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Locally optimal geometry for surface-enhanced diffusion
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Molecular diffusion in bulk liquids proceeds according to Fick’s law, which stipulates that the particle current
is proportional to the conductive area. This constrains the efficiency of filtration systems in which both selectivity
and permeability are valued. Previous studies have demonstrated that interactions between the diffusing species
and solid boundaries can enhance or reduce particle transport relative to bulk conditions. However, only cases that
preserve the monotonic relationship between particle current and conductive area are known. In this paper, we
expose a system in which the diffusive current increases when the conductive area diminishes. These examples
are based on the century-old theory of a charged particle interacting with an electrical double layer. This
surprising discovery could improve the efficiency of filtration and may advance our understanding of biological
pore structures.
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I. INTRODUCTION

Molecular diffusion across micro- and nanoporous struc-
tures occurs in numerous industrial and biological processes,
such as filtering of air- or water-borne particles [1], separation
of chemical and biological agents [2], and salinity gradient
nanopore energy harvesting [3,4]. It is also critical for the
transport of nutrients and signaling molecules (and pathogens)
between biological cells [5–9]. The principal consequence of
Fick’s first law of diffusion is that the particle current I ∝ σ0

scales monotonically with the conductive area σ0. Combining
the antagonistic criteria of permeability (which favors a large
pore aperture) and selectivity (requiring small pores) thus
appears out of reach. In this paper, we propose that a charged
membrane can circumvent these constraints.

Chemical separation processes are responsible for more
than 10% of the worlds energy consumption [2]. Membrane
separation offers the advantage of low energy operating cost
and is thus a green and economical alternative to traditional
processes, such as distillation. However, membranes have a
high initial capital expense, and increasing the total membrane
area (or the pore density) may not always be feasible due to
space and cost constraints. Therefore, maximizing the trans-
port capacity of individual pores is an essential and widely
recognized problem in filtration physics [10]. This, however,
is hard because small pores generally permit smaller diffusive
current.

It is well-established that particle-surface forces can en-
hance or reduce the total diffusion current relative to Fick’s
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law [11], via, e.g., electrostatic interactions [11–17], chemical
adsorption and hydrodynamic hindrance [18–22], pore geom-
etry [6,23], or, for instance, Taylor-Aris dispersion [24,25].
The monotonic relationship between particle current I and
the pore area σ0, however, is preserved in all cases reported
thus far.

The link between tracer particle motion and the pore en-
ergy landscape may nevertheless hold clues to cases that
break the area monotonicity. First, according to the Boltzmann
principle, the equilibrium concentration of tracer particles is
influenced by the energy landscape due to, e.g., van der Waals
and electrostatic potentials, which can be attractive or repul-
sive, depending on charge [26]. Second, the link between the
pore shape, size, and topology and the energy landscape is
nonlinear [12,13].

In this paper, we develop a theory that links the energy
landscape in the pore and the diffusive current, consistent with
the experimental data from [12,13]. Surprisingly we find that
for even very simple interactions (e.g., an electrical double
layer), violations of Ficks law occur in a significant part of the
parameter space. We introduce the diffusion cross-section σ

as the effective pore area experienced by a tracer particle.
This quantity is analogous to the nuclear cross-section where
the scattering probability depends on geometry and interac-
tions [27]. For particles traversing slender pores, we show
that in certain cases, the diffusion cross-section depends non-
monotonically on the geometric pore area σ0. As an example,
we consider a charged particle interacting with an electrical
double layer formed between two charged parallel plates.
We provide analytical formulas characterizing the relation-
ship between pore geometry and interaction strength, and the
diffusion cross-section. Results are then extended to other
conduit geometries. Finally, we show that concentric channels
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FIG. 1. Surface-enhanced diffusion. (a) A concentration differ-
ence �c of tracer particles (green dots, diameter d) leads to a
diffusive current I across a slender channel of length L and uni-
form cross-sectional area σ0 ∼ �2. (b) Tracer particles interact with
the channel boundaries through an energy potential U . (c) Surface
interactions impact the diffusive current I and can either reduce or
enhance transport. We demonstrate an optimal case in which the
current grows as the geometric pore area diminishes (marked by the
dashed blue line).

offer the optimal tradeoff between permeability and selectivity
when compared to circular and slit pores of equal area.

II. RESULTS

We consider diffusive transport of tracer particles (di-
ameter d) between two reservoirs connected by a slender
cylindrical channel of length L and uniform cross-sectional
area σ0 (Fig. 1). The tracer particle concentration c is small
compared to all other constituents of the solution, such as the
solvent, electrolytes, and dissolved gases. Our objective is to
explore conditions that maximize the tracer particle current I
between the two reservoirs while preventing larger molecules
or contaminants from migrating between the two regions.
The pore selectivity is determined by the diameter � of the
largest spherical particle able to enter the channel (Fig. 1).
The simplest approach is to match the pore and particle size,
i.e., � = d . However, because the current I scales with the
geometric pore area (σ0 ∼ �2 for a circular channel), obtaining
high selectivity in this manner is generally associated with
reduced permeability.

To move beyond the direct relationship between particle
current I and pore area σ0, we consider the general case of
interactions between a tracer particle and the energy landscape
U induced by the presence of channel boundaries (Fig. 1).
We assume that the energy landscape U (x, y) and the pore
cross-section shape and area σ0 are invariant along the main
channel axis z. The flux of tracer particles can be described

using the Nernst-Planck equation, and we assume that
molecular diffusion is the dominant transport mechanism
(Appendix 6). Given a difference in concentration �c across
the pore, the diffusive flux J follows Fick’s law J = −D∇c,
where D is the molecular diffusion coefficient. The particle
current I along the main z axis of the channel can be deter-
mined by integration over the pore cross-section

I =
∫

σ0

J·ez dA = −
∫

σ0

D∇c·ez dA, (1)

where ez is a unit vector normal to the pore (x, y) plane. In the
absence of particle-surface interactions (U = 0), the particle
distribution is uniform in the transverse (x, y) plane and the
steady-state concentration c(x, y, z) = c0(z) = �c(L − z)/L
only depends on the axial position z. This leads to the familiar
Ohmic formulation of Fick’s law [28] I∗ = σ0D�c/L, where
the current I∗ increases linearly with the concentration differ-
ence �c, the geometric area of the pore σ0, and the diffusion
constant D but decays inversely with the channel length L.

