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Stability of a liquid film on inclined flexible substrates: Effect of the spontaneous odd viscosity
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We report the stability of a falling incompressible odd viscosity fluid on flexible substrates when the time-
reversal symmetry is broken. The flexible wall equation incorporates the contribution of odd viscosity, where
the stress at an interface is determined by the viscosities of the adjacent fluids. The Orr-Sommerfeld (OS)
equation is derived using the modified linear flexible wall equation taking the inertia, flexural rigidity, and spring
stiffness effects of the elastic plate into account. Here, we solve the above eigenvalue problem using Chebyshev
collocation methods to obtain the neutral curve in the k-Re plane and the temporal growth rate under varying
values of odd viscosity. There is an interesting finding that, for moderate Reynolds numbers, the presence of odd
viscosity leads to an increase in instability when the stiffness coefficient AK is small. However, as the value of the
stiffness coefficient AK rises, the effect of odd viscosity changes to suppress the onset of instability. Additionally,
at higher Reynolds numbers and extremely small inclination angles, both shear and wall modes of falling film
are observed. The results demonstrate that the unstable domain for the wall mode increases as the odd viscosity
coefficient value rises, while an opposite trend occurs in the shear mode.
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I. INTRODUCTION

The dynamics of waves formed on the free surface of
falling films have several applications in geophysical, in-
dustrial, and technological settings [1–3]. Consequently, the
studies of falling film instability have received considerable
attention since the experimental work of Kapitza [4] and
Binny [5]. Benjamin [6] and Yih [7] first studied theoretically
a problem of hydrodynamic stability of falling films under
the framework of the Orr-Sommerfeld boundary value prob-
lem. The important results of their investigation revealed that
such instability occurs in the low Reynolds number regime
once the Reynolds number surpasses its critical value Rec =
(5/4) cot θ , where θ is the inclination angle. The inertia mech-
anism causes instability, whereas the longitudinal component
of gravity adverts and steepens the wave, and surface tension
stabilizes the film. The mechanism by which inertia destabi-
lizes the film has been explained by either the shift in vorticity
or the displacement of the interface [8,9]. In recent years,
more research has been completed on falling film instability
[10–12]. Lavalle et al. [13] investigated the linear stability of
a falling liquid layer in combination with a gas phase moving
down an inclined narrow channel. They concentrated on a
specific region of parameter space with a modest inclination
and very strong confinement, where they discovered the gas
firmly stabilizes the film. Zhou et al. [14] investigated the
dynamics of annular viscoelastic films flowing down a flexible
tube. They discovered that the interfacial capillary ripples
are frequently stimulated by the tube’s rigidity. Although it
weakens the interfacial capillary ripples, the viscoelasticity of
the fluid increases the dispersion of interfacial waves.
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Over the last few decades, the theory of viscous flow
interacting with compliant walls has been developed signifi-
cantly. Kramer [15] performed ground-breaking experiments
in the water by towing a dolphin-shaped device wrapped
in viscoelastic materials of varied compliance. The author
demonstrates that the compliant coating reduces drag signif-
icantly. Later, a theoretical study on the effects of a flexible
boundary on hydrodynamic stability is presented by Benjamin
[16]. In this context, Carpenter, and Garrad [17] considered
the hydrodynamic stability of flows over Kramer-type com-
pliant surfaces, and provided a possible explanation based
upon Kramer’s empirical observation of an optimum substrate
viscosity. Halpern and Grotberg [18] analyzed the dynamics
of a thin film of Newtonian fluid coating the inner surface of
an elastic circular tube. The most common investigations can
be divided into two physical models for the elastic substrate:
Carpenter and Garrad’s [17] spring-backed plate membrane
concept, as well as an elastic solid substrate of finite thickness
over which the liquid film falls. Several notable references
provide details on viscous flow interacting with compliant
barriers [19–23].

