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Effective elastic moduli of composites with a strongly disordered host material
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The local elastic properties of strongly disordered material are investigated using the theory of correlated
random matrices. A significant increase in stiffness is shown in the interfacial region, the thickness of which
depends on the strength of disorder. It is shown that this effect plays a crucial role in nanocomposites, in which
interfacial regions are formed around each nanoparticle. The studied interfacial effect can significantly increase
the influence of nanoparticles on the macroscopic stiffness of nanocomposites. The obtained thickness of the
interfacial region is determined by the heterogeneity lengthscale and is of the same order as the lengthscale of
the boson peak.
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I. INTRODUCTION

Amorphous glassy materials exhibit spatially inhomoge-
neous microscopic elastic properties due to their disordered
structure [1–4]. The local elastic heterogeneity results in non-
affine deformations of amorphous solids under uniform stress.
The presence of nonaffine deformations was observed in a
wide range of amorphous materials: metallic glasses [5], poly-
mer hydrogels [6], supercooled liquids [7], Lennard-Jones
glasses [8], and silica glass [9]. The typical lengthscale of
nonaffine deformations was estimated as tens of particle sizes
for Lennard-Jones glasses [10]. For smaller lengthscales, the
classical continuum elasticity theory cannot be applied [11].

If the size of an amorphous medium is much larger than
its heterogeneity lengthscale, one can use the macroscopic
elastic moduli to describe the mechanical properties of this
system. However, in composite systems containing amor-
phous materials, some regions may have small typical sizes.
An important example is nanocomposites, in which the size
of nanoinclusions may be comparable to the heterogeneity
lengthscale of the host amorphous medium. Therefore, it is
important to study the local elastic properties of amorphous
solids, especially near the interface with other materials.

Amorphous polymers are an important class of amorphous
materials. The elastic properties of polymer nanocomposites
attract considerable interest due to their unique properties and
great potential as future materials [12–15]. It was established
that doping a polymer with nanoparticles, even at low concen-
trations, could lead to significant changes in the elasticity of
the host material [16–20].

It was proposed that the elastic properties of nanocompos-
ites can be described by the so-called three-phase model [21].
The model assumes that the structure of a polymer is per-
turbed around the nanoparticle, which results in an effective
interphase region around the nanoparticle with intermediate
elastic properties. The interphase region has a strong influ-
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ence on the macroscopic stiffness of the nanocomposite due
to the large total surface area of nanoparticles. At present,
the three-phase model is usually used as a phenomenologic
model to fit the influence of inclusions on macroscopic elastic
moduli obtained experimentally or using molecular dynamics
[22–27].

Recent molecular-dynamics studies have directly shown an
increase in local elastic moduli of epoxy near the boehmite
nanolayer [28] and polystyrene near the silica nanoinclusion
[29]. In the latter case, an increase in polystyrene stiffness
was revealed within a characteristic range of 1.4 nm from the
nanoparticle, while polystyrene density saturates to the bulk
value at significantly shorter distances. The enhancement of
the local elastic properties of the polymer was attributed to
the effect of nonaffine deformations, which requires a more
detailed theoretical study.

It was shown that the general vibrational and mechanical
properties of amorphous solids can be studied by the random
matrix model [30,31]. Recently, using the theory of correlated
random matrices, the analytical form of the vibrational density
of states and the dynamical structure factor was obtained [32].

In the present paper, the theory of correlated random ma-
trices is applied to study the effect of disorder on local elastic
properties.

II. LINEAR RESPONSE

Macroscopic elastic properties determine the relationship
between the macroscopic strain of a system and the applied
macroscopic stress. In the general case, a linear response to
some external force fi acting to the ith degree of freedom
of the system at frequency ω is determined by the following
equation: ∑

j

[�i j − ω2mi j]u j = fi, (1)

where u j is the displacement of the jth degree of freedom
from the equilibrium position, m̂ is the mass matrix (usually
it is a diagonal matrix, but we are not limited to this case),
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and �̂ is the force-constant matrix. The latter is defined by the
second derivatives of the total interatomic interaction energy
U (x1, x2, . . . ) at the equilibrium as

�i j = ∂2U

∂xi∂x j
, (2)

where xi is the coordinate, which corresponds to the ith degree
of freedom. In three-dimensional system with Na atoms, there
are N = 3Na degrees of freedom.

Particular equilibrium coordinates x1, x2, . . . , xN depend
on the cooling process of the glass forming system. Therefore,
there are different realizations of the force-constant matrix
�̂ for different equilibrium configurations. Thus, the force-
constant matrix has a random nature.