If, however, energy can be gained by particles residing in
the pore (U < 0), then we expect the concentration c > c0 of
tracer particles to exceed the neutral case because they are
attracted by the boundaries. To compute the precise magni-
tude of this effect on the current law in Eq. (1), we presume
the tracer particles are in thermal equilibrium such that their
concentration c follows the Boltzmann distribution

c(x, y, z) = c0(z)e−U (x,y)/(kBT ), (2)

where c0 is the interaction-free concentration (U = 0), kB is
the Boltzmann constant, and T is temperature [29,30]. Finally,
we can express the current [Eq. (1)] as

I = σD
�c

L
, where σ =

∫
σ0

e−U (x,y)/(kBT ) dA, (3)

is the diffusion cross-section that differs from the geometric
area (σ0) depending on the sign, magnitude, and spatial varia-
tion of the potential U .

At this point, it is important to reiterate that our objective
is to optimize the pore geometry for both selectivity and
permeability. In other words, we seek to maximize the dif-
fusion cross-section σ while minimizing the geometric area
σ0 (or selectivity length �). Although these opposing criteria
appear fundamentally incompatible, an intriguing possibility
is the existence of one or more extrema in the diffusion cross-
section, corresponding to

dσ

d�
= 0. (4)

Our primary goal is identifying a local maximum in the diffu-
sion cross-section σ ∝ I based on Eqs. (3) and (4). (Global
extrema are physically impossible because the effects of
surface-interactions are negligible in macroscopic pores.)

In the following, we provide an example confirming the
existence of solutions to Eq. (4) based on the well-established
theory of a charged particle interacting with an electrical
double layer. To highlight the main physical effects, we re-
strict our attention to transport along the z axis between two
parallel plates of width w held a variable distance 2h = �

apart [Fig. 2(a)]. (Results applicable to circular and concentric
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FIG. 2. Surface-enhanced diffusion in a slit. (a) A positively
charged tracer particle (green) diffuses along a pore with nega-
tively charged boundaries. The presence of an electrolyte induces
the energy potential U (y); see Eq. (5). (b)–(d) Diffusion cross-
section σ/(wλD ) plotted as function of the channel height 2h/λD

for energies U0/(kBT ) = {−1, −3.05, −3.8} [Eq. (6)]. The thin solid
line corresponds to the interaction-free σ = σ0 case. At low en-
ergies (b), the diffusion cross-section exceeds the geometric area
σ > σ0 and increases monotonically with channel height 2h. How-
ever, near the energy U0/(kBT ) = −3.05, a saddle point (i) appears
where the current I ∼ σ is approximately independent of channel
height in the range 2 < 2h/λD < 5. (d) Remarkably, for stronger
interactions [e.g., U0/(kBT ) = −3.8], local extrema (ii and iii) in
the diffusion cross-section appear. (e) Contour plot of the diffusion
cross-section σ/(wλD ) as function of energy U0/(kBT ) and relative
channel height 2h/λD. Experimental data from Ref. [12] [points in
panels (b) and (e)] are not inconsistent with theory.

pores, as well as dipolar molecules are discussed below and in
Figs. 3 and 6. See also Appendices 1 and 2.)

Proceeding with our treatment of the slit geometry we
consider a tracer particle interacting with an electric double
layer. This ubiquitous structure appears near charged surfaces

FIG. 3. Comparison of diffusion cross-sections. (a) Top-view
of a concentric geometry with outer radius a, constant inner ra-
dius b = 10λD and geometric cross-sectional area σ0 = π (a2 − b2).
(b) Top-view of a circular geometry with radius a and σ0 = πa2.
All boundaries are charged with surface potential ζ . (c) Diffu-
sion cross-sections σ/(wλD ) plotted as functions of the geometric
cross-sectional area σ0/λ

2
D for energy U0/(kBT ) = −4. Blue (parallel

plates), orange (concentric), and red (circular). The width of the
parallel plates is chosen as w = 2πb to match the circumference of
the inner concentric cylinder.

exposed to an electrolyte solution containing, for instance,
salts such as NaCl or KCl. Because the surface is charged
(electrical potential ζ ), the electrolyte ions in the solvent
form a boundary layer near the interface. For a tracer par-
ticle of charge q, the equilibrium distribution of electrolyte
ions approximately corresponds to the interaction energy (Ap-
pendix 5),

U (y) = U0
cosh(y/λD)

cosh(h/λD)
, (5)

where U0 = ζq is proportional to the tracer particle charge
q and the surface potential ζ . The parameter λD =√

εkBT/(2cel(Zele)2) is the Debye length that describes the
range of the electrical force from the channel surface on the
tracer particle [31]. Here, ε is the permittivity, e the elemen-
tary charge, and Zel and cel, respectively, the valence and
concentration of the ions in the bulk electrolyte solution.

The charge of tracer particles considered here varies from
|q| ∼ (1 − 3)e for water soluble ions to |q| > 10e for some
charged proteins (e.g., supercharged GFP [32]). Typical sur-
face potentials are of the order |ζ | ≈ 10–100 mV for, e.g.,
silicon [33] and plasma membranes of biological cells [34].
The interaction energy of a tracer particle thus falls in the
range |U0/(kBT )| ∼ 2–20 for |ζ | = 50 mV and |q| = (1–10)e
at room temperature (T = 300 K).

Having established the basic components of the
double-layer problem, we can evaluate the diffusion
cross-section [Eq. (3)], given in the slit geometry by
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σ = 2w
∫ h

0 exp[−U (y)/(kBT )] dy where U is defined in
Eq. (5). For weak interactions, we recover the geometric
cross-section, i.e., σ = 2hw = σ0. For stronger interactions,
however, two behaviors are anticipated: when the double
layers overlap 2h � λD the energy U ≈ U0 is approximately
constant, and the integral yields σ = σ0 exp[−U0/(kBT )]. In
contrast, when 2h � λD, molecules in the bulk are unaffected
by the wall interactions, and the integral only deviates from
unity inside the double layers. In this limit, we thus expect the
diffusion cross-section to scale linearly with the geometric
area but with an offset due to the (small but finite) wall
interactions: σ ≈ σ0 + 2wλD exp[−U0/(kBT )].

The transition between the two geometric cases occurs
when h is of order λD, and is not necessarily monotonic,
because of the nonlinear functional relationship in the in-
tegral. To further unpack these effects, we compute the
cross-section σ directly from Eq. (5)

σ = 2wh

[
I0

(
− U0

kBT

1

cosh(h/λD)

)

+ λD

h

∞∑
k=1

2

k
Ik

(
− U0

kBT

1

cosh(h/λD)

)
sinh

(
kh

λD

)]
, (6)

where Ik is the modified Bessel function of the first kind
of order k and we have used the identities cosh(x) =
cos(ix), sinh(x) = −i sin(ix), and exp(p cos(u)) = I0(p) +
2

∑∞
k=1 Ik (p) cos(ku).