Recently, Alexander et al. [24] used analytical and com-
putational tools to examine the linear stability of a liquid
film falling down an inclined flexible plane under the effect
of gravity. They employed the flexible substrate model pro-
posed by Carpenter and Garrad [17] and presented a modified
version of the linear wall equation, which incorporates the
viscous traction of the fluid that was previously omitted in
[17]. They kept inertia, damping, tension, flexural rigidity, and
stiffness effects in wall equation and calculated their effects
on falling film stability. Later, Samanta [25] extended this re-
search to investigate the linear stability of a fluid flowing down
a compliant substrate in the presence of insoluble surfactants
when an external streamwise applied shear stress operates
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at the fluid surface. By modeling the walls as spring-backed
deformable plates with a damping mechanism, Lebbal et al.
[26] explored the linear stability problem of a fluid interacting
with a compliant channel. To find the most physically ap-
plicable control settings, they also performed a dimensional
analysis. Subsequently, Lebbal et al. [27] also examined the
linear dynamics of perturbations arising in an infinite channel
with compliant walls under pulsatile flow circumstances. For
Womersley-type pulsating base flows, two-dimensional modal
disturbances are taken into account, and wall motion is only
permitted in the normal direction.

The researches on viscous flow interacting with compliant
walls noted above, however, have only looked at fluids with
even (standard) viscosities. In other words, the impact of un-
usual viscosity was disregarded. By proving that the viscosity
tensor in a general classical fluid can have a nonzero odd
part that results in a dissipationless linear response coefficient
known as the Hall or odd viscosity when time-reversal sym-
metries are broken spontaneously, as a result of an external
magnetic field, or as a result of rotation, Avron [28] made
a ground-breaking discovery. Odd viscosity had previously
been hypothesized in relation to plasmas, but it has only
recently drawn interest from researchers in the contexts of
swimming strategies [29], and incompressible fluids [30,31].
Banerjee et al. [32] investigated the hydrodynamics of a spin
fluid made up of colloidal or spin particles. They demon-
strated how nonlinear hydrodynamic equations with rotating
degrees of freedom lead to odd viscosity. Odd viscosity effects
are widely seen in granular, biological, colloidal, and other
systems in natural settings where the time-reversal symmetry
of a classical liquid is violated [33–35]. The role of odd
viscosity in the investigation of hydrodynamic instability of
thin fluid film was introduced by Kirkinis and Andreev [36].
They examined the impact of odd viscosity on thermocap-
illary instability among viscous thin liquid layers using the
long-wave approximation approach. They demonstrated that
odd viscosity can stabilize the thin liquid film by suppressing
thermocapillary instability within a specific range of ratios of
odd to even viscosity coefficients.

Recently, Soni et al. [37] experimentally demonstrated the
existence of odd viscosity by using spectral analysis. They
observed the production of a two-dimensional chiral liquid
that was cohesive and studied its flows using millions of spin-
ning colloidal magnets and discovered that dissipative viscous
“edge pumping,” which has no analog in ordinary fluids, is a
crucial and general process of chiral hydrodynamics, causing
unidirectional surface waves and instabilities. In the presence
of a uniform external electric field, Bao and Jian [38] investi-
gated how the unusual viscosity of a Newtonian fluid affects
the instability of a thin film moving down an inclined plane.
With the aid of the lubrication approximation, a nonlinear
evolution equation of the free surface involving odd viscosity
effect was derived. Analyses of linear and weakly nonlinear
stability indicate that odd viscosity has the stabilizing effect,
whereas the electric field destabilizes. Zhao and Jian [39,40]
investigated the impact of odd viscosity on the stability of a
thin film falling in the presence of an electromagnetic field,
considering both Newtonian and viscoelastic fluids using long
wave approximation theory. The influence of odd viscosity
on the Rayleigh-Taylor instability of a thin Newtonian liquid

film with broken time-reversal symmetry, as it flows down an
inclined and uniformly heated substrate, was discussed by Jia
and Jian [41]. In regard to a fluid experiencing an influence
of odd viscosity, Samanta [42] studied the linear and nonlin-
ear wave dynamics of a falling incompressible viscous fluid.
Chu et al. [43] used both linear Floquet theory and nonlinear
lubrication theory based on the weighted residual model to
study the impact of the odd viscosity on the classic Faraday
instability of thin liquid films in infinite horizontal plates.
Chattopadhyay et al. [44] studied the role of odd viscosity on
falling films over compliant substrates and utilized the long
wave theory to derive equations that couple the film thickness
and the compliant substrate. The results showed that odd vis-
cosity suppresses the instability of falling films. However, in
their work, the effects of inertia, flexural rigidity, and spring
stiffness of the elastic plate were disregarded. These details
spur us on to thoroughly research the thin film instability for
incompressible fluids with broken time-reversal symmetry.