Equation (1) shows how the force-constant matrix �̂ deter-
mines the linear response ui due to external forces. Although
the response ui is different for each realization of �̂, the
fluctuations of macroscopic quantities based on ui (e.g., the
macroscopic strain) are negligible. Therefore, it is important
to find the average reaction 〈ui〉, which can be expressed from
Eq. (1) in the next form:

〈ui〉 = −
∑

j

Gi j (ω
2) f j, (3)

where the resolvent

Ĝ(z) =
〈

1

m̂z − �̂

〉
(4)

is introduced. The angular brackets denote the averaging over
different realizations of �̂, and z is a complex number. The
relation between the average response 〈u j〉 and the forces fi

can be expressed as∑
j

[
�eff

i j (ω2) − ω2mi j
]〈u j〉 = fi, (5)

where �̂eff is the effective force-constant matrix, which can
be written using the resolvent Ĝ(z) as

�̂eff (z) = m̂z − Ĝ(z)−1. (6)

The study of the effective force-constant matrix �̂eff is the
main goal of the present paper. In such an analysis, the dif-
ference in each realization of �̂ must be taken into account.
Note that for a strongly disordered system, the matrix �̂eff

may significantly differ from the mean force-constant matrix
〈�̂〉. To find the properties of �̂eff , we use the random matrix
theory, which is based on the general properties of amorphous
solids.

III. RANDOM MATRIX APPROACH

The presence of disorder in amorphous systems leads to
the random nature of the force-constant matrix elements �i j .
Therefore, the random matrix theory can be applied to study
the effects of disorder in such systems. However, we are
interested in mechanically stable systems, which exhibit a
small response due to small external forces. It means that the
force-constant matrix �̂ has to be positive-semidefinite. Also,
�i j is symmetric, which follows from (2). As a result, there
are complicated correlations between the matrix elements �i j .

The above-mentioned conditions are equivalent to the pos-
sibility to represent �̂ in the form

�̂ = ÂÂT , (7)

where Â is some rectangular matrix [33]. It leads to the
positive-definite quadratic potential energy of the system [34],
which can be presented as U = ∑

k Uk , where

Uk = 1

2

( ∑
i

Aikui

)2

. (8)

Thus, the potential energy of the system may be described
by a number of positive-definite bonds enumerated by the
index k.

The matrix Â can be interpreted as follows. The ith row of
the matrix Â corresponds to the ith degree of freedom, and the
kth column of the matrix Â corresponds to the kth bond. In this
paper, a system with N degrees of freedom and K bonds will
be considered, which corresponds to N × K matrix Â. One
can assume that the matrix elements Aik are random due to
the presence of disorder in the system. Therefore, the repre-
sentation of the force-constant matrix in the form �̂ = ÂÂT

corresponds to the Wishart ensemble of random matrices [30].
However, in real amorphous systems, different degrees

of freedom and different bonds may be correlated with
each other. Therefore, there is a nontrivial covariance matrix
Ci j,kl = 〈AikA jl〉 of the elements of the matrix Â (angular
brackets denote the averaging over different realizations of
the matrix Â). This leads to the study of the properties of the
correlated Wishart ensemble.

Besides being correlated, the matrix Â has a certain
structure. In real amorphous solids, short-range interac-
tion between atoms dominates over long-range interaction.
Therefore, the matrix Â and the force-constant matrix �̂

are naturally sparse matrices. The number and positions of
nonzero elements in the matrix Â depend on the type of inter-
action between atoms in an amorphous solid. Each bond may
involve several degrees of freedom, which affects the number
of nonzero elements in the kth column of the matrix Â. For ex-
ample, in the case of two-body potential (e.g., Lennard-Jones
potential), each interaction involves six degrees of freedom.
In the case of three-body potential (e.g., Stillinger-Weber po-
tential [35]), each term, which depends on the covalent bond
angle, involves nine degrees of freedom. Some interactions
may also depend on the dihedral angle [36], which involves
12 degrees of freedom. Some of the individual interactions
can be unstable without surrounding interactions of neighbor
atoms. In this case, a linear combination of these interactions
should be considered to make positive-definite bonds, which
further increases the number of degrees of freedom under con-
sideration. Thus, one can expect that the number of nonzero
elements in each column of matrix Â is much greater than 1.