We will now discuss the basic properties of the surface-
enhanced diffusion cross-section σ [Eq. (6)]. First, we note
that it reduces to the geometric pore area σ = 2hw = σ0 in
the limit of negligible energy |U0/(kBT )| � 1. For energies
of order unity −U0/(kBT ) ∼ 1, Eq. (6) stipulates that the
diffusion area σ is a few times larger than the geometric
pore area for reasonably small pores, that is when 2h/λD < 5.
Both predictions are in accord with experimental data from
Ref. [12] [Fig. 2(b)], which studied diffusion of fluorescein,
rhodamine B, and rhodamine 6G in nanochannels of relative
heights 2h/λD = 0.5–167. The molecular and surface proper-
ties in these experiments correspond to interaction energies in
the range −U0/(kBT ) ≈ 0–2. Note that in Fig. 2 the diffusion
cross-section σ is normalized by the double layer area wλD to
show how σ , and thus the diffusive current [Eq. (3)], changes
as h is varied.

At energies beyond the experimentally justified foundation,
Eq. (6) predicts several surprising features of the diffusion
cross-section σ as function of the channel height 2h/λD and
energy U0/(kBT ) [Figs. 2(c) and 2(d)]: Strikingly, when the
energy exceeds −U0/(kBT ) ≈ 3, the cross-section deviates
from monotonicity. A saddle point appears when the chan-
nel height 2h/λD ∼ 2.8 [Fig. 2(c)]. Beyond this point, two
distinct branches appear corresponding to two extrema. The
peak diffusion area occurs because the interaction energy U
[Eq. (5)] diminishes faster with channel height 2h than the sur-
face integral grows with the plate-to-plate distance 2h. (Note
that varying λD while keeping the channel height 2h constant,
however, does not give rise to a nonmonotonic behavior in the
diffusion cross-section σ as seen in Fig. 2, as both axes are
inversely proportional to λD.)

To highlight the significance of the optimum, we con-
sider the energy U0/(kBT ) = −3.8 [Fig. 2(d)]. Here, the peak
transport occurs at 2h/λD 	 1.8. The transport rate in this
geometry is equal to the particle current through an approx-
imately five times larger channel (2h/λD 	 9). The selectivity
in the smaller pore has thus increased fivefold with no impact
on permeability. Inspection of the surface plot [Fig. 2(e)]
reveals a large region of the parameters space in which the
diffusion cross-section either increases or remains stationary,
as the geometric area of the pore decreases. The peak dif-
fusion area occurs around when the electric double layers
start to overlap. For both strongly overlapping and nonover-
lapping double layers, the diffusion cross-section increases
linearly with channel height 2h. For strongly overlapping
double layers, 2h/λD � 1, the potential is approximately

constant across the channel and σ 	 2hwe− U0
kBT , while for

strongly nonoverlapping double layers, 2h/λD � 1, the dif-
fusion cross-section increases as 2hw, but with an offset (see
Appendix 3).

The scaling analysis above also holds for particles carrying
charges of the same sign as the pore wall, U0/(kBT ) > 0. In
this case Eq. (6) predicts the transport rate to be monotonically
increasing with pore area, but reduced compared to the neutral
case, regardless of the absolute value of the energy scale
U0/(kBT ).

We emphasize that though Eq. (5) and the cases shown in
Fig. 2 are based on a linearization of the Poisson-Boltzmann
equation, they can still be valid for large interaction energies
|U0/(kBT )| > 1. By considering the coupled problem, we see
that the dilute tracer particles’ contribution to the charge dis-
tribution in the electrical double layer is negligible when the
quantity c0

cel

Z2

Z2
el

is relatively small (see Appendix 6). We can

therefore use the linearized Poisson-Boltzmann equation to
find the electric potential in the channel when the electrolyte-
wall interactions are weak (i.e., for |Zeleζ/(kBT )| < 1), while
still allowing the interaction energy, U0, which depends on the
tracer particle valence, Z , as well, to be large.

Further, we note that if we move beyond the validity of
the linearized Poisson-Boltzmann equation, we can find the
diffusion cross-section numerically using the full Poisson-
Boltzmann equation, which, depending on the choice of tracer
particle valence Z and surface potential ζ , may differ slightly
from the linearized solution. The nonmonotonic effect is gen-
erally not, however, substantially reduced (see Appendix 5).

Up to this point we have restricted our attention to the
parallel plate geometry. Expanding our analysis to concen-
tric and circular geometries confirms the general physical
picture discussed above (Fig. 3). Unsurprisingly, transport in
a shallow concentric channel [Figs. 3(a) and 3(c)] closely
follows the preceding analysis due to the geometric similar-
ity. However, no optimal double layer geometry exists in a
circular pore [Figs. 3(b) and 3(c)]. The phenomenon is absent
because the length of the electric double layer (which scales
with the circumference) increases faster than the boundary
layer effect diminishes with pore diameter (Appendix 1). A
detailed comparison of the three pore geometries [Fig. 3(c)]
reveals that while they are all superior to the neutral case, a
concentric pore is generally the most favorable geometry for
surface-enhanced diffusion. Its strong performance relative to
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a slit of equal area is due to the larger perimeter and thus larger
electric double-layer.

Extending the analysis to dipolar molecules, such as certain
proteins, or other energy landscapes is straightforward. Our
theory is not inconsistent with data from neutral molecules
(Appendix 2). Moreover, we show in Appendix 4 that neither
pure multipolar interactions, nor potentials of the form U =
U0 f (y/�), where f is a nondimensional function, can lead to
optima.

