
do not expand the issue on defining the interfacial variables
since they are included in the terms of order Kn2 that are to be
omitted.

The interphase exchange terms include the velocity relax-
ation Mk , the pressure relaxation Fk , and the temperature
relaxation Qk . They are as follows:

Mk = ϑ (uk∗ − uk ),

Fk = ς (pk − pk∗ ), (2)

Qk = η(Tk∗ − Tk ),

where k∗ denotes the conjugate component of the kth com-
ponent, i.e., k = 1, k∗ = 2 or k = 2, k∗ = 1. The relaxation
velocities are all positive ϑ > 0, η > 0, ς > 0.

The phase stress tensor, T k , can be written as

T k = −pkI + τ k . (3)

For the viscous part we use the Newtonian approximation

τ k = 2μkDk + (
μb,k − 2

3μk
)∇·uk, (4)

where μk > 0 is the coefficient of shear viscosity and μb,k > 0

is the coefficient of bulk viscosity. The tensor Dk is the defor-
mation rate, which takes the following form:

Dk = 1
2 [∇uk + (∇uk )T ].

The heat conduction is represented by qk = ∇·(λk∇Tk ).
The term Ik is a volume energy source term, which can be
used to model the laser energy absorption in direct drive ICF.

Performing straightforward calculus similar to that of Mur-
rone [28], one can derive the following equation for the
internal energy:

∂αkρkek

∂t
+ ∇·(αkρkekuk )

= −αk pk∇·uk − pIFk + (u − uk )·Mk

+ (uk − u)·(T I ·∇αk ) + Gk, (5)

where Gk = qk + Ik + Sk + Qk .
Sk represents the friction heat,

Sk = ∇ · (αkτ k · uk ) − uk · (∇ · αkτ k ) = αkτ k : Dk .

B. Splitting diffusion-related terms

In continuum mechanics the mass diffusion strength is de-
scribed through the difference between the phase velocity and
the velocity of the mass center. We introduce the following
definition of the diffusion velocity:

wk = uk − u. (6)

For future use, we gather the diffusion related terms sep-
arately. To do this, we replace uk by u + wk to obtain the
following reformulation of Eq. (1):

∂αkρk

∂t
+ ∇·(αkρku) = −∇·Jk, (7a)

∂αkρku
∂t

+ ∇·(αkρkuu − αkT ak ) = −T I ·∇αk + Mk + ∂αkρkwk

∂t
+ ∇·(2αkρkuwk + αkρkwkwk ) + ∇·(αkT wk ),

(7b)
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∂αkρkEak

∂t
+ ∇·(αkρkEaku − αkT ak·u) = −uI ·(T I ·∇αk ) + uMk − pIFk + Qk + qk + Ik − ∂αkρkEwk

∂t
−∇·[αkρk (uEwk + Eakwk + Ewkwk )]

+∇·(αkT ak·wk + αkT wk·u + αkT wk·wk ), (7c)

∂αk

∂t
+ u·∇αk = Fk, (7d)

where the diffusion flux

Jk = αkρkwk .

We have used the following decomposition:

Ek = Eak + Ewk, T k = T ak + τwk,

The quantities with subscript “ak” contain only the mass-
centered velocity u, i.e.,

Eak = ek + 1
2 u·u,

T ak = −pkI + τ ak,

τ ak = 2μkDak + (
μb,k − 2

3μk
)∇·u,

τwk = 2μkDwk + (
μb,k − 2

3μk
)∇·wk

Dk = Dak + Dwk,

Dak = 1
2 [∇u + (∇u)T],

Dwk = 1
2 [∇wk + (∇wk )T].

The terms with wk can be regarded as diffusion induced.
Similarly, Eq. (5) can be reformulated as

∂αkρkek

∂t
+ ∇·(αkρkeku)

= −αk pk∇·u − pIFk + wk·Mk + wk·(T I ·∇αk )

− ∇·(αkρkekwk ) − αk pk∇·wk + Gk . (8)

C. Reduction of the BN model

Continuum assumption is usually accepted in the case of a
small Knudsen number, i.e.,

Kn = λ

�
� 0.001 � 1. (9)

For moderate Mach number and collision of ions with
comparable masses, it can be shown that [29]

|wk|
ushock

≈ λ

�
� 1. (10)

With such scale estimation, in the following we will drop
the terms of order O(|wk

2|). The velocity relaxation Mk in
the model (1) is related to the ion friction μkk∗νink (wk − wk∗ ),
where μkk∗ is the reduced mass, νi is the ion collision fre-
quency, and nk is the number density. This term is finite
under the concerned scenario. Thus, the velocity relaxation
rate is estimated to be O(1). The general idea is to reduce the
Baer-Nunziato model (1) via order analysis. More concretely,
we will drop O(|wk

2|) terms and close O(|wk|) terms with the
established diffusion laws.

The diffusion velocity is defined with the diffusion laws
such as Fick’s law, resulting in the redundance of the model
(7b). Thus we can retain only one momentum equation, i.e.,
the sum of Eq. (7b),

∂ρu
∂t

+ ∇·
(
ρuu −

∑
αkT ak

)
=

∑
∇·(αkT wk ). (11)

With such evaluation, the equation for the internal energy
[Eq. (8)] is reduced to

∂αkρkek

∂t
+ ∇·(αkρkeku)

= −αk pk∇·u − pIFk − ∇·(αkρkekwk )

− αk pk∇·wk + Gk . (12)

By summing Eq. (7c) and abandoning terms of O(|wk|2),
one can obtain

∂ρEa

∂t
+ ∇·(ρEau − T a·u)

=
∑

(Qk + qk + Ik ) − ∇·
(∑

αkρkekwk

)
+ ∇·

(∑
αkT ak·wk +

∑
αkT wk·u

)
, (13)

where

Ea =
∑

ykEak .