However, revealing the matrix Â and the covariance matrix
Ĉ for real amorphous systems is a complicated task, and the
results obtained in this paper are based on general assumptions
about the structure of these matrices. Since the force-constant
matrix �̂ is invariant under the change of the sign of the matrix
Â, the mean value of random elements Aik is zero. In this
paper, the matrix elements Aik are assumed to be Gaussian
random numbers with zero mean and covariance Ci j,kl . It is
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worth noting that the absence of the matrix elements Aik = 0
is equivalent to the absence of the corresponding matrix ele-
ments Cii,kk = 0, so the case of the short-range interaction in a
system corresponds to the sparse matrix Ĉ. The above assump-
tions are taken into account in the correlated Wishart ensemble
under consideration. The determination of the covariance ma-
trix Ĉ of an ensemble of disordered systems obtained by
the molecular-dynamics simulations will be discussed in the
following papers.

In this paper, we study the general properties of an amor-
phous system determined by the covariance matrix Ĉ. The
relation between Ĉ and the effective force constant matrix �̂eff

is obtained in Appendix A. This result is a generalization of
the averaging method described in [37].

To describe the effective elastic properties of amorphous
solids in the most simple form, it is further assumed that
different bonds are uncorrelated with each other, but have
different placements in space and involve different sets of
degrees of freedom, which leads to the covariance in the
following form:

〈AikA jl〉 = C(k)
i j δkl . (9)

In Ref. [32], a stronger assumption 〈AikA jl〉 = Ci jδkl was ap-
plied, which did not take into account that each column of the
matrix Â may have its own covariance matrix, and could not
be used to describe local elastic properties.

Using the results of Appendix A, the effective force-
constant matrix can be presented as

�̂eff (ω2) =
∑

k

γk (ω2)Ĉ(k), (10)

where γk (ω2) characterizes the frequency-dependent dimen-
sionless stiffness of the kth bond and can be found from the
following system of nonlinear equations:

γk (z) = 1 + Tr

[
γk (z)Ĉ(k)

(
m̂z −

∑
l

γl (z)Ĉ(l )

)−1]
, (11)

where z is some complex number. In a general case, Eq. (11)
can be solved numerically for any set of covariance matrices
Ĉ(k). However, in some cases Eq. (11) can be simplified, which
is considered in the next section.

IV. EFFECTIVE ELASTIC MEDIUM

In this section, an amorphous solid with homogeneous sta-
tistical properties is considered. For such a medium, one can
assume a homogeneous distribution of K bonds over a system
with N degrees of freedom. In this case, one can introduce a
smooth function γ (r, z) such that γk (z) = γ (rk, z), where rk

is a coordinate of the kth bond.
In the volume of a pure macroscopic amorphous solid,

γ (r, z) does not depend on the coordinate r. However, the
boundary effects may lead to nonhomogeneous γ (r, z) near
the boundaries of amorphous solids. In Appendix B, the dif-
ferential equation for γ (r, z) is derived. In the static case
(z = ω2 = 0), the equation for γ (r) ≡ γ (r, 0) reads

(1 + κ)γ (r) = κ + ξ 2
b ∇2 ln γ (r), (12)

where κ = K/N − 1, ξb is a typical bond size, and ∇2 denotes
the Laplacian.

For slowly varying γ (r) in the region near the point r,
the effective dynamical matrix has the form �̂eff = γ (r)〈�̂〉,
where 〈�̂〉 = ∑

k Ĉ(k) is the averaged force constant matrix.
Therefore, γ (r) can be considered as a dimensionless elastic-
ity since elastic moduli of the reference medium described by
〈�̂〉 are multiplied by γ (r).

Far from boundaries in an amorphous solid, γ (r) = γ0 =
κ/(κ + 1). If the number of random bonds is much greater
than the number of degrees of freedom (K � N and κ � 1),
self-averaging of random bonds takes place. It results in small
fluctuations of the force constant matrix �̂. In this case, �̂eff

is close to the average force constant matrix 〈�̂〉, and γ0 ≈ 1.
The opposite case κ � 1 corresponds to a strongly disordered
solid with γ0 � 1. Therefore, the effective medium is much
softer than the reference medium described by the average
force constant matrix 〈�̂〉. The role of disorder controlled
by the parameter κ on the vibrational properties of the bulk
amorphous solid was studied in [32].