III. CONCLUSION

We have demonstrated the feasibility of transport beyond
the monotonic area dependence of diffusive transport across
small pores reported previously. This suggests potential im-
provements to existing filtration technology in terms of both
throughput, energy consumption, and selectivity. It may also
aid in the understanding of biological pore structures, such as
pili that temporarily connect bacterial cells [9] and consist of
proteins exhibiting complex patterns of surface charges [35],
or plasmodesmata in plant cells that show a concentric struc-
ture [8]. Our predictions are based on robust electrostatic
effects that are consistent with data in the low-energy limit.
We anticipate that our results will stimulate experimental-
ists to explore the potentially impactful high-energy regime
which, we acknowledge, still awaits experimental validation.
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APPENDIX

1. Cylindrical geometries

In this Appendix we find the diffusion cross-section, σ , for
cylindrical pores with circular and concentric geometries. We
start by considering a cylindrical pore with a circular cross-
sectional area with radius a [Fig. 4(a)]. The diffusion cross-
section [Eq. (3)] is

σ = 2π

∫ a

0
e−U (r)/(kBT )rdr, (A1a)

where r is the radial coordinate. For the example of a charged
tracer particle interacting with an electrical double layer, the
interaction energy U = qψ is approximately

U (r) = U0
I0(r/λD)

I0(a/λD)
, (A1b)

where I0 is the modified Bessel function of the first kind
of order zero. Here, the electric potential in the channel, ψ ,
is found using the linearized Poisson-Boltzmann equation in
cylindrical coordinates [36],

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
= 1

λ2
D

ψ, (A1c)

FIG. 4. Surface-enhanced diffusion in a circular geometry.
(a) Top-view of circular channel with radius a and surface potential
ζ . (b)–(d) Diffusion cross-section normalized by the Debye length
squared σ/λ2

D plotted as a function of the channel radius a/λD for
energies U0/(kBT ) = {−1, −3, −4} [Eq. (A1a)]. The thin solid line
corresponds to the interaction-free case σ = σ0 = πa2. The diffu-
sion cross-section exceeds the geometric area σ > σ0 but increases
monotonically with channel radius a. (e) Contour plot of the diffu-
sion cross-section σ/λ2

D as function of energy U0/(kBT ) and relative
channel radius a/λD.

when the channel boundary is charged with surface potential
ζ , i.e., with ψ (r = a) = ζ .

The diffusion cross-section, σ , increases monotonically
with increasing pore radius a [Figs. 4(b)–4(e)], and is greater
than the diffusion cross-section in the interaction-free case
(σ = σ0 = πa2) when U0/(kBT ) < 1.

Next, we consider a cylindrical pore with a concentric
cross-sectional area with outer radius a and inner radius b
[Fig. 5(a)]. The diffusion cross-section [Eq. (3)] is

σ = 2π

∫ a

b
e−U (r)/(kBT )rdr. (A2a)
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FIG. 5. Surface-enhanced diffusion in a concentric geometry.
(a) Top-view of concentric circular channel with outer radius a and
inner radius b. Transport occurs in the gap between the two cylinders.
Both surfaces are charged with surface potential ζ . (b)–(d) Diffu-
sion cross-section normalized by the Debye length squared σ/λ2

D

plotted as a function of the channel gap (a − b)/λD for energies
U0/(kBT ) = {−1,−3, −4} [Eq. (A2a)]. The inner radius is kept con-
stant b = 10λD. The thin solid line corresponds to the interaction-free
case σ = σ0 = π (a2 − b2). The diffusion cross-section exceeds the
geometric area σ > σ0 but increases monotonically with channel
gap (a − b)/λD at low energies (b). (d) For stronger interactions
(e.g, U0/(kBT ) = −4), a local maximum in the diffusion cross-
section appears. (e) Contour plot of the diffusion cross-section σ/λ2

D

as function of energy U0/(kBT ) and relative channel opening
(a − b)/λD.

For the example of a tracer particle with charge q interacting
with an electrical double layer, the interaction energy U = qψ

is approximately

U (r) = U0[k1I0(r/λD) + k2K0(r/λD)], (A2b)

FIG. 6. Dipole interactions. (a) Diagram of an electric dipole
(separation distance s and charge q) near a charged wall in
an electrolyte solution. The dipole is oriented with the positive
charge closest to the negatively charged wall. (b) Enhanced diffu-
sion cross-section for a dipole with s = 0.68λD and U0/(kBT ) =
{−1,−5, −8, −10} (bottom to top). The thin black line is the geo-
metric cross-sectional area σ0 = 2w(h − s/2) and the black squares
are experimental data from Ref. [13] on aspirin.

with constants

k1 = K0(b/λD) − K0(a/λD)

K0(b/λD)I0(a/λD) − I0(b/λD)K0(a/λD)
, (A2c)

k2 = I0(a/λD) − I0(b/λD)

K0(b/λD)I0(a/λD) − I0(b/λD)K0(a/λD)
, (A2d)

where K0 is the modified Bessel function of the second kind
of order zero. Here, the electric potential is again found us-
ing the linearized Poisson-Boltzmann equation in cylindrical
coordinates [Eq. (A1c)]. This time the potential between the
two cylinders is found assuming both the inner and outer
cylinders are charged with surface potential ζ , i.e., Eq. (A1c)
is solved with boundary conditions ψ (r = a) = ψ (r = b) =
ζ . Figures 5(b)–5(d) show the diffusion cross-section as a
function of the gap between the two cylinders (a − b)/λD for
different energy scales U0/(kBT ) for a constant inner radius
b = 10λD. The gap between the inner and outer cylinder is
then varied by varying the outer radius a. As is the case for the
parallel plate geometry (Fig. 2) the diffusion cross-section in
a concentric geometry also shows a nonmonotonic behaviour
for stronger interactions [e.g., for U0/(kBT ) = −4, Figs. 5(d)
and 5(e)].

2. Dipolar tracer particles

In the preceding analysis, we have focused exclusively
on charged particles. In this Appendix, however, we look at
how the transport of neutral, but polar molecules, are affected
by surface interactions in an electrical double layer. Trans-
port of neutral polar molecules, such as certain proteins, is
widespread in both nature and technology. To elucidate how
such molecules are influenced by surface interactions, we
extend our parallel-plate theory to include dipolar molecules
(Fig. 6).

The energy of a molecule comprising two charges ±q
separated by a distance s in an electrical double layer is
approximately

UDP(y) = U0
s

λD

sinh(y/λD)

cosh(h/λD)
, (A3)
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in the parallel plate geometry with the plates placed a dis-
tance 2h apart. Here, the interaction energy is found from
UDP = −p · E, where p = qs is the dipole moment, with s
the separation distance, s = |s|, and E = −∇ψ is the electric
field in the channel [37]. ψ is the electric potential in the
channel, here found using the linearized Poisson-Boltzmann
equation assuming both channel walls are charged with sur-
face potential ζ . Further, we assume that, say, the positively
charged side of the dipoles is always oriented towards the
nearest negatively charged surface.