In this study, we utilize the flexible wall model proposed
by Alexander et al. [24] and take into account the stress at an
interface involving the effect of the odd viscosity in adjacent
fluids. In fact, if the substrate is assumed sufficiently thin, the
impact of bending stress and inertia on the substrate cannot
be neglected. The bending stress is expressed by fourth order
derivative of the wall deformation with respect to horizontal
coordinate x. Therefore, it is difficult to obtain the nonlinear
evolution equation of free surface by long wave theory or
weighted residual method. Our objective is to comprehen-
sively investigate the impacts of spontaneous odd viscosity,
inertia, flexural rigidity, and spring stiffness of the flexible
substrate on the stability of a falling liquid film. The method
adopted in present work is regular mode expansion of the
perturbation imposed upon base state. The Orr-Sommerfeld
(OS) eigenvalue problem is obtained and the Chebyshev col-
location method is utilized to illustrate temporal growth rate
and neutral stable curve for different related parameters. A
vital discrepancy between our results and those obtained by
Chattopadhyay et al. [44] is that the effect of odd viscosity is
not monotonous and it depends on the value of spring stiffness
coefficient AK . For moderate Reynolds numbers, odd viscosity
enlarges the unstable domain when AK is small. However, as
the value of AK increases, the influence of odd viscosity will
suppress the onset of instability.

II. MATHEMATICAL MODEL

As shown in Fig. 1, we consider an incompressible odd-
viscosity fluid flowing down a flexible and inclined surface at
an angle α with the horizontal direction. A two-dimensional
coordinate system (x, y) is introduced, in which the x and
y coordinates are in the directions along and normal to the
undeformable elastic plate, respectively. Therefore, the thick-
ness of the interfacial surface at time t is given by h(x, t ),
the velocity of fluid is �u = (u, v), and the instantaneous sub-
strate deflection from its equilibrium position is denoted by
y = η(x, t ).

We consider a classical Newtonian liquid with broken
time-reversal symmetry and an odd or Hall viscosity co-
efficient. Therefore, the viscosity contains both even μe

and odd μo viscosity coefficients. In a liquid with broken
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FIG. 1. Schematic diagram of an odd-viscosity fluid flowing
down a flexible and inclined substrate, where g is the acceleration
of gravity.

time-reversal symmetry, the Cauchy stress tensor τ consists
of two parts [38–43],

τ = τ e + τ o, (1)

τ e
i j = −pδi j + μe

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (2)

τ o
i j = − μo(δi1δ j1 − δi2δ j2)

(
∂u1

∂x2
+ ∂u2

∂x1

)

+ μo(δi1δ j2 − δi2δ j1)

(
∂u1

∂x1
− ∂u2

∂x2

)
, (3)

where τo is the odd part of the Cauchy stress tensor, which
arises in the presence of time-reversal symmetry-breaking,
and τe is the general even part of the Cauchy stress tensor.

The flowing governing equations are the incompressible
Navier-Stokes equations,

∇ · �u = 0, (4)

ρ
D�u
Dt

= ∇ · τ + �f , (5)

where �f is the force of gravity acting on the odd-viscosity
fluid. Using Eqs. (1)–(5), we can obtain the flowing governing
equations for the odd viscosity fluid:

ux + vy = 0, (6)

ut + uux + vuy = − 1

ρ
px+g sin α + μe

ρ
(uxx + uyy)

− μo

ρ
(vxx + vyy), (7)

vt + uvx + vvy = − 1

ρ
py − gcos α

+ μe

ρ
(vxx + vyy) + μo

ρ
(uxx + uyy) (8)

where the subscripts denote partial derivatives.
The boundary conditions at the free interface y = h(x, t )

are the balance of tangential, normal stresses:

�n · τ · �n = −κ · σ, �n · τ · �t = 0, (9)

FIG. 2. Schematic diagram of a flexible substrate. The elastic
plate is supported by an array of springs and has a thickness of b
and hs is the equilibrium height of the substrate fluid.

where σ is the surface tension of the liquid-air interface,
κ = ∇ · �n, combining (1)–(3) and (9), the boundary condi-
tions can be written,

− p + 1

1 + h2
x

[
2μe

(
h2

x − 1
)
ux − 2μehx(uy + vx )

+ μo(uy + vx )
(
1 − h2

x

) − 2μohx(ux − vy)
]

= σhxx(
1 + h2

x

)3/2 , (10)

1

1 + h2
x

[
μe

(
1 − h2

x

)
(uy + vx ) + 2μehx(vy − ux )

+ 2μohx(uy + vx ) − μo
(
1 − h2

x

)
(ux − vy)

] = 0, (11)

and kinematic boundary condition is

ht + uhx − v = 0, at y = h(x, t ), (12)

where hx indicates the associated partial derivatives.
The physical model of a flexible wall is shown schemati-

cally in Fig. 2. It consists of an elastic plate that is supported
by an array of springs above a rigid surface. The cavity be-
tween the elastic plate and the rigid substrate is filled with
a viscous fluid, which is referred to as the substrate fluid.
Furthermore, a fluid substrate that supports the plate typ-
ically has a different density and viscosity from the main
flow. It is assumed that the motion of the substrate fluid
is barely impacted by the springs’ presence. According to
the work of Alexander et al. [24], we consider the flexible
model:

ρwbX tt · �n + D(ey · X t )(ey · �n) − (T X s)s · �n
+ BX ssss · �n + K (ey · X )(ey · �n)

= �n · τ · �n|x=X + ps, (13)

where ρw is the density of the plate material, b is the thickness
of the elastic plate, D is the damping coefficient, B is the flex-
ural rigidity of the elastic plate, T is the longitudinal tension
per unit width, K is the spring stiffness, ps is the pressure of
the substrate fluid, and ey is the unit vector in the y direction.
X (s, t ) = [X (s, t ),Y (s, t )] is the parameter coordinate and
s denotes the arc length. The unit tangent and normal to the
plate can be written as

�n = 1√
1 + η2

x

(−ηx, 1), �t = 1√
1 + η2

x

(1, ηx ). (14)

In practice, the flexural rigidity B and the damp-
ing coefficient D are not independent wall parameters.
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Based on the study of Alexander et al. [24], the flexu-
ral rigidity and damping coefficient are respectively defined
as

B = Eb3

12(1 − ν2)
, D = 2ζ

√
Kρwb, (15)

where E is Young’s modulus, ν is the Poisson ratio of the
elastic material, and ζ is the damping ratio.

In our study, the odd viscosity should be contemplated on
the right side of the flexible model. Using the odd viscosity
Cauchy stress tensor τ, the condition of normal stresses is
derived at the flexible wall surface,

�n · τ · �n|x=X = − P + 1

1 + η2
x

[
2μe

(
η2

x − 1
)
ux

− 2μeηx(uy + vx ) + μo(uy + vx )
(
1 − η2

x

)
− 2μoηx(ux − vy)

]
. (16)

We suppose that the amplitude of wall η will be much
smaller than the film thickness. Thus, ηx � 1, η2

x can be
ignored:

�n · τ · �n|x=X = − P + 2μe[vy − ηx(uy + vx )]

+ μo[(uy + vx ) − 2ηx(ux − vy)]. (17)

The simplified detailed process on the left-hand side of
Eq. (13) is given in the paper of Alexander et al. [24]. Fi-
nally, we obtain the linear soft wall equation which takes into
account the stress at an interface involving the effect of the
odd viscosity in adjacent fluids:

ρwbηtt + Dηt − T ηxx + Bηxxxx + Kη

= ps − p + 2μe[vy − ηx(uy + vx )]

+ μo[(uy + vx ) − 2ηx(ux − vy)]. (18)