Note that the enthalpy diffusion flux comes from the sec-
ond and third terms on the right-hand side of Eq. (13).

After the above reduction we can have the following
closed system consisting of the phase mass equations (7a), the
mixture momentum equation (11), the phase internal energy
equation (12), and the volume fraction equation (1d). For
clarity, we present the obtained model as follows:

∂αkρk

∂t
+ ∇·(αkρku) = −∇·Jk︸ ︷︷ ︸

Mass Diff.

, (14a)

∂ρu
∂t

+ ∇·(ρuu) = ∇·
(∑

αkT k

)
︸ ︷︷ ︸

Visc.

, (14b)

∂αkρkek

∂t
+ ∇·(αkρkeku) + αk pk∇·u

= −pIFk︸ ︷︷ ︸
Pres. Relax

−∇·(αkρkekwk ) − αk pk∇·wk︸ ︷︷ ︸
Mass Diff.

+ Sk︸︷︷︸
Visc.

+ Qk︸︷︷︸
Temp. Relax

+ qk + Ik︸ ︷︷ ︸
Heat Cond. and Heat Scr.

, (14c)

∂αk

∂t
+ u·∇αk = Fk︸︷︷︸

Pres. Relax

. (14d)
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The absence of a mass diffusion term in the volume fraction
equation (14d) is due to the particular choice of interfacial
velocity uI = u. In a more general case we can reformulate
Eq. (1d) as follows:

∂αk

∂t
+ u·∇αk = (u − uI )·∇αk + Fk.

Here one can see that the first term on the right-hand side is
actually of order O(Kn2) as long as the uI is of the same order
as uk . This means that even in this general situation Eq. (14d)
holds in the context our approximation.

In the framework of the fractional step method, the hy-
drodynamic subsystem of Eq. (14) is nonconservative due
to the equation for internal energy and the volume fraction.
To alleviate the nonconservativeness, we use the mixture en-
ergy equation (13) as an auxiliary equation in solving the
hyperbolic subsystem as the six-equation model [19]. An
instantaneous pressure relaxation follow after solving the hy-
perbolic subsystem, thus resulting in a pressure-equilibrium
model. Such an approach ensures robustness in numeri-
cal implementation with marginal sacrifice of computation
efficiency.

In comparison with the hydrodynamic model in
Refs. [30,31], the proposed model additionally resolves the
intrinsic density ρk and the component specific internal
energy ek . Note that the standard model like that in
Refs. [30,31] only provides the partial density ρ̂k = αkρk

and the mixture internal energy e. This allows our model to
compute the temperatures of each component. The mixture
energy equation (13) is formally consistent with those in
Refs. [30,31]. The main difference consists in the constitutive
law for the viscous stress. In our formulation the component
velocity is determined with the average velocity u (that is
provided by the model) and the diffusion velocity wk (which
is provided by the diffusion law), and thus the viscous stress
of each component can be determined.

Note that Eq. (13) is not a strict consequence of Eq. (14)
since the latter loses a momentum equation after reduction.
However, Eq. (13) is only invoked in solving the hyperbolic
part where the consistency remains.

The proposed model provides a first step towards the inclu-
sion of the ion temperature separation effect in macroscopic
radiation-hydrodynamics simulations. In comparison with the
closure framework proposed in Ref. [32], the ion disequilib-
rium is kept while the ion-electron temperature equilibrium is
assumed. The latter is valid when the concerned characteristic
timescale is much larger than the ion-electron relaxation time.

However, the ion-electron temperature disequilibrium is
also important for ICF applications whose characteristic
timescale is comparable to the ion-electron temperature relax-
ation time. A strategy to consider such effect is to simplify
the multifluid plasma model by performing the Chapman-
Enskog-like asymptotic expansion under the assumption that
some relaxation timescales are small parameters. Such a
method is strict; however, it is also very complicated. A much
simpler phenomenological method is to neglect the mass and
momentum of electron and treat it as an external field to the
ions. Moreover, the extension to the case with three or more
components does not pose fundamental difficulty as long as
the derivation starts from a symmetrical formulation of the

BN type model. In the present work we do not dig into these
complexities and concentrate on the fundamental step that
allows the ion temperature separation.

We now check the entropy dissipative property of the
model. The full entropy equation before reduction can be
derived in a way similarly as in Refs. [28,33], which read

αkρkTk
Dksk

Dt
= (pk − pI )Fk + Gk + pkwk · ∇αk

+ wk·T I ·∇αk + (u − uk ) · Mk . (15)

The last three terms are evaluated to be of O(Kn2) and there-
fore abandoned. Thus, the entropy equation is reduced to the
following:

αkρkTk
Dksk

Dt
= (pk − pI )Fk + Gk . (16)

The model (14) keeps the equations for the internal energy,
and abandoning a momentum equation has no impact on the
entropy equation. Therefore, the above reduced entropy equa-
tion can also be derived from the reduced model (14). With
[Eq. (16)], one can readily prove the entropy inequality in the
absence of external heat flux and energy source,

2∑
k=1

αkρk
Dksk

Dt
+

2∑
k=1

∇·
(

qk

Tk

)
−

2∑
k=1

Ik

Tk
� 0. (17)

The proof can be performed in a manner similar to that in
our previous paper [33], and we provide a brief proof in the
Appendix.