Equation (12) can be written as

α(r) = 1 + ξ 2∇2 ln α(r), (13)

where α(r) = γ (r)/γ0 is the effective local elastic contrast,
and ξ = ξb/

√
κ is the only dimensional parameter in the

above equation.
The effective local elastic contrast α(r) specifies the ef-

fective local elastic moduli of the amorphous medium at
coordinate r: the local effective bulk modulus is K(r) =
α(r)K0 and the local effective shear modulus is μ(r) =
α(r)μ0, where K0 and μ0 are the corresponding elastic moduli
of a pure macroscopic amorphous solid. Near the boundaries,
the effective local elastic contrast α(r) may differ from 1. The
lengthscale of the boundary effects is described by ξ . Since
ξ ∼ κ

−1/2, it depends on the strength of disorder. Therefore,
ξ represents the heterogeneity lengthscale of the amorphous
system. For a strongly disordered medium, ξ � ξb.

To obtain α(r) in the whole amorphous solid, Eq. (13)
should be accomplished with the boundary conditions. The
most important case is the interface of an amorphous medium
with a more rigid and ordered medium. Such a rigid and
ordered medium can be considered as a medium with κ � 1.
In this case, one can assume γ (r) ∼ 1 on the boundaries. For
a strongly disordered medium (κ � 1), this boundary condi-
tion means α(r) = γ (r)/γ0 ∼ 1/κ � 1. Therefore, without
the loss of precision, one can assume that α(r) = ∞ on the
boundaries to solve Eq. (13). Below, the two most important
geometries of the boundary of an amorphous body are consid-
ered.

A. Flat boundary

Near a flat boundary, α(r) depends only on the distance
from the boundary, which is denoted by x. In this case,
Eq. (13) has the one-dimensional form

α(x) = 1 + ξ 2 ∂2

∂x2
ln α(x). (14)

The solution of Eq. (14) has a universal dependence on the
scaled coordinate x/ξ , which is shown in Fig. 1. Far away
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FIG. 1. The effective local elastic contrast α(x) near the flat
boundary as a function of the scaled distance to the boundary. Solid
and dashed black lines show the asymptotics given by Eqs. (15) and
(16), respectively.

from the boundary (x � ξ ), the asymptotic solution is

α(x) = 1 + c1e−x/ξ , (15)

where c1 ≈ 2.5527. Near the boundary (x � ξ ), the asymp-
totic solution is

α(x) = 2ξ 2

x2
. (16)

One can note that solution (16) is inapplicable in the region
x � ξb, where the assumption of the slow variation of α(x) on
the lengthscale ξb is violated. Thus, the actual near-boundary
value of α(x) is α(ξb) ∼ 1/κ.

B. Spherical inclusion

Another important example is spherical nanoinclusions in
an amorphous medium. Around each nanoinclusion, Eq. (13)
can be written in spherical coordinates

α(r) = 1 + ξ 2

r2

∂

∂r

(
r2 ∂

∂r
ln α(r)

)
, (17)

where r is the distance from the center of the nanoinclusion
of the radius R. The solution of Eq. (17) is shown in Fig. 2.
Far away from the nanoinclusion (r − R � ξ ), the asymptotic
solution is

α(r) = 1 + c2
R

r
e−(r−R)/ξ , (18)

where c2 is a coefficient, which depends on the ratio R/ξ .
The asymptotic solution near the surface of nanoinclusion
(r − R � ξ, R) is

α(r) = 2R2ξ 2

r2(r − R)2
. (19)

As in the one-dimensional case, solution (19) is inapplicable
in a thin near-boundary region r − R � ξb. Thus, the actual
near-boundary value of α(r) is α(R + ξb) ∼ 1/κ.

Equations (18) and (19) show that the effective elastic
shell is formed around the spherical nanoparticle. The typical
thickness of this shell is about the heterogeneity lengthscale ξ .

FIG. 2. The effective local elastic contrast α(r) around the spher-
ical nanoinclusion as a function of the scaled distance from the center
of the nanoparticle for different nanoparticle radii. Thin vertical lines
mark the corresponding radius of the nanoparticle.

Thus, the presence of the nanoinclusion enhances the elastic
properties at a distance ξ from the nanoparticle.

V. ELASTIC PROPERTIES OF A NANOCOMPOSITE

The macroscopic elastic properties of a nanocomposite de-
scribe a response (a strain) to macroscopic stress applied to the
nanocomposite. For a nanocomposite with an amorphous host
material, local strains exhibit large fluctuations. However, the
macroscopic strain has negligible fluctuations. Therefore, as
was shown in Sec. II, the macroscopic strain will be the same
if the amorphous material is substituted with the effective
elastic medium. Thus, the macroscopic elastic properties of
a nanocomposite with amorphous host material can be found
in two steps: (i) find the nonrandom continuous effective
medium described by the local elastic contrast α(r), and (ii)
find the macroscopic elastic properties of the nanocomposite
with an effective medium using the classical elasticity theory.