The modified equation reduces to the one obtained by
Alexander et al. [24] when the odd viscosity coefficient μo

is equal to zero.
In addition, the linear wall Eq. (18) is subject to the

following no-slip and kinematic conditions at the compliant
substrate [25],

u = 0, v = ηt , at y = 0. (19)

We use the following set of scales to normalize the above
governing system:

(u, v) = u0(u∗, v∗), (x, y, h) = h0(x∗, y∗, h∗),

p = μeu0

h0
p∗, t = h0

u0
t∗, u0 = ρgh2

0 sin α

2μe
,

[5pt]μ = μo

μe
, Re = ρu0h0

μe
, η∗ = η

h0
, S = σ

μeu0
,

(20)

where u0 is given by the balance between the x component
of gravity and the viscous force [25]. Using the dimension-
less variables above, the governing equations reduce to the

following form, and the star in the nondimensional is dropped
in the following discussion:

ux + vy = 0, (21)

Re(ut + uux + vuy) = 2 + uxx + uyy − μ(vxx + vyy) − px,

(22)

Re(vt + uvx + vvy) = − 2 cot α + vxx + vyy

+ μ(uxx + uyy) − py. (23)

At y = h(x, t ), the dimensionless stress tensor and the
kinematic boundary conditions are

− p + 1

1 + h2
x

[
2
(
h2

x − 1
)
ux − 2hx(uy + vx )

+ μ(uy + vx )
(
1 − h2

x

) − 2μhx(ux − vy)
]

= hxx(
1 + h2

x

)3/2 S, (24)

1

1 + h2
x

[(
1 − h2

x

)
(uy + vx ) + 2hx(vy − ux ) + 2μhx(uy + vx )

− μ
(
1 − h2

x

)
(ux − vy)

] = 0, (25)

ht + uhx − v = 0, (26)

The conditions at soft wall y = η(x, t ) become

u = 0, v = ηt , (27)

AIηtt + ADηt − AT ηxx + ABηxxxx + AKη

= ps − p + 2[vy − ηx(uy − vx )]

+ μ[(uy + vx ) − 2ηx(uy − vx )], (28)

where AI = ρwu0b/μe, AD = Dh0/μ
e, AT = T/μeu0, AB =

B/h2
0μ

eu0, and AK = Kh2
0/μ

eu0 indicate the ratios of wall
inertia, damping, wall tension, flexural rigidity, and spring
stiffness to viscous stress, respectively.

We consider the base flow is a unidirectional parallel flow
with a constant fluid layer height and without compliant sub-
strate deformation η = 0. Therefore, the simplified governing
equations and boundary conditions for the base flow are

Uyy = −2, (29)

μUyy = 2 cot α + Py. (30)

U = 0 P = ps, at y = 0. (31)

μUy = 0 P = μUy, at y = 1. (32)

The exact solution of the base flow equations in nondimen-
sional form (29)–(32) is given by

U = y(2 − y), v = 0, h = 1, η = 0,

P = (μ + cos α)(1 − y), ps = μ + cos α. (33)

III. LINEAR STABILITY ANALYSIS

To study the linear stability analysis, we shall first derive
the perturbation equations for the infinitesimal disturbance. To

045104-4



STABILITY OF A LIQUID FILM ON INCLINED … PHYSICAL REVIEW E 108, 045104 (2023)

FIG. 3. The temporal growth rate ω with the different values of AK , when AI = 1, AB = 1, AD = 1, AT = 1, S = 1, and α = π/4.
(a) Re = 0.2. (b) Re = 3.

this end, an infinitesimal disturbance is applied to the base
flow. This fact is mathematically expressed by the following
flow variable decomposition:

u(x, y, t ) = U (y) + u′(x, y, t ), (34a)

v(x, y, t ) = v′(x, y, t ), (34b)

p(x, y, t ) = P(y) + p′(x, y, t ), (34c)

h(x, t ) = 1 + h′(x, t ), (34d)

η(x, t ) = η′(x, t ), (34e)

where the variables with primes represent the perturbation
velocity components, perturbation pressure, and perturbation
surface deformation, respectively. By substituting (34) into
Eqs. (21)–(28), the linearized forms of perturbation equations
and boundary conditions are

u′
x + v′

y = 0, (35)