We then find the diffusion cross-section [Eq. (3)] as

σDP =2w

∫ h−s/2

0
e−UDP(y)/(kBT )dy, (A4)

where the limits in the integral take into account the positions
available to the center of the dipole. Using Eqs. (A4) and (A3)
the diffusion cross-section for the dipolar case in the parallel
plate geometry is

σDP = wλD

{
2h − s

λD
J0

[
s

λD

U0

kBT

1

cosh(h/λD)

]

+ 2
∞∑

k=1

1

k
J2k

[
s

λD

U0

kBT

1

cosh(h/λD)

]
sinh

[
k(2h − s)

λD

]

− 8
∞∑

k=1

1

2k − 1
J2k−1

[
s

λD

U0

kBT

1

cosh(h/λD)

]

× sinh2

[
(2k − 1)(2h − s)

4λD

]}
, (A5)

where Jk is the Bessel function of the first kind of order k.
To obtain Eq. (A5) we have also made use of the following
identities:

cosh(x) = cos(ix),

sinh(x) = −i sin(ix),

2 sinh2(x) = cosh(2x) − 1,

sin(x) = cos(x − π/2),

ep cos u = I0(p) + 2
∞∑

k=1

Ik (p) cos(ku),

Ik (u) = i−kJk (iu),

ik sin

(
ikx − kπ

2

)
=

{−i cos(ikx) if k is odd
sin(ikx) if k is even ,

and

−ik sin

(
kπ

2

)
=

{−i if k is odd
0 if k is even .

The resultant diffusion cross-section σDP is not quali-
tatively inconsistent with experimental data [Fig. 6(b)]. In
contrast to diffusion of charged particles [Eq. (6), Fig. 2],
however, no optimal channel size exists for dipolar molecules.

3. Nonoverlapping electrical double layers

In the following Appendix we find the diffusion cross-
section for a charged tracer particle interacting with an
electrical double layer in the limit of strongly nonoverlapping
electrical double layers. We start by considering the parallel
plate geometry with the plates placed a distance 2h apart and
in the limit 2h/λD � 1. Later we extend the theory to also
include channels with a circular cross-section.

When the two charged pore walls are far away from each
other, i.e., when 2h/λD � 1, we find that the diffusion cross-
section is on the form

σ = σ0 + w�h, (A6)

where σ0 = 2hw is the geometric cross-section, w is the width
of the channel and �h is an offset. Equation (A6) is found
from Eq. (3) by letting the electric potential in the interac-
tion energy U = qψ be the electric potential from a single
wall. When the charged pore walls are far from each other,
2h/λD � 1, the electric potentials from each wall do not
interact, and we can approximate the potential in the pore as
the potential from two walls placed at y = ±h. The diffusion
cross-section [Eq. (3)] is then

σ = 2w

∫ h

0
e−U (y)/(kBT )dy, (A7a)

with U (y) = qψ (y) and

ψ (y) = 2
kBT

Zele
ln

[
1 + tanh

( Zeleζ
4kBT

)
e−(h−y)/λD

1 − tanh
( Zeleζ

4kBT

)
e−(h−y)/λD

]
. (A7b)

Note Eq. (A7b) is a solution to the nonlinear Poisson-
Boltzmann equation [31]. Carrying out the integral in
Eq. (A7a) and taking the limit of σ − σ0 for h → ∞, we find
the offset as

�h = 4λD

N∑
k=1

1

2(N − k) + 1

[
e− Zeleζ

kBT (N−k+1/2) − 1
]
, (A8)

when the ratio of the valence of the tracer particle to the
ions in the electrolyte N = |Z/Zel| is an integer. An example
illustrating Eq. (A6) is seen in Fig. 7.

The offset can also be found in the more general case where
the potential at the two walls are not the same and the size of
the particle is taken into account. If ε is the ratio of the value
of the potential at the walls, ζ is the potential at one of the
walls and d is the diameter of the tracer particles, the offset is

�h = −d − 2λD

N∑
k=1

1

2(N − k) + 1

(
2 +

{
tanh[sgn(Z )Zeleζ/(4kBT )]e−d/(2λD ) − 1

tanh[sgn(Z )Zeleζ/(4kBT )]e−d/(2λD ) + 1

}2(N−k)+1

+
{

tanh[εsgn(Z )Zeleζ/(4kBT )]e−d/(2λD ) − 1

tanh[εsgn(Z )Zeleζ/(4kBT )]e−d/(2λD )+ 1

}2(N−k)+1
)

, (A9)
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FIG. 7. Offset in the slit geometry. When the gap between the
parallel plates is much larger than the Debye length, 2h � λD,
the diffusion cross-section increases linearly with channel height,
2h, but with an offset �h (thin dashed line). Here with energy
scale U0/(kBT ) = −4, tracer particle valence Z = 2 and surface
potential ζ = −52 mV. The dashed blue line is the diffusion
cross-section found using the electric potential from the nonlinear
Poisson-Boltzmann equation. The thin solid line corresponds to the
interaction-free case σ = σ0 = 2hw.

where sgn(Z ) denotes the sign of Z .
We now look at channels with a circular cross-section and

radius a in the limit of strongly nonoverlapping electric double
layers, a/λD � 1. As the radius a of the channel approaches
infinity, the curvature becomes negligible and the electric
potential in the channel is approximately the potential from
a single wall. The offset is thus the extra area gained from one
wall, with a width corresponding to the circumference of the
circular channel, w = 2πa. That is, we can write the diffusion
cross-section as

σ = σ0 + 2πa
�h

2
, (A10)

with σ0 = πa2 and �h from Eq. (A8).

4. Multipolar interaction energies

In this Appendix we show that neither pure multipolar
interactions, nor potentials of the form U = U0 f (y/�), where
f is a nondimensional function, can lead to local optima in
the diffusion cross-section. In order for a local extrema to
exist, the diffusion cross-section [Eq. (3)] must be a solution
to Eq. (4).

We start by considering pure multipolar interactions. The
interaction energy for pure multipolar interactions is on the
form

UMP(y) = U0
(2s)n

(h + 2s − y)n
. (A11a)

The parameter n describes the type of interaction: n = 1 is
ion-ion interactions, n = 2 is ion-dipole interactions, n = 3 is
dipole-dipole interactions, and n = 6 is London type interac-

tions [38]. s is the radius or separation distance of the ions or
dipoles, respectively.

If we let ỹ = h + 2s − y, then the diffusion cross-
section [Eq. (3)] is

σMP = 2w

∫ h+2s

2s
exp

[
− U0

kBT

(
2s

ỹ

)n]
dỹ. (A11b)

Differentiating with respect to channel height h,

dσMP

dh
= 2w exp

[
− U0

kBT

(
2s

h + 2s

)n]
> 0. (A11c)

As the derivative of σMP with respect to h is never zero, no
local extrema exists for pure multipolar interactions.