In the model (14) all the mass diffusion effects are gathered
into the terms containing wk . In comparision with the model
in the literature [31], our model contains the mass diffusion
contribution to the viscous stress. Moreover, as the original
Baer-Nunziato model, this model includes all the disequi-
librium effects in phase pressure and temperature, which is
driven towards equilibrium with the corresponding relaxation
terms.

The derived model has certain advantages over the widely
used model of Cook [31] in the following aspects: (a) It
retains the pressure-temperature disequilibria between phases
through the relaxation terms, thus allowing us to consider the
disequilibrium effects between components. Such disequilib-
rium is significant in some phenomena of plasma physics. (b)
It frees the hydrodynamic step of the temperature equilibrium
constraint, which is the root of spurious oscillations for diffuse
interface problems [34]. Some special numerical cures exist in
the literature [35,36]. (c) As to the constitutive law for viscous
stress, the viscous stress of each component is determined
with their own velocity (derived by virture of the diffusion
law), which is compatible with thermodynamic relations. In
the model of Cook [31], only the mass-weighted velocity is
used for the evaluation of viscous stress, which is decoupled
from the diffusion effect. These two approaches may lead to
noticeable difference in simulation. A numerical test is to be
considered in Sec. IV to demonstrate this issue.

D. Diffusion models

To make the model solvable, some closure relations
are needed to relate the diffusion terms to basic variables
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(including density, temperature, and pressure). The diffu-
sion coefficients are usually derived from kinetic theories or
from experimental measurements. For ordinary neural flows
without plasma, there are some well-accepted equations to
describe the diffusion processes, for example, Fourier’s law
for heat flux, Newton’s law for viscous stress, and Fick’s law
for mass diffusion. However, for plasma flows, the diffusion
laws are far more complicated. The electron-ion disequilib-
rium may also play an important role. For simplicity, in the
present paper we concentrate on the case of electron-ion equi-
librium and show the feasibility of our approach to consider
multicomponent plasma flows with diffusions. This assump-
tion should not limit the present model’s applicability to the
disequilibrium ion-electron temperature flows. Further work
on the ion-electron disequilibrium plasma flows will follow
in our next work. Moreover, one can also regard our model as
the limit of instantaneous ion-electron relaxation time of some
ion-electron temperature disequilibrium model.

Based on the above discussions, we use the ion-electron
equilibrium Spitzer-Harm model [37] for the heat flux. The
commonly used models to calculate the plasma viscosity and
mass diffusion include Clerouin’s model [38] for viscosity
and Paquette’s model [39] for mass diffusion, respectively. In
recent years, driven by the need to evaluate species mixing
or separation in thermonuclear inertial confinement fusion
plasmas, a series of transport models [30,40,41] for multi-
component plasmas are derived. In these models the mass
diffusion is driven by the gradients of field variables such
as species concentration, ion or electron pressure (barodif-
fusion) and ion or electron temperature (thermal diffusion).
For Simakov [30], the closure law for the diffusion velocity is
written as follows:

wk = −
∑

Dk jd j + DT
k ∇(lnTi ), (18)

and

dk = ∇xk + (xk − yk )∇(lnp) + (zk − yk )
∇pe

p

+
(

Zknk

ne
− Z2

k nk∑
j Z2

j n j

)
ne

n

β0∇Te

T
, (19)

where xk , yk , zk , Zk , and nk are the number fraction, the
mass fraction, the charge fraction, the charge number, and
the number density of component k, respectively. Dk j and DT

k
are the generalized diffusion coefficient and the thermodiffu-
sion coefficient, respectively. They depend on the collision
frequency, thermal speed, and ion charge. The parameter β0

is a function of effective charge number. For more details see
Ref. [30]. In the present work we only consider the diffusion
driven by gradients of concentration and pressure and neglect
the thermodiffusion.

In the case of two components, the above representation is
identical to that of Kagan and Tang [29]:

wk = − D

yk
(∇yk + Dpk∇logp), (20)

where we have omitted the electro- and thermodiffusions. The
barodiffusion coefficient Dpk is determined as follows:

Dpk = ykyk∗(Mk∗ − Mk )

(
y1

M1
+ y2

M2

)
. (21)

where Mk is the ion mass of the k component.

III. NUMERICAL METHOD

The model (14) is solved by using the splitting procedure.
According to physical processes, the model is split into six
subsystems, i.e., the hyperbolic subsystem, the viscous sub-
system, the pressure relaxation subsystem, the temperature
relaxation subsystem, the heat conduction subsystem, and
the mass diffusion subsystem. These subsystems are solved
within each time step in order. The solution of one subsystem
serves as the initial condition for the next.