Re(u′
t + Uu′

x + v′Uy) = u′
xx + u′

yy − μ(v′
xx + v′

yy) − p′
x,

(36)

Re(v′
t + Uv′

x ) = v′
xx + v′

yy + μ(u′
xx + u′

yy) − p′
y. (37)

At y = 1, the balance of tangential, normal stresses, and
kinematic boundary conditions become

−p′ − 2u′
x + 2h′(μ + cot α) + μ(u′

y + h′Uyy + v′
x ) = h′

xxS,

(38)

u′
y + v′

x − 2h′ + μ(u′
x − v′

y) = 0, (39)

h′
t + h′

x − v′ = 0. (40)

At y = 0, the boundary conditions of the interface for the
liquid film and flexible wall are written

u′ = −2η′, v′ = η′
t , (41)

AIη
′
tt + ADη′

t − AT η′
xx + ABη′

xxxx + AKη′ − 2(μ + cot α)η′

= −p′ + 2(v′
y − 2η′

x ) + μ(u′
y + v′

x ). (42)

Then, we use the normal modes of the following form to
substitute the solution of the perturbation Eqs. (35)–(42),

(u′, v′, p′, h′, η′) = [ũ(y), ṽ(y), p̃(y), h̃, η̃]eik(x−ct ) + c.c.,

(43)

where c.c. represents the complex conjugate and the variables
with tildes representing the amplitudes of perturbation vari-
ables, k is the real wave number, c = cr + ici is the complex
propagating speed, and ω = kci is growth rate. Besides, we
introduce the perturbation stream function

ψ ′
y = u′, −ψ ′

x = v′, (44)

and the normal modes are

ψ ′(x, y, t ) = ψ̃ (y)eik(x−ct ), ũ = ψ̃y, ṽ = −ikψ̃. (45)

Combining Eqs. (31)–(42) and eliminating the pressure
terms, one can obtain the OS eigenvalue problem for the
falling viscous fluid with broken time-reversal symmetry:

(
d2

dy2
− k2

)2

ψ̃ − ikRe(U − c)

(
d2

dy2
− k2

)
ψ̃

+ ikReUyyψ̃ = 0. (46)

The boundary conditions at y = 1 are

ψ̃yy +
(

k2 + 2

1 − c

)
ψ̃ + μ(ikψ̃yy + ikψ̃y) = 0, (47)

iψ̃yyy + [kRe(1 − c) − 3ik2]ψ̃y

−
(

2kcotα + Sk3

1 − c
− μk3

)
ψ̃ = 0. (48)
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FIG. 4. (a), (c) The neutral curve in the k-Re plane with the different values of viscosity ratio μ, when AK = 2.5, AI = AD = AT = AB = 1,
α = π/4, S = 1 and 500. (b), (d) The temporal growth rate ω with the different values of viscosity ratio μ, when AK = 2.5, AI = AD = AT =
AB = Re = 1, α = π/4, S = 1, and 500.

The boundary conditions at y = 0 are

ψ̃y = −2

c
ψ̃, (49)

[−k2cAI − ikcAD + k2AT + k4AB + AK

− 2(μ + cot α) − 2cμk2]ψ̃

= − c

ik
ψ̃yyy + 2ikψ̃. (50)

IV. STABILITY ANALYSIS IN THE ARBITRARY
WAVE NUMBER

A. Numerical methods

To analyze the stability of the liquid film flow for arbi-
trary wave number, we use Chebyshev collocation methods
to resolve the linearized forms of perturbation equations. The
universal code of the numerical methods is developed by Han

et al., from Beihang University [45]. The code is based on
MATLAB for solving hydrodynamic stability problems.

We choose the parameter values as given in Alexander
et al. [24], to validate the numerical code. The growth rates
are presented in Figs. 3(a) and 3(b) for Re = 0.2 and Re = 3,
respectively, with the stiffness AK varying between 2.0 and
2.6 when odd viscosity μ = 0. The temporal growth rate en-
hances with the decreasing value of AK . Hence, the increasing
value of AK has a stabilizing effect on the surface mode. It
shows an excellent agreement between the current results and
the results of Alexander et al. [24].