Next, we look at interaction energies of the form

U (y) = U0 f [y/(�/2)], (A12a)

where f is a nondimensional function and with no additional
length scale apart from the channel size �. First, for the
slit geometry with � = 2h, let ỹ = y/h. The diffusion cross-
section is then

σ = 2wh
∫ 1

0
e−U0 f (ỹ)/(kBT )dỹ. (A12b)

Differentiating with respect to channel height h,

dσ

dh
= 2w

∫ 1

0
e−U0 f (ỹ)/(kBT )dỹ = constant. (A12c)

As the derivative is never zero, no local optima exists.
Lastly, if we now consider a cylindrical pore with a circular

geometry, and let � = 2a, the interaction energy is on the form
U (r) = U0 f (r/a) and the diffusion cross-section becomes

σ = 2πa2
∫ 1

0
e−U0 f (r̃)/(kBT )r̃d r̃, (A12d)

with r̃ = r/a. Differentiating with respect to channel radius a,

dσ

da
= 4πa

∫ 1

0
e−U0 f (r̃)/(kBT )r̃d r̃ > 0, (A12e)

and as the derivative is never zero, no local optima exists here
either.

5. Validity of the Debye-Hückel approximation

Up until now, we have used the Debye-Hückel approxi-
mation to find the energy potential through which the tracer
particles interact with the channel boundaries, when the chan-
nel surfaces are charged (with surface potential ζ ) and the
channel contains an electrolyte solution. In this section, we
discuss the validity of this approximation. The interaction
potential for a tracer particle with charge q = Ze, where Z
is the tracer particle valence, interacting with the electrical
double layer in the channel is the product of the tracer particle
charge and the electric potential ψ in the channel, U = qψ . To
find the electric potential in the channel, we have so far used
the Debye-Hückel approximation, i.e., the linearized Poisson-
Boltzmann equation.

In general, the electric potential found from a charged
surface in contact with an electrolyte solution can be described
by the Poisson-Boltzmann equation [31]. For a symmetric
electrolyte, i.e., when the ions in the electrolyte have valences
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±Zel, the nonlinear Poisson-Boltzmann equation is

∇2ψ = 2celZele

ε
sinh

(
Zeleψ

kBT

)
. (A13)

Analytical solutions to this equation, however, only exist
for very few geometries, and not for the ones we con-
sider here. The Debye-Hückel approximation, a linearization
of the Poisson-Boltzmann equation valid in the limit when
the ratio of the electrical to thermal potential is small,
|ψeZel/(kBT )| � 1, can be used to provide analytical solu-
tions of the electric potential in this limit. Instead of solving
the nonlinear Poisson-Boltzmann equation, one solves the
linearized Poisson-Boltzmann equation

∇2ψ = 1

λ2
D

ψ, (A14)

where λD =
√

εkBT/(2(Zele)2cel ) is the Debye length. When
finding the electric potential in the channels, we use the
boundary conditions that the potentials at the channel sur-
faces are given. We note that the electric potential in the
channel being low, |ψeZel/(kBT )| � |ζeZel/(kBT )| � 1, does
not necessarily mean that the energy scale U0/(kBT ) =
Zeζ/(kBT ) is small. The energy scale U0 also depends on the
tracer particle valence Z . The linearized Poisson-Boltzmann
equation can thus still be used in the interaction energy to find
the diffusion cross-section when U0 is not small, if the channel
surface potential, ζ , is small and the tracer particle valence, Z ,
is large instead.

If we move beyond the validity of the linearized
Poisson-Boltzmann equation, then we can find the diffusion
cross-section using the numerical solution of the nonlinear
Poisson-Boltzmann equation instead to find the electric po-
tential in the interaction energy. When the electrical potential
is found numerically from the nonlinear Poisson-Boltzmann
equation, we still see the same types of behaviours as observed
when the linearized Poisson-Boltzmann equation is used. In
particular, we still find the local extrema in the diffusion
cross-section in the parallel plate geometry (Fig. 8). The ab-
solute value of the diffusion cross-section may, however, be
different when the electric potential in the interaction energy
is found numerically from the nonlinear Poisson-Boltzmann
equation compared to when it is found using the linearized
Poisson-Boltzmann equation.

For example, for a relative interaction energy of
U0/(kBT ) = −4, electrolyte valence Zel = 1, and temperature
T = 300 K, the relative deviation of the value of the diffu-
sion cross-section σ/(wλD) at the local optimum varies from
approximately 16% for tracer particle valence and surface
potential Z = 2 and ζ = −52 mV [Fig. 8(a)] to approxi-
mately 2.2% for tracer particle valence and surface potential
Z = 6 and ζ = −17 mV [Fig. 8(d)]. For a tracer particle
valence and surface potential Z = 3 and ζ = −34 mV, the
relative deviation is ∼8.1% [Fig. 8(b)] and for Z = 4 and ζ =
−26 mV it is ∼4.8% [Fig. 8(c)].

Last, we note that when the linearized Poisson-Boltzmann
equation is used, the dependence on the channel surface po-
tential, ζ , and tracer particle valence, Z , is solely through their
product in the energy scale U0. However, this is not so when
the potential is found numerically from the nonlinear Poisson-
Boltzmann equation, and the value of the energy scale, U0, at

FIG. 8. Surface-enhanced diffusion in a slit. A local maximum
in the diffusion cross-section σ as a function of channel height 2h
also exists when the electric potential in the slit is found by solving
the nonlinear Poisson-Boltzmann equation numerically (dashed blue
lines). Here shown for relative interaction energy U0/(kBT ) = −4
and electrolyte valence Zel = 1. (a) Tracer particle valence Z =
2 and surface potential ζ = −52 mV. (b) Tracer particle valence
Z = 3 and surface potential ζ = −34 mV. (c) Tracer particle val-
ence Z = 4 and surface potential ζ = −26 mV. (d) Tracer parti-
cle valence Z = 6 and surface potential ζ = −17 mV. The solid
blue line shows the corresponding diffusion cross-section when
the electric potential in the channel is found using the linearized
Poisson-Boltzmann equation for U0/(kBT ) = −4. The thin solid line
corresponds to the interaction-free case σ = σ0. Note that when the
electric potential, and hence interaction energy U (y), is found by
solving the nonlinear Poisson-Boltzmann equation numerically, the
diffusion cross-section depends on the tracer particle valence, Z , and
channel surface potential, ζ , separately and not only on their product
as seen when the Debye-Hückel approximation is used.

which the local extrema appear can differ from the one found
when the linearized Poisson-Boltzmann equation is used.