Note that these physical processes are in fact coupled with
each other; the splitting procedure is a merely numerical so-
lution strategy. However, direct splitting may neglect some
coupling mechanisms. For example, here we assume that the
pressure relaxation happens instantaneously in comparison
with the thermal process and mass diffusion. This means that
the pressure equilibrium should be maintained during the tem-
perature relaxation, heat conduction, and mass diffusion. Such
pressure equilibrium can be ensured by splitting the pressure
relaxation, i.e.,

Fk = F0
k + F tr

k + Fhc
k + Fmd

k ,

where F0
k represents the instantaneous pressure relaxation

before the thermal processes and mass diffusion. F tr
k , Fhc

k ,
and Fmd

k are the pressure relaxation during the temperature re-
laxation, heat conduction, and mass diffusion, respectively. In
other words, F0

k drives the component pressures into an initial
equilibrium, while F tr

k , Fhc
k , and Fmd

k maintain the pressure
equilibrium by enforcing ∂ p1

∂t = ∂ p2

∂t during each splitting pro-
cess. In fact, the latter three terms can be determined explicitly
by invoking the equilibrium of pressure variation rates.

In the following subsections we present the numerical
methods for each split subsystem.

A. Hyperbolic subsystem

The split hyperbolic subsystem coincides with the six-
equation model proposed in Refs. [17,19]. It reads as follows:

∂αkρk

∂t
+ ∇·(αkρku) = 0, (22a)

∂ρu
∂t

+ ∇·(ρuu) = 0, (22b)

∂αkρkek

∂t
+ ∇·(αkρkeku) + αk pk∇·u = 0, (22c)

∂αk

∂t
+ u·∇αk = 0. (22d)

The numerical methods for the hyperbolic and parabolic parts
are similar to those described in our previous works [33].

As shown in Ref. [17], the wave speeds for this split model
in 1D is λhyper = cmix ± u, u(of multiplicity 4) with c2

mix =
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∑
ykc2

k . Thus the stable time step required is

�t < �thyper = CFL
�x

max (λhyper)
,

where the CFL number is taken to be 0.2 if not mentioned.
This subsystem is solved in the framework of finite-volume

method. The numerical flux is computed with the HLLC
Riemann solver [19]. For high-order extension we reconstruct
[αkρk, u, pk, αk] with the fifth-order MLP scheme [42]. This
reconstruction strategy has been proven to be free of spurious
oscillations in temperature [33]. For time integration, we im-
plement the Heun method.

B. Viscous subsystem

The viscous subsystem can be written as follows:
∂αkρk

∂t
= 0, (23a)

∂ρu
∂t

= ∇·
(∑

αkτ ak

)
+ ∇·

(∑
αkτwk

)
, (23b)

∂αkρkek

∂t
= αkτ k : Dk, (23c)

∂αk

∂t
= 0. (23d)

By observing the mass equations, we see that the partial
masses remain constant at this stage, as does the mixture
density and mass fraction. If we assume a constant diffusivity
for Fick’s law, then one can deduce that wk and τwk are both
constants. This make the numerical solution of the momen-
tum equation as simple as that of the standard model [31],
only with an additional constant being included. The explicit
scheme requires the following stable time step

�t < �tvis = �x2

8
3 max

(
μ

ρ

) , μ =
∑

αkμk .

In more general case, the diffusion velocity wk depends on
temperature and pressure. To account for this nonlinearity, a
simple iteration procedure is performed.

Note that O(|wk|2) terms are kept in the internal energy
equation to ensure the positivity of the right-hand side term.

C. Pressure relaxation subsystem

The split pressure relaxation subsystem reads
∂αkρk

∂t
= 0, (24a)

∂ρu
∂t

= 0, (24b)

∂αkρkek

∂t
= −pIF0

k , (24c)

∂αk

∂t
= F0

k . (24d)

To solve this stiff ODE system with pressure relaxation rate
ς → ∞, we have recently proposed an efficient fixed point
iteration method in Ref. [43]. This iteration method performs
a convex average of the component pressures, ensuring fast
convergence and pressure positivity. The proposed relaxation

method has been applied to the case with three components.
For further details, please see Ref. [43].

D. Temperature relaxation subsystem

Here we describe some details for the solution of the ther-
mal relaxation subsystem, which reads

∂αkρk

∂t
= 0, (25a)

∂ρu
∂t

= 0, (25b)

∂αkρkek

∂t
= Qk−pIF tr

k , (25c)

∂αk

∂t
= F tr

k . (25d)

To account for the interface motion due to arising pressure
disequilibrium, we adopt the following assumption

∂αk

∂t
= F tr

k := Qk (26)

where the exchanged energy Qk = η(Tk∗ − Tk ) and the inter-
facial pressure is approximated as pI = ∑

αk pk .
The volume fraction varies in such a way that the phasic

pressure equilibrium is maintained, implicitly meaning that
the pressure relaxation rate is much larger than the thermal
relaxation rate. By using the pressure equilibrium condition

∂ p1

∂t
= ∂ p2

∂t
,

one can derive the evolution equation for αk in the case of
polytropic gas EOS as follows:

 = 1

pI +
∑

pk/αk∑
(γk−1)/αk

. (27)

Note that partial densities and momentum remain un-
changed during the thermal relaxation stage. Reformulation
of Eqs. (25)–(27) gives

∂Tk

∂t
= η̂k (Tk∗ − Tk ), (28)

where

η̂k =
∑

pk/αk∑
(γk−1)/αk[ ∑

pk/αk∑
(γk−1)/αk

+ pI

]
mkCvk

η.