B. Numerical results at moderate Reynolds number regime

To analyze the effect of odd viscosity, the viscosity ratio
μ is changed in the numerical simulation. The neutral sta-
bility curve in the k-Re plane and the temporal growth rate
ω at Re = 1 are given in Figs. 4(a) and 4(b), respectively.
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FIG. 5. The neutral curve in the k-Re plane and temporal growth rate ω with the different values of viscosity ratio μ, when AI = AD =
AT = AB = S = 1, and α = π/4. (a) AK = 5. (b) AK = 5, Re = 2. (c) AK = 20. (d) AK = 20, Re = 2.

Figure 4(a) illustrates the unstable domain magnifies with
the increasing value of μ. Thus, the effect of odd viscosity
enhances the instability of liquid film. It can be found that the
primary instability emerges in the finite wave-number regime
instead of the long wave regime at the odd viscosity ratio μ =
0, which agrees with the result in Samanta [42]. Further, this
phenomenon gradually disappears, when the rate of viscosity
increases. That means that the flow of the liquid film is stable
in the long wave regime when the odd viscosity coefficient
μ is small for low values of Re. The short-wave instability at
Re = 0 exists also for μ = 0, and this result has been reported
previously, e.g., in Alexander et al. [24]. However, due to the
higher odd viscosity ratio μ, the instability produced persists
even at zero Reynolds number, which means an inertialess
instability was induced in the finite wave-number regime.

Figure 4(b) shows the temporal growth rates ω for different
values of the viscosity ratio μ. It is clear that the represen-
tative growth rate increases as the odd viscosity coefficient
μ increases. Therefore, the above result further confirms that

the instability of the liquid film is enhanced by the effect of
odd viscosity. Furthermore, for a realistic value of parameter
S = 500, Figs. 4(c) and 4(d) illustrate the neutral curve and
temporal growth rate. Figures 4(c) and 4(d) also demonstrate
that the flow becomes more unstable as the rate of viscosity
increases, which is consistent with the findings in Figs. 4(a)
and 4(b). Comparing Figs. 4(a) and 4(c), it is easy to find that
the unstable regime decreases for the value of S = 500.

Figures 5(a) and 5(c) exhibit the neutral curve in the k-Re
plane when the viscosity ratio μ alters and stiffness coefficient
AK = 5 and 20, respectively. In Fig. 5(a), it is found that the
critical Re is larger than that in Fig. 4(a) due to a larger AK .
It is demonstrated that the flow for arbitrary wave number
is stable when Re is close to zero, at μ = 0 and 0.3. How-
ever, the unstable domain emerges in the finite wave-number
regime when the odd viscosity coefficient increases, even if
the Reynolds number is zero. Corresponding growth rates ω

are raised by the amplifying values of viscosity ratio μ, as
in Fig. 5(b). This result further proves that the odd viscosity
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FIG. 6. (a) The neutral curve in the k-μ plane with the different values of AK , when Re = AI = AD = AT = AB = 1, and α = π/4. (b) The
neutral curve in the k-μ plane with the different values of α, when Re = AI = AD = AT = AB = 1, and AK = 1.5.

effect enhances the instability of the flowing liquid film on
the flexible substrate. Moreover, it is important to note that
the unstable domain for the liquid film decreases with an
increase in μ, at μ = 0.3 and 0, when the Reynolds numbers
and wave number are small, as in Fig. 5(a). To strengthen
this consequence, we observe that the temporal growth rate ω

varies with the increasing odd viscosity ratio μ. The subimage
of Fig. 5(b) shows that the temporal growth rate ω reduces as
the odd viscosity ratio μ increases, in the long wave regime.
Apparently, an opposite result can be found for a larger value
of stiffness AK . Therefore, we choose the larger AK = 20 to
observe the variation of unstable domain with viscosity ratio
μ in Fig. 5(c). It should be noted that the unstable domain in
the finite wave-number regime decreases with the increasing

value of μ. It is demonstrated that when the stiffness of the
flexible wall is high, the odd viscosity suppresses instabil-
ity of the flow at moderate Reynolds numbers. Furthermore,
Fig. 5(d) also displays the suppressing effect of odd viscosity
on temporal growth rate ω. Combined with the results of
Figs. 4 and 5, we can infer that as the stiffness AK increases,
the effect of odd viscosity on instability is not monotonous.
As discussed by Alexander et al. [24], the flexible substrate
behaves gradually like a rigid substrate with increasing values
of the wall parameters AK . As the flexible substrate becomes
a rigid substrate, the above result is fully consistent with the
one obtained in Ref. [42].