A. Elasticity equations

The resulting spatial distribution of the effective local elas-
tic contrast α(r) determines the local bulk and shear moduli
of the effective medium as

K(r) = α(r)K0, (20)

μ(r) = α(r)μ0. (21)

Therefore, the relation between the local strain and stress
tensors in the effective medium is determined by the usual
elasticity equation

σi j (r) = K(r)δi jεkk (r) + 2μ(r)
(
εi j (r) − 1

3δi jεkk (r)
)
. (22)

In the stationary case, the stress tensor should satisfy the force
balance equation

∂

∂ri
σi j (r) = 0. (23)
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(a) (b) (c)

FIG. 3. The spatial distribution of the effective local elastic contrast α(r) for samples with different values of the heterogeneity lengthscale
ξ . The section passing through the center of a spherical rigid inclusion of radius R = 0.193L (indicated by the gray circle) is shown (φ = 3%).
The white dashed line shows the circle of the radius R + 1.25ξ . The yellow color shows the area where the effective contrast α(r) > 5.

The macroscopic strain tensors εnc
i j and stress tensors σ nc

i j of
a nanocomposite are a simple averaging over the composite
volume of the corresponding local tensors:

εnc
i j = εi j (r), (24)

σ nc
i j = σi j (r). (25)

The relationship between εnc
i j and σ nc

i j is determined by the
macroscopic stiffness tensor of the nanocomposite Cnc

i jkl (not
to be confused with the covariance matrix Ci j,kl ):

σ nc
i j = Cnc

i jklε
nc
kl . (26)

Thus, the general recipe for finding the macroscopic elas-
tic moduli of a nanocomposite is to solve the system of
equations (22)–(25) with some given deformation of the
nanocomposite boundary. Comparing the set of macroscopic
stresses σ nc

i j and strains εnc
i j for several trial deformations of the

nanocomposite, all components of the macroscopic elasticity
tensor Cnc

i jkl can be determined.
In many composite materials, the placement of inclusions

is isotropic. In this case, the macroscopic elasticity tensor is
defined by the macroscopic bulk modulus Knc and the macro-
scopic shear modulus μnc:

Cnc
i jkl = Kncδi jδkl + μnc

(
δikδ jl + δilδ jk − 2

3δi jδkl
)
. (27)

B. A numerical example

To demonstrate the proposed method, we present the
numerical calculation of the elastic properties of a nanocom-
posite consisting of rigid spherical inclusions in the host
amorphous matrix with some given heterogeneity lengthscale
ξ . For simplicity of the calculation, the inclusions are placed
in sites of a simple-cubic lattice with period L. In this case,
Eq. (13) can be solved in one periodic cubic cell L × L × L
with one rigid spherical inclusion of radius R placed in the
center of the cell.

The finite-element method with the hexahedral mesh is
used, which was described in detail in [38]. The mesh con-
taining 303 104 elements is considered to achieve enough
numerical precision. FEniCS v0.5.2 [39] is used to solve the
finite-element problem using variational formulation.

The effective local elastic contrast α(r) is found using
Eq. (13) on the mesh under consideration. Figure 3 shows
the obtained spatial distribution of effective local elastic con-
trast α(r) for different heterogeneity lengthscale ξ in the
plane passing through the center of the inclusion of radius
R = 0.193L. The corresponding volume fraction of inclusions
is φ = 4

3πR3/L3 = 3%. For an amorphous matrix, Poisson’s
ratio was chosen as ν0 = 0.3, which is a typical value for
amorphous polymers. Figure 3 shows a reinforced shell with
α(r) � 1 with the thickness of the order of ξ around the
nanoparticle.

To solve elasticity equations for a composite with periodic
boundary conditions under consideration, the boundary con-
ditions can be satisfied by considering the displacement in the
form

ui(r) = εnc
i j r j + ũi(r), (28)

where ũi(r) is a periodic function

ũi(x, y, z) = ũi(x + L, y, z) = ũi(x, y + L, z)

= ũi(x, y, z + L). (29)

The resulting strain tensor is given by

εi j (r) = εnc
i j + 1

2

(
∂ ũi(r)

∂r j
+ ∂ ũ j (r)

∂ri

)
. (30)

Elasticity equations (22) and (23) with boundary condi-
tions (29) were solved using the finite-element method with
the same numerical mesh. Samples with the fixed inclusion
volume fraction φ = 3% and different values of the length-
scale ξ were analyzed. Then the average stress σ nc

i j was
calculated by Eq. (25) for volumetric and shear deforma-
tions of the nanocomposite given by the corresponding strain
tensor εnc

i j . The resulting bulk modulus Knc and shear mod-
ulus μnc were obtained by Eqs. (26) and (27). For the small
volume fraction of inclusions under consideration, the cubic
anisotropy of the composite due to the periodic arrangement
of the inclusions can be neglected.