For the solution of the nonlinear equations (26) and (28),
iterative methods should be used, where for each iteration one
solves the following linearized ODEs in each time step �t

∂T (s+1)
k

∂t
= η̂

(s)
k

[
T (s+1)

k∗ − T (s+1)
k

]
, (29)

where (s) denotes the iteration index. The analytical solution
for the above ODEs are as follows:

T (s+1)
1 = A + B̂η

(s)
1 , T (s+1)

2 = A − B̂η
(s)
2

A = T10η̂
(s)
2 + T20η̂

(s)
1

η̂
(s)
2 + η̂

(s)
1

, B = (T10 − T20)C

η̂
(s)
2 + η̂

(s)
1

,

C = e−[̂η(s)
1 +η̂

(s)
2 ]�t ,
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where T10 and T20 are the initial component temperature at the
beginning of the temperature relaxation stage.

The iterations are performed until the convergence con-
dition |T (s+1)

k − T (s)
k | < ε is satisfied. Acceleration of the

temperature relaxation with the Newton’s method is also
possible; however, one has to deal with the complexity and
nonsmoothness of the dependency of η on Tk .

E. Heat conduction subsystem

The subsystem governs heat conduction reads
∂αkρk

∂t
= 0, (30a)

∂ρu
∂t

= 0, (30b)

∂αkρkek

∂t
= qk + Ik−pIFhc

k , (30c)

∂αk

∂t
= Fhc

k . (30d)

The term Fhc
k can be determined in totally similar way in

determining F tr
k . In fact, simply by replacing Qk in Sec. III D

with (qk + Ik ), one can obtain the expression for Fhc
k , i.e.,

∂αk

∂t
= Fhc

k = (qk + Ik ). (31)

For multicomponent heat conduction, we implement the
implicit scheme proposed in Ref. [21].

F. Mass diffusion subsystem

The subsystem for mass diffusion reads:
∂αkρk

∂t
= −∇·Jk, (32a)

∂ρu
∂t

= 0, (32b)

∂αkρkek

∂t
= −∇·(αkρkekwk ) − αk pk∇·wk−pIFmd

k , (32c)

∂αk

∂t
= Fmd

k . (32d)

For clarity, we introduce the following definitions:

Ck := −∇·(αkρkwk ),

Ek := −αkρkwk·∇ek − αk pk∇·wk .

In comparison with the temperature relaxation subsystem,
the additional complexity here consists in the variation of the
partial mass αkρk; however, the derivation procedure is totally
similar to that for defining F tr

k in Sec. III D. The derived
equation describing the volume fraction variation under the
pressure equilibrium takes the following form:

∂α1

∂t
= Fmd

k =
(G1E1

α1
− G2E2

α2

) + ( p1C1

α1ρ1
− p2C2

α2ρ2

)(G1
α1

+ G2
α2

)
pI + ( p1

α1
+ p2

α2

) , (33)

where Gk = γk − 1.
Note that the diffusion term in Eq. (33) is to maintain

the obtained pressure equilibrium. This does not contradicts
Eq. (14d), but is a result of the sequence in solving the split
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FIG. 3. The numerical results for the pure temperature relaxation
problem. Top: component temperatures; middle: volume fractions;
bottom: the pressure disequilibrium, measured as �p = |p1 − p2|.

subsystems. A similar numerical strategy is adopted in solving
phase transition problems [44].

At this stage the mixture mass is conserved. In numerical
solution, one may solve only one diffusion equation for par-
tial density, while the remaining partial density is derived by
subtracting one partial density from the mixture density.
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FIG. 4. The relative error of pressure and temperature for the
pure advection problem.

The involved spatial derivatives are approximated with the
central difference scheme. With Fick’s law, the mass diffusion
equation takes the following form:

ρ
∂y1

∂t
= ∇ · (ρD∇y1).

The stable time step required by this diffusion equation is

�t < �tD = ρ�x2

2 max (D)
.

The overall time step is determined as the minimum of these
stable time steps, i.e., �t = min [�thyper, �tvis, �tD].

IV. NUMERICAL RESULTS

In this section we present some numerical results to vali-
date the proposed model and numerical methods. Moreover,
with the aid of the proposed method we investigate the impact
of thermal relaxation on RT instability development.

A. The temperature relaxation

Assume that a computational cell contains two materials
with different initial temperatures, we only consider the tem-
perature relaxation between them without the hydrodynamics.
The two materials are characterized by γ1 = 1.4, Cv1 = 1

4
and γ2 = 1.4, Cv2 = 1

8 , respectively. The relaxation rates
are assumed to be η̂1 = η̂2 = 5 and η = 1

2 . The initial

FIG. 5. The convergence rate for the mass diffusion problem.
Upper: the pure diffusion problem; lower: the advection-diffusion
problem.

states is assigned to be [α1ρ1, α2ρ2, ρu, T1, T2, α1]0 =
[1, 2, 0, 1, 9, 0.1]. Such a setting is compatible with
Eqs. (27) and (28). The corresponding analytical solution for
temperatures T1 = 5 − 5 exp (−t ) and T2 = 5 + 5 exp (−t ).
The numerical results for temperatures, volume fractions, and
the pressure difference are displayed in Fig. 3. One can see
that with the decrease of the time step, the numerical results
tend to converge to the exact solution.