In Fig. 6(a), a neutral curve in the k-μ plane is illustrated
for various values of stiffness AK , with all other parameters

FIG. 7. (a) The neutral curve in the k-Re plane with the different values of viscosity ratio μ for shear mode, when AI = AT = AB = 1,
AK = 10 000, AD = 10, and α = π/180. (b) The neutral curve in the k-μ plane with the different values of viscosity ratio μ for wall mode,
when AI = AT = AB = 1, AK = 10 000, AD = 10, and α = π/180.
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set to unity. Figure 6(a) shows that the critical odd viscosity
ratio μ increases linearly with wave number when the stiffness
coefficient AK = 1 and 3. There is another result at AK = 8
and 10 that has two branches for large μ, in which the upper
branch grows with μ while the lower one decays as μ in-
creases. And we can find that the long wave instability should
in turn disappear as the stiffness AK is increased for the low
values of Re. In Fig. 6(b), we observe a neutral curve in the
k-μ plane for different inclination angles α. It is indicated that
the unstable region linearly extends for different values of α,
as the ratio of viscosity increases.

C. Numerical results at high Reynolds number regime

According to the study of Floryan et al. [46], it is known
that in falling film flows shear modes of instability enter in
addition to the interfacial mode at higher Reynolds numbers
and extremely small inclination angle α. In addition, Alexan-
der et al. [24] and Samanta [25] describe the wall mode in
the high Reynolds numbers regime. Due to the complexity of
parameters, we will briefly describe our results in the form
of neutral stability curves in the k-Re plane. We choose the
parameter values as AK = 104, α = π/180, and others set to
unity. Figure 7(a) demonstrates the neutral curve for the shear
mode. It is observed that the unstable domain induced by
the shear mode is reduced with the increasing value of odd
viscosity coefficient μ. It is the same as Samanta’s conclusion
[42], in which he studied the stability of a falling film of odd
viscosity liquid on a rigid wall. Figure 7(b) displays that the
unstable region generated by the wall mode is enlarged with
the increasing value of the odd viscosity coefficient μ. This
means the instability of the wall mode is dominated by the
characteristics of an elastic plate.

V. CONCLUSION

This study systematically investigated the impacts of
spontaneous odd viscosity, inertia, flexural rigidity, and spring
stiffness of the flexible substrate on the stability of a falling
liquid film. By taking into account the odd viscosity in the
flexible wall model from Alexander et al. [24], we construct

the modified linear wall equation, which includes the odd
viscosity effect. The OS equations can be obtained by com-
bining the peculiar viscosity incompressible Navier-Stokes
equations with the boundary conditions of the free interface.
To analyze the stability of the arbitrary wave number, the
Chebyshev collocation method is used to resolve the OS
eigenvalue problem. We obtain the neutral curve in the k-Re
plane and temporal growth rate ω with the different values of
odd viscosity rates μ. The results in the moderate Reynolds
number regime indicate that an increase in the viscosity ratio
expands the unstable domain when the stiffness coefficient
AK is small. However, when the value of stiffness coefficient
AK enlarges, the effect of odd viscosity transforms to suppress
the onset of instability. This implies that the effect of odd
viscosity will convert when the flexible substrate behaves
gradually as a rigid substrate with increasing values of the wall
parameters AK . The shear and wall modes of the instability
are depicted respectively, at higher Reynolds numbers and
extremely small inclination angle α. The neutral curves in the
k-Re plane for shear modes display the unstable domain is
reduced by increasing the value of odd-viscosity coefficient μ.
And the opposite conclusion can be drawn in the wall modes.

The data used in this study are available from the corre-
sponding author upon reasonable request.
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