Figure 4 shows the results of calculating the reinforcement
of an amorphous medium due to spherical rigid inclusions
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(a)

(b)

FIG. 4. The ratio of the nanocomposite elastic moduli to the cor-
responding moduli of the host amorphous medium depending on the
ratio R/ξ for the given volume fraction of rigid spherical inclusions
φ = 3%. Solid lines are the result of numerical simulation, horizontal
dashed lines are the Mori-Tanaka model for rigid inclusions with
radius R, and dotted lines are the modified Mori-Tanaka model for
rigid inclusions with effective inclusion radius Reff = R + 1.25ξ .

with the fixed inclusion volume fraction φ = 3% and different
ratios R/ξ .

For homogeneous host material without disorder (ξ = 0),
the macroscopic stiffness of the nanocomposite can be calcu-
lated using the Mori-Tanaka theory [40,41]. The addition of
a small concentration of rigid spherical inclusions to the host
material leads to the following macroscopic elastic moduli of
the nanocomposite:

KMT = K0

(
1 + 3φ

1 − ν0

1 + ν0

)
, (31)

μMT = μ0

(
1 + 15φ

2

1 − ν0

4 − 5ν0

)
. (32)

For φ = 3%, Eqs. (31) and (32) predict the increase of the
bulk modulus by 4.8% and the shear modulus by 6.3% due to
the presence of inclusions. These values are shown in Fig. 4
by horizontal dashed lines since they do not depend on the
heterogeneity lengthscale ξ .

For amorphous host material with ξ ∼ R (see solid lines
in Fig. 4), the macroscopic elastic moduli Knc and μnc of
nanocomposite are significantly larger than the prediction by
the Mori-Tanaka theory. For ξ � R, the macroscopic elastic
moduli approach the values given by the Mori-Tanaka theory.

To understand this behavior, the effective shell with en-
hanced elastic properties around inclusions (Fig. 3) should
be taken into account. The thickness of this shell is

approximately the heterogeneity lengthscale ξ , which can
increase the effective radius of the inclusions by a value of
the order of ξ . Therefore, we plot the additional dotted lines
in Fig. 4 with the Mori-Tanaka theory but with increased
nanoparticle radius Reff = R + 1.25ξ . One can see a good
agreement with a such modification of the existing theory. The
numerical factor was chosen for better fitting of the result.
The effective shell of the thickness 1.25ξ is shown in Fig. 4
by dashed circles for a visual guide. A typical value of the
local elastic contrast is α(r) ≈ 1.8 at this distance from the
inclusion. Thus, the amorphous medium in the effective shell
has much higher rigidity than the amorphous medium far from
inclusion.

The obtained elastic properties of nanocomposites can be
described quantitatively by the three-phase model [21]. How-
ever, it is important that the effective interphase shell can
be formed solely due to the disorder without any structural
change of the amorphous medium near the inclusion.

VI. DISCUSSION

The obtained effective force constant matrix �̂eff can be
used as a nonrandom substitution of the random force constant
matrix �̂, which gives the same average response to external
forces. In particular, �̂eff can be used to represent the macro-
scopic elastic properties of composite materials containing
amorphous materials.

Using the random matrix theory, the effective force con-
stant matrix �̂eff was obtained. In the continuum limit,
amorphous solids with homogeneous and isotropic statistics
are described by the local elastic contrast α(r) given by
Eq. (13). This is the main equation of the present work, which
contains only the heterogeneity lengthscale ξ . This length-
scale is the main parameter of the amorphous medium, which
appears to be important in the given study. Near the boundary
with a more rigid medium, the local elastic contrast α(r) � 1.
The thickness of such a boundary layer with increased stiff-
ness is of the order of the heterogeneity lengthscale ξ .

The results of this work are not limited to amorphous
solids. They can be extended to any systems with strongly
disordered elastic properties (e.g., granular systems), where
ξ can be treated as a phenomenological parameter, which
describes the heterogeneity lengthscale of the system.