Moreover, our method well maintains the pressure equi-
librium (�p = |p1 − p2| ≈ 0) during the temperature relax-
ation, as displayed in Fig. 4. In comparison, if we do not
consider the corresponding variation of the volume fraction
(i.e., ∂α

∂t = 0), then the pressure equilibrium is violated, as
demonstrated in the bottom subfigure of Fig. 3.

B. The mass diffusion problem

1. The pure diffusion problem

Let us consider a pure diffusion problem as in
Refs. [45,46]. The two components are characterized by the
polytropic EOS with the adiabatic coefficients γ1 = 2.0 and
γ2 = 1.4 and densities ρ1 = 20.0 and ρ2 = 1.0, respectively.
In the computational domain [0,1] the fluids are initially
in temperature and pressure equilibrium which means (γk −
1)ρkCvk = const. This relation gives a constraint for prescrib-
ing the heat capacities Cvk .
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FIG. 6. The numerical results in the pure diffusion problem for density, velocity, pressure, temperature, mass fraction, and volume fraction
with the refinement of grid.

The initial mixture density and partial density are given as
follows:

ρ = 1
2 (ρ1 + ρ2) − 1

2 (ρ1 − ρ2)erf(z),

ρy1 = 1
2ρ1 − 1

2ρ1erf(z), (34)

where

z = x − x0√
4Dt + h2

0

.

In the present test we use t = 0.0, x0 = 0.5, and h0 = 0.02
for prescribing the initial condition. Here Fick’s law and a
constant diffusivity D = 0.01 are assumed.

With the pressure as large as p = 1 × 105, the Mach num-
ber is so small that the compressibility effect can be neglected.
In this case, given the mixture density profile, one can derive
the mass-weighted mean velocity,

u = −D

ρ

∂ρ

∂x
.
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FIG. 7. The numerical results in the pure-diffusion and advection-diffusion problems for density, velocity, pressure, temperature, mass
fraction, and volume fraction.

Moreover, the analytical solution for density to this pure dif-
fusion problem is given by Eq. (34) [45,47].

Computations are performed to the time moment t = 0.5
on a series of refining grids of 32, 64, 128, 256, 512, and
1024 cells. Reflective boundary conditions are imposed on
both sides. The errors for density are defined as its distance
to the analytical solution Eq. (34). The convergence perfor-
mance is displayed in Fig. 5. One can see that the second
order is reached as expected. The corresponding conver-

gence performance for different variables are demonstrated in
Fig. 6.

2. The pure advection problem

We here verify that the model and corresponding numerical
methods maintain the P-T equilibrium. The initial condition
within [0,1] is the same as the last test and is mirrored into
[1,2]. The periodic boundary conditions are imposed on both
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FIG. 8. The numerical results for the mass diffusion problem
with viscous effect. “Vis. stress with uk/uav”: numerical results ob-
tained with the viscous stress being calculated with the component
velocity and the mass-weighted velocity.

sides. The mixture is advected rightwards with a uniform
velocity u = 4. At the time moment t = 0.5 the pressure error
and the temperature error are as small as 10−10 (Fig. 4), which
means that the P-T equilibrium is well maintained to the error
level 10−10.
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FIG. 9. The numerical results for the mass diffusion problem
with or without the barodiffusion effect.

3. The advection-diffusion problem

We continue to consider the advection-diffusion problem
where the multicomponent fluid is transported by a uniform
velocity u = 4.0 while diffusing. By choosing a reference
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FIG. 10. The variable (component temperatures, the volume fraction, and the mass fraction) distributions after the shock travels through the
mixing zone. Nondimensional temperatures displayed are Tk/(1500 MK). (a) The initial profile, (b) the numerical results at t = 6 × 10−3 ns
with physical relaxation rate ηPhys, (c) the numerical results with 100ηPhys, and (d) the numerical results with η → ∞.

moving at the transport velocity, one can see that the analytical
solution is still described by Eq. (34), only with a transported
interface center. The computational domain is enlarged to
[0,4] and the interface center is transported to x = 2.5 at
t = 0.5. Similarly, we obtain the convergence rate for this
problem as displayed in Fig. 5. The convergence rate is some-
what smaller than that for the pure diffusion problem since
the numerical resolution of the advection part adds to some
error.

The comparison between the pure-diffusion and advection-
diffusion problems are displayed in Fig. 7. One can observe
that on the coarse grid the numerical results (for the density,
velocity, and mass-volume fraction) of the advection-diffusion
problem suffer from more deviations from the exact solutions.
This can be explained by the fact that extra numerical dissi-
pation is needed in solving the advection part. On the other
hand, the introduced numerical dissipation also smooths the
pressure-temperature oscillations, as can be seen in Figs. 7(c)
and 7(d).

4. The barodiffusion and viscous effect

The initial density and velocity profiles are the same as
those in the pure-diffusion problem in Sec. IV B. To show

the ability of our method to deal with the barodiffusion and
viscous effect, we consider a problem with considerable com-
pressibility effect under the background pressure p = 100.
Under such pressure the compressibility results in a nonuni-
form pressure profile, i.e., nonzero pressure gradient. Thus,
the barodiffusion begins to effect the results. The kinetic vis-
cosity is taken to be ν = 50D, which is large enough to show
the impact of the viscous dissipation. Initial and boundary
conditions are the same as the test in Sec. IV B.