6. Flux of tracer particles from the Nernst-Planck equation

In the following Appendix, we compare the terms in the
tracer particle flux from the Nernst-Planck equation, to see
that the diffusive flux term is the dominating one. We do
this when the parameter α = c0

cel

Z2

Z2
el

� 1, which is the ratio of

the interaction-free concentration and valence squared of the
tracer particles to the electrolyte ions, is small.

We consider the parallel plate geometry, with channel
length L in the z direction and height 2h in the y direction.
The channel is assumed to be long and slender, so 2h/L � 1.
There are four ion species in the solution: the positive and
negative ions from the electrolyte with concentrations cel,±
and valences Zel,+ = −Zel,− = Zel, and the positively and neg-
atively charged tracer particles with concentrations c± and
valences Z+ = −Z− = Z . The concentration of the electrolyte
ions do not vary with z and cel,±(z = 0) = cel,±(z = L) = cel.
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There is, however, a difference in tracer particle concentration
across the channel, with c±(z = 0) = �c and c±(z = L) = 0.
Further, we assume the concentration of tracer particles is
much smaller than that of the electrolyte c � cel.

The governing equations are

Ji = −Di∇ci + uci − DiZieci

kBT
∇φ, (A15a)

∇ · Ji = 0, (A15b)

∇2φ = −ρe

ε
= − e

ε

∑
i

Zici, (A15c)

∇ · u = 0, (A15d)

η∇2u = ∇p + ρe∇φ, (A15e)

with Ji = Jizez + Jiyey, ci, Di, and Zi, the flux, concentra-
tion, diffusivity, and valence of the ith ion, respectively, ρe =
e
∑

i Zici the charge density, φ(y, z) the electric potential,
u = uzez + uyey the velocity field, p the pressure, and η the
viscosity [39]. We assume the velocity is zero at the walls,
i.e., u(y = ±h, z) = 0.

To justify Eq. (1), we want to evaluate the magnitude of
the terms in the z component of Eq. (A15a) for the positively
charged tracer particle. Our main finding is that the flux of
positive tracer particles can be written as

J+z = −D+e− Zeψ0
kBT

∂c0

∂z
+ O(α), (A16)

where ψ0 is the electric potential in a channel containing
only the electrolyte ions (i.e., no tracer particles), c0 is the
concentration of tracer particles in an uncharged channel, and
α = c0

cel

Z2

Z2
el

. With α = c0
cel

Z2

Z2
el

� 1 the diffusive part of the flux

dominates and the use of pure diffusive transport in Eq. (1) is
justified.

Proceeding with the detailed calculations, we first need
to find the velocity uz and the gradient of the potential ∂φ

∂z .
The normal fluxes at the boundaries should vanish, that is,
Jiy(z, y = ±h) = 0, from which the concentration of the ith
ion is

ci(y, z) = ci0(z)e−Zieψ (y,z)/(kBT ). (A17)

Here, we let the electric potential φ(y, z) = ψ (y, z) + ψ∗(z),
and define ci0(z) and ψ∗(z) as the concentration of the ith ion
and the potential in the channel when the surface potential ζ =
0. For the bulk electrolyte ions the concentration, cel,±0(z) =
cel, is independent of z.

Next, we look at Eq. (A15c) and insert the concentrations
from Eq. (A17). First, as the channel length is much larger
than its height, 2h/L � 1, ∇2 ≈ ∂2

∂y2 , and
∂2φ

∂y2
= ∂2ψ

∂y2
= − e

ε
[Zel(cel,+ − cel,−) + Z (c+ − c−)]

= 2Zelecel

ε
sinh

(
Zeleψ

kBT

)

×
[

1 + Z

Zel

c0(z)

cel

sinh
( Zeψ

kBT

)
sinh

( Zeleψ
kBT

)
]

	 1

λ2
D

ψ

[
1 + δ(z)

(
Z

Zel

)2
]
, (A18a)

where δ(z) = c0(z)/cel � 1, and the Debye length λD =√
εkBT/[2cel(Zele)2]. In the last step, we have used the Debye-

Hückel approximation assuming |Zeleψ/(kBT )| < 1. Letting
α(z) = δ(z)(Z/Zel )2, we can write the Poisson-Boltzmann
equation in the Debye-Hückel limit as

∂2ψ

∂y2
	 1

λ2
D

ψ[1 + α(z)]. (A18b)

The potential ψ is then found using the boundary conditions
that the potential is constant at the channel surface, ψ (y =
±h, z) = ζ , as

ψ (y, z) = ζ
cosh

( y
√

1+α(z)
λD

)
cosh

( h
√

1+α(z)
λD

) . (A18c)

To find the axial velocity uz we first need the pressure p.
From the y component of Eq. (A15e) (assuming the η∇2uy

term is small)

∂ p

∂y
= −ρe

∂ψ

∂y
	 ε

λ2
D

(1 + α(z))ψ
∂ψ

∂y
. (A19a)

Integrating once we find the pressure as

p(y, z) = ε

2λ2
D

(1 + α(z))ψ2(y, z) + p0(z), (A19b)

where p0(z) is the pressure in the channel when the potential
at the channel surface is zero (ψ (y = ±h) = ζ = 0).

Having found the pressure, we look at the z component of
Eq. (A15e) to find the velocity. As the channel length is much
larger than its height, 2h/L � 1, we again have ∇2 	 ∂2

∂y2 , and

η
∂2uz

∂y2
	 ∂ p

∂z
+ ρe

(
∂ψ

∂z
+ ∂ψ∗

∂z

)

= ∂ p0(z)

∂z
+ ∂α(z)

∂z

ε

2λ2
D

ψ2 − ε
∂ψ∗(z)

∂z

∂2ψ

∂y2
.

(A20a)

Integrating twice and using the no-slip boundary conditions
[uz(y = ±h) = 0],

uz(y, z) = 1

2η

∂ p0

∂z
(y2 − h2) + ε

η

∂ψ∗
∂z

(ζ − ψ )

+ ∂α(z)

∂z

ε

8η

{
ψ2 − ζ 2

1 + α(z)

+ ζ 2

λ2
D

y2 − h2

cosh[h
√

1 + α(z)/λD]

}
. (A20b)
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To find the potential ∂ψ∗
∂z we use the zero current condition, i.e.,

Ĩ =
∫ h

−h

(∑
i

ZiJiz

)
dy = 0 (A21a)

= Ĩd + Ĩs + Ĩc, (A21b)

with

Ĩd =
∫ h

−h
id dy, (A22a)

Ĩs =
∫ h

−h
isdy, (A22b)

Ĩc =
∫ h

−h
icdy, (A22c)

and

id = −
∑

i

ZiDi
∂ci

∂z

	 −Z (D+ − D−)
∂c0

∂z

(
1 − D+ + D−

D+ − D−

Zeψ

kBT

)
+ ε

2λ2
De

∂ψ

∂z
(Del,+ + Del,−)