The studied effect is especially important for nanocom-
posites with an amorphous host material. In this case, one
can find the macroscopic elastic moduli in two steps: (i) find
the effective local elastic contrast α(r), and (ii) use classical
elasticity theory to find macroscopic elastic properties of the
nanocomposite with the effective continuous medium. An
example of this approach was presented in Sec. V B. The
disorder of the host material leads to the formation of an effec-
tive shell of thickness ξ with increased stiffness around each
nanoparticle. In this case, the nanoparticles have an effective
radius Reff such that Reff − R ∼ ξ . Thus, for R ∼ ξ the in-
fluence of nanoinclusions on the macroscopic stiffness of the
nanocomposite will be increased by an order of magnitude.

Figure 4 shows the dependence of the reinforcement on the
inclusion size. The experimental results have shown a similar
dependence [42], which means the presence of an effec-
tive interphase shell around inclusions. However, determining
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whether the shell is due to the inhomogeneity lengthscale or
structural changes in the matrix near the inclusion requires
additional study for each given composite material.

The main result (13) concerns the static stiffness; however,
Eqs. (11) and (B6) may be applied to arbitrary frequency ω

given by the parameter z = ω2. For amorphous solids with
homogeneous and isotropic statistics, far away from bound-
aries, γk (z) does not depend on k and can be written as
γk (z) = z/Z (z), where Z (z) is some complex function. In this
case, �̂eff (z) = z

Z (z)

∑
k Ĉ(k) = z

Z (z) 〈�̂〉. Therefore, summing
Eq. (11) over k, we obtain the complex equation

κZ (z) + Z (z)2

N
Tr

[
1

Z (z) − 〈M̂〉
]

= (1 + κ)z, (33)

where 〈M̂〉 = m̂−1/2〈�̂〉m̂−1/2 is the average dynamical
matrix. For any given z = ω2 − i0, one can find Z (z)
and obtain the vibrational density of states g(ω) = (1 +
κ) 2π

ω
Im[1/Z (ω2 − i0)]. A more detailed analysis of vibra-

tional properties has been done in [32].
Amorphous solids have an excess of low-frequency vibra-

tional density of states, known as the boson peak [43,44]. The
boson peak lengthscale defined as ξbp = 2πcT /ωbp, where cT

is the transverse sound velocity and ωbp is the boson peak
frequency, was attributed to the heterogeneity lengthscale
[10]. In the random matrix model, the boson peak lengthscale
is ξbp ∼ a0κ

−1/2, where a0 is the interatomic distance [32].
Thus, the heterogeneity lengthscales ξ and ξbp have the same
order and the same dependence on the strength of disorder in
the studied random matrix model.

In real amorphous solids, the strength of disorder cannot
be varied in a wide range. However, model granular systems,
known as jammed solids, have the possibility to change their
properties significantly [45]. This is due to a critical behavior
of the elastic and vibrational properties for small positive
values of the parameter z − z0 [46–48], which corresponds to
the parameter κ in the present theory [32]. In jammed solids,
the lengthscale lc ∼ (z − zc)−1/2 is related to the breakdown
of the continuum elasticity [49] and coincides with the boson
peak lengthscale [46]. Thus, the lengthscale lc corresponds to
the lengthscale ξ in the present theory. The investigation of the
local elastic properties near the boundaries of jammed solids
is of great interest to check the validity of Eq. (13) for such
systems.

The obtained results are not limited to the study of the elas-
tic properties of strongly disordered systems. Other properties
requiring positive-definiteness can be considered. For exam-
ple, instead of stiffness, one can consider the conductivity of
a strongly disordered medium. Thus, α(r) can describe the
increase of the conductivity of the effective medium near the
interface with a well-conducting material. The applicability
of the considered model to such systems will be the subject of
further research.

VII. CONCLUSION

In this paper, the theory of correlated random matrices was
applied to find the local elastic properties of amorphous solids.
The effective force constant matrix �̂eff (z) was obtained,

which can be used to find the average linear response to a
force of a given frequency ω given by the parameter z = ω2.

For amorphous solids with homogeneous and isotropic
statistical properties, a continuous equation for effective lo-
cal elastic contrast α(r) was obtained. This equation shows
the increase of the stiffness of the amorphous solid near the
boundary with a more rigid and ordered body. The typical
thickness of the boundary layer with increased stiffness is the
heterogeneity lengthscale ξ . Far away from the boundaries,
α(r) has an exponential decay to 1 with a typical length ξ .