As for the viscous part, the conventional way is to deter-
mine the viscous stress by using the mass-weighted velocity
as in Ref. [31]. Different from this approach, we use the com-
ponent velocity to calculate their respective viscous stress.
The numerical results obtained by these two approaches are
compared in Fig. 8. One can see noticeable difference between
these numerical results, especially in pressure. A new extreme
arises in the pressure profile obtained with the uav approach.
The difference in pressure results in the corresponding differ-
ence in density.

We continue to consider the diffusion law with the baro-
diffusion being included, i.e., Eq. (20). Let us assume that
the two components are carbon (C) and deuterium (D), re-
spectively. According to Eq. (21), the barodiffusion coefficient
for carbon is negative (Dp1 < 0) and that for the deuterium is
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positive (Dp2 > 0). As can be seen from Fig. 9, in the neigh-
borhood of the diffuse front, the pressure gradient is along
−x. Thus, for carbon the barodiffusion flux −ρDDp1∇logp <

0, which is opposite the mass fraction gradient driven flux
−ρD∇y1 > 0. Therefore, in Fig. 9, one can observe that the
carbon mass fraction is less diffused with the barodiffusion
effect being included.

C. The shock passage through a mixing zone

In this test we demonstrate the capability of the proposed
model (14) to deal with temperature separation phenomenon
when the shock travels through the mixing zone. The mixture
consists of two polytropic components with adiabatic coeffi-
cients γ = 2.0 and γ = 5/3. The heat capacity is calculated
by Cv = N0kb(1 + Z )/(γ A), where N0 is the Avogadro con-
stant, kb is the Boltzmann constant, A and Z are the atomic
weight and number, respectively. Again, we assume that the
two components are carbon (A = 12 g/mol, Z = 6) and deu-
terium (A = 2 g/mol, Z = 1).

The one-dimensional computational domain is of length
L = 40.96 μm. The initial mixture density is characterized by
Eq. (34) with x0 = 0.6L, h0 = L/10, and D = 0.02 cm2/μs.
A leftward shock of Mach number 5 hits the mixing interface.
The temperature disequilibrium in the initial postshock zone is
neglected since the concentration of the second component is
negligibly small (y2 = 1 × 10−6). Moreover, such assumption
is justified by Eq. (28), the relaxation rate approaches infinity
when the partial mass mk → 0.

The preshock mixture is in temperature and pressure
equilibrium with uniform profile p = 5000 Mbar and T =
100 MK. The component densities can be determined as
ρ1 = 2.0617 g/cm3 and ρ2 = 1.2027 g/cm3 via the EOSs.
The postshock mixture density, pressure, and velocity are
determined with the Rankie-Hugonoit relation of the first
component. With the mass fraction y2 being given, the equi-
librium temperature in the postshock zone can be calculated
via the pressure-temperature equilibrium relations [32,48].

The initial profiles for the component temperatures,
volume fraction, and mass fraction are demonstrated in
Fig. 10(a). We first perform computation with the physical
temperature relaxation rate determined with the Coloumb
collosion frequency [49]. At time t = 6 × 10−3 ns the shock
travels through the mixing interface, and temperature dis-
equilibrium arises in the postshock zone [Fig. 10(b)]. The
temperature difference can be as large as 525 MK. The slight
divergence in temperatures in the postshock zone is due to the
pressure relaxation mechanism.

We then increase the physical temperature relaxation rate
by 100 times and perform the same computation. The corre-
sponding results are displayed in Fig. 10(c). It can be observed
that the temperature disequilibrium is obviously reduced.

For comparison we also present the numerical results
with the temperature equilibrium model (or η → ∞) in
Fig. 10(d). The equilibrium temperature lies between the
component temperatures in Figs. 10(b) and 10(c). The de-
viation between the mass fraction and the volume fraction
is more obvious in Fig. 10(d). This is because the tempera-
ture relaxation leads to the variation of the volume fraction
while it has no impact on the mass fraction, as analyzed in
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FIG. 11. The initial condition for the RT instability problem.
Top: mixture density and pressure; bottom: component temperature.
The mixture density ρ = ∑

αkρk .

Sec. III D. Comparison between the temperature-equilibrium
and the temperature-disequilibrium model indicates that the
commonly used temperature-equilibrium model may be in-
adequate for evaluating the temperature relaxation effect in
mixing topology evolution.

D. The RT instability problem under thermal relaxation

In this section we consider a planar RT instability prob-
lem in a computational domain (x, y) ∈ [0 μm, 10.24 μm] ×
[0 μm, 40.96 μm]. The initial condition along y = Ly/2 =
5.12 cm is demonstrated in Fig. 11. The acceleration is set
to be 2.1 × 105 cm/μs2, which is equal to that of a realistic
implosion during the deceleration stage on the Omega facility
[50]. The temperature at the interface zone is also within the
temperature range in ICF implosion.

Note that we assume a smeared interface, which maybe a
result of various mixing mechanisms such as molecular dif-
fusion or turbulence. The mixing interface center is perturbed
with a cosine profile x0 = 0.4Lx − 0.03Lycos(2πy/Ly). Inside
the smeared interface the component temperatures relax to-
wards a equilibrium one. Such thermal relaxation mechanism
has a significant impact on the RT instability development,
which is shown below by the following direct simulations.
The relaxation rate is determined with the formula in the NRL
plasma formulary [49].