(
1 + α(z)

D+ + D−
Del,+ + Del,−

)
, (A23a)

is =
∑

i

Ziciuz = −uz
ε

e

∂2ψ

∂y2

	 −ε

e

∂2ψ

∂y2

[
1

2η

∂ p0

∂z
(y2 − h2) + ε

η

∂ψ∗
∂z

(ζ − ψ ) + ∂α(z)

∂z

ε

8η

(
ψ2 − ζ 2

1 + α(z)
+ ζ 2

λ2
D

y2 − h2

cosh(h
√

1 + α(z)/λD)

)]
, (A23b)

ic = −
∑

i

Di(Zi )2eci

kBT

∂φ

∂z

	 −
(

∂ψ∗
∂z

+ ∂ψ

∂z

)
ε

2λ2
De

(Del,+ + Del,−)

[
1 − Del,+ − Del,−

Del,+ + Del,−

Zeleψ

kBT
+ α(z)

(
D+ + D−

Del,+ + Del,−
− Zeψ

kBT

D+ − D−
Del,+ + Del,−

)]
.

(A23c)

Here, the Debye-Hückel approximation is used to expand the concentrations around Zeleψ/(kBT ).
The currents are then

Ĩd 	 −ZD̃(−) ∂c0

∂z

(
2h − D̃(+)

D̃(−)

Ze

kBT

∫ h

−h
ψdy

)
+ ε

2λ2
De

D̃(+)
el

(
1 + α(z)

D̃(+)

D̃(+)
el

) ∫ h

−h

∂ψ

∂z
dy, (A24a)

Ĩs 	 −∂ψ∗
∂z

ε2

ηe

∫ h

−h

(
∂ψ

∂y

)2

dy + ε

ηe

∂ p0

∂z

(
2hζ −

∫ h

−h
ψdy

)
+ ∂α(z)

∂z

ε2

4ηe(1 + α(z))

∫ h

−h
ψ

(
∂ψ

∂y

)2

dy, (A24b)

Ĩc 	 −∂ψ∗
∂z

ε

2λ2
De

D̃(+)
el

[
2h − D̃(−)

el

D̃(+)
el

Zele

kBT

∫ h

−h
ψdy + α(z)

(
D̃(+)

D̃(+)
el

2h − D̃(−)

D̃(+)
el

Ze

kBT

∫ h

−h
ψdy

)]

− ε

2λ2
De

D̃(+)
el

[∫ h

−h

∂ψ

∂z
dy − D̃(−)

el

D̃(+)
el

Zele

kBT

∫ h

−h
ψ

∂ψ

∂z
dy + α(z)

(
D̃(+)

D̃(+)
el

∫ h

−h

∂ψ

∂z
dy − D̃(−)

D̃(+)
el

Ze

kBT

∫ h

−h
ψ

∂ψ

∂z
dy

)]
, (A24c)
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where we have introduced D̃(+) = D+ + D−, D̃(−) = D+ − D−, D̃(+)
el = Del,+ + Del,− and D̃(−)

el = Del,+ − Del,−. Last, we find
the potential ∂ψ∗

∂z from Ĩd + Ĩs + Ĩc = 0 (for ∂ p0

∂z = 0) as

∂ψ∗
∂z

=
−ZD̃(−) ∂c0

∂z

(
2h − D̃(+)

D̃(−)
Ze

kBT

∫ h
−h ψdy

) + ∂α(z)
∂z

ε2

4ηe(1+α(z))

∫ h
−h ψ

(
∂ψ

∂y

)2
dy + εD̃(−)

el

2λ2
De

Zele
kBT

(
1 + α(z) Z

Zel

D̃(−)

D̃(−)
el

) ∫ h
−h ψ

∂ψ

∂z dy

− ε2

ηe

∫ h
−h

(
∂ψ

∂y

)2
dy − εD̃(+)

el

2λ2
De

[
2h

(
1 + α(z) D̃(+)

D̃(+)
el

) − Zele
kBT

D̃(−)
el

D̃(+)
el

(
1 + α(z) Z

Zel
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1
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1
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(A25)

Comparing the terms in the tracer particle flux

Having found the velocity uz and the gradient of the potential ∂ψ∗
∂z we can now compare the magnitude of the different terms

in the tracer particle flux. The flux of positive tracer particles in the z direction is, from Eq. (A15a),

J+z = −D+
∂c+
∂z

+ uzc+ − D+Zec+
kBT

∂φ

∂z
. (A26)

To compare the magnitude of the different terms, when the concentration of the tracer particles is much smaller than the
concentration of electrolyte ions, i.e., α = c0

cel

Z2

Z2
el

� 1, we consider each term individually. First, however, we note that the

potential in the channel ψ [Eq. (A18c)] can be written as ψ (y, z) 	 ψ0(y) + α(z)ψ1(y) + O(α2) for small α, where ψ0(y) and
ψ1(y) are functions of y only and not of z. From this we see ∂ψ

∂z 	 ∂α
∂z ψ1(y). And last, from the definition of α(z) = c0(z)

cel

Z2

Z2
el

, we

also note c0(z) ∂α(z)
∂z = α(z) ∂c0(z)

∂z .
Now, looking at the individual terms, the diffusive term in the flux [Eq. (A26)] is

D+
∂c+
∂z

= −D+e− Zeψ0
kBT

∂c0

∂z

(
1 − α

2Zeψ1

kBT

)
+ O(α2) = −D+e− Zeψ0

kBT
∂c0

∂z
+ O(α). (A27a)

The second term in the flux [Eq. (A26)] is

uzc+ = uzc0e− Zeψ0
kBT

(
1 − α

Zeψ1

kBT

)
+ O(α2) = O(α), (A27b)

where the second equality comes from c0uz = O(α) [Eqs. (A20b) and (A25)].
And the last term in the flux [Eq. (A26)] is

−D+Zec+
kBT

∂φ

∂z
= −D+Ze

kBT
e− Zeψ0

kBT

(
1 − α

Zeψ1

kBT

)(
αψ1

∂c0

∂z
+ c0

∂ψ∗
∂z

)
+ O(α2) = O(α), (A27c)

where the second equality comes from c0
∂ψ∗
∂z = O(α) [Eq. (A25)].

The positive tracer particle flux [Eq. (A26)] is therefore

J+z = −D+e− Zeψ0
kBT

∂c0

∂z
+ O(α), (A28)

and we see that the diffusive part of the flux dominates.
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