For the strongly disordered amorphous solids, the het-
erogeneity lengthscale ξ is much larger than the typical
interatomic size in the system. The scaling of ξ with the
strength of disorder emphasizes the role of disorder in the
formation of the boundary layer with increased stiffness.

The effect under study is important for macroscopic elastic
moduli of nanocomposites with the amorphous host material.
The numerical model of an amorphous solid with rigid spher-
ical inclusions was studied to demonstrate the effect. It was
shown that a shell with enhanced elastic properties is formed
around each nanoparticle. The thickness of this shell is of the
order of ξ , which results in the increased effective radius of
nanoparticles, which significantly increases the macroscopic
elastic moduli of the nanocomposite.
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APPENDIX A: RANDOM MATRIX THEORY:
THE AVERAGING PROCEDURE

The averaging in the resolvent G(z) = 〈(m̂z − �̂)−1〉 can
be done analytically for �̂ = ÂÂT in the assumption that
the Â is a Gaussian random matrix with zero mean and the
covariance of matrix elements 〈AikA jl〉 = Ci j,kl . The resolvent
G(z) can be presented as an infinite series

Ĝ(z) =
〈

1

m̂z − ÂÂT

〉
= 1

m̂z
+

〈
1

m̂z
ÂÂT 1

m̂z

〉

+
〈

1

m̂z
ÂÂT 1

m̂z
ÂÂT 1

m̂z

〉
+ · · · . (A1)

The elements of the resolvent Ĝ(z) can be written explicitly in
the following form:

Gi j (z) = (m̂z)−1
i j +

∑
i1k1i2k2

(m̂z)−1
ii1

δk1k2
(m̂z)−1

i2 j

〈
Ai1k1 Ai2k2

〉

+
∑

i1k1i2k2i3k3i4k4

(m̂z)−1
ii1

δk1k2
(m̂z)−1

i2i3
δk3k4

(m̂z)−1
i4 j

× 〈
Ai1k1 Ai2k2 Ai3k3 Ai4k4

〉 + · · · . (A2)
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We follow from the diagram technique described in [37] and
introduce the next graphical representation:

Here the solid line joining i and j is the factor (m̂z)−1
i j , the

dashed line joining k and l is the Kronecker symbol δkl ,
and a double arc joining i, k and l, j is the propagator Ci j,kl .
Following these rules, the second term in (A2) corresponds to

the next diagram:

Since the elements of the matrix Â are Gaussian random
numbers, Wick’s probability theorem is applicable for con-
secutively calculating even-point correlation functions, which
are expressed as sums of all distinct products of two-point
functions 〈Ai1k1 Ai2k2〉:

Therefore, a graphical representation of the resolvent Ĝ(z) is

(A3)

The presentation (A3) allows us to distinguish planar and
nonplanar diagrams. For planar diagrams, the number of
closed loops (closed solid line or closed dashed line) is equal
to the number of double arcs. For nonplanar diagrams, the
number of closed loops is less than the number of double arcs.
Namely, the second diagram in (A3) is planar and contains one
closed loop and one double arc, the third and fourth diagrams
are planar and contain two closed loops and two double arcs,
and the fifth diagram is nonplanar and contains two double
arcs and only one closed loop.

Each closed loop L corresponds to the calculation of a
trace, which gives some factor TL depending on the number
of nonzero elements of the matrix Ĉ. If each bond involves a
sufficiently large number of degrees of freedom (although the
matrix Ĉ can be a highly sparse matrix), the factor TL � 1 for
each closed loop L. In the case of a sufficiently filled matrix Ĉ,
the factor TL ∼ N . At the condition TL � 1, each planar di-
agram contributes much more than a nonplanar diagram with
the same number of double arcs. Therefore, we can exclude
nonplanar diagrams from the summation (A3) and take into
account only planar diagrams.

One can draw Ĝ(z) using the self-energy �̂(z), which con-
tains only planar diagrams:

(A4)
The matrix �̂(z) can be expressed using the other resolvent
Ĝ�(z) = 〈(1 − ÂT (m̂z)−1Â)

−1〉 by the Dyson-Schwinger rela-
tion:

(A5)

The resolvent Ĝ�(z) contains all diagrams of the same shape
as in (A3) with dashed and solid lines replaced. Therefore,

analogically to Eq. (A4), it can be written as

(A6)
where the self-energy �̂�(z) is related to Ĝ(z) by the Dyson-
Schwinger relation:

(A7)

As a result, we obtain the closed set of four equations that
correspond to the graphical representation (A4)–(A7):

Ĝ(z) = 1

m̂z − �̂