To ensure grid independence, we first compare the nu-
merical results obtained on a series of refining grids from
320 × 80 cells to 2560 × 640 cells. The corresponding results
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FIG. 12. The distribution of the mixture density ρ (left) and mass fraction y1 (right) on series of refining grids (From top to bottom:
320 × 80, 640 × 160, 1280 × 320, 2560 × 640). Ten uniform contours from 0.01 to 0.99 for y1 are displayed on the right.

are displayed in Fig. 12. One can see that the numerical results
tend to converge with physical diffusions being included. The
mixing length evolution with time displayed in Fig. 14 also
confirms the convergence.

Then we investigate the sensitivity of the mixing length
evolution to the relaxation rate η on the 1280 × 320 grid. The
relaxation rate η is taken to be 1 × 105, 1 × 106, and ∞. The
case η = ∞ corresponds to the case where component tem-
peratures relax instantaneously, i.e., temperature equilibrium.

The density and mass fraction distributions at 0.2 ns with
different relaxation rates are shown in Fig. 13. The evolution
of the mixing length (bubble-to-spike distance) with time
is demonstrated in Fig. 14. It can be seen that the thermal
relaxation tend to suppress the growth of the mixing length.
The main mechanism here lies in the unsteady acceleration
of the interface caused by the thermal relaxation. The details
of the physical mechanism will be dealt with in a separate
paper and here we focus on the model itself.

FIG. 13. The distribution of the mixture density ρ (left) and mass fraction y1 (right) with different relaxation rates η at the time moment
t = 0.2 ns. From top to bottom: η = 0, 1 × 106, ∞, and η determined by physical model (last row). Ten uniform contours from 0.01 to 0.99
for y1 are display on the right.

045108-15



CHAO ZHANG AND LIFENG WANG PHYSICAL REVIEW E 108, 045108 (2023)

0 0.5 1 1.5 2 2.5

Time ( s) 10
-4

0

0.5

1

1.5
A

m
p
li

tu
d
e 

(c
m

)
10

-3

 = 0

 = 1 10
5

 = 1 10
6

 = 

Physical

2 4 6 8 10

Time ( s) 10
-5

0.5

1

1.5

2

2.5

3

3.5

A
m

p
li

tu
d
e 

(c
m

)

10
-4

 = 0

 = 1 10
5

 = 1 10
6

 = 

Physical

0 0.5 1 1.5 2 2.5

Time ( s) 10
-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
m

p
li

tu
d
e 

(c
m

)

10
-3

320 80

640 160

1280 320

2560 640

FIG. 14. The evolution of the mixing length with time. Top and
middle subfigures are the results corresponding to different relax-
ation rates η. The bottom subfigure shows the grid independence of
the numerical results.

Based on the simulation results, we can see that under
the ICF deceleration condition the temperature equilibrium
or disequilibrium assumptions lead to underestimation or
overestimation of the mixing length evolution. The tempera-
ture relaxation timescale is comparable to the ICF-concerned
timescale, and the temperature separation is diminishing at a
finite rate. This effect should be considered for the accurate
evaluation of the mixing in ICF.

V. CONCLUSION

In the present paper we have presented a temperature
disequilibrium diffuse-interface model for compressible mul-
ticomponent flows with interphase heat transfer and diffusions
(including viscous, heat conduction, and mass diffusion).
The model is reduced from the BN model in the limit of
small Knudsen number (Kn � 1) and consists of six equa-
tions including phase density equations, mixture momentum
equation, phase internal energy equations, and the volume
fraction equation. Velocity difference is closed by the mass
diffusion laws, and thus the velocity of each component is
available. The viscous stress is determined by component
velocities rather than mixture velocity in the literature. More-
over, the model has included the effect of finite thermal
relaxation. We have described second-order numerical meth-
ods for solving the advection-diffusion part of the proposed
model. As for the thermal relaxation, we propose method
to keep the pressure equilibrium. Being equipped with this
model and its solution methods, we have considered an RT
instability problem under the ICF deceleration condition with
a finite thermal relaxation rate. We have performed a paramet-
ric study on the dependence of the mixing length development
on the relaxation rate. Direct numerical simulations demon-
strate that for the RT instability at an interface between the
high-density low-temperature component and the low-density
high-temperature component, the thermal relaxation tend to
suppress the development of the instability. Further details of
this mechanism will appear in our future papers.
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APPENDIX

Here we provide the proof of the entropy inequality
Eq. (17). Inserting the pressure relaxation Eq. (2) into Eq. (17)
and performing some reformulations, one obtains

α1ρ1
D1s1

Dt
+ α2ρ2

D2s2

Dt
+ ∇·

(
q1

T1

)
+ ∇·

(
q2

T2

)
− I1

T1
− I2

T2

= α2ς (p1 − p2)2

T1
+ α1ς (p2 − p1)2

T2
+ η(T2 − T1)2

T1T2

+ S1

T1
+ S2

T2
+ q1·∇

(
1

T1

)
+ q2·∇

(
1

T2

)
. (A1)

The first three terms on the right-hand side are obviously

non-negative. The term Sk = αkτ k : Dk represents the kinetic
energy dissipation due to viscous friction and is non-negative
as long as the viscosity coefficient μk � 0. The non-negativity
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of the terms qk·∇( 1
Tk

) are ensured by Fourier’s law qk =
−αkλk∇Tk . Thus entropy does not decrease in the absence of

external heat flux and energy source, which does not contra-
dict the second law of thermodynamics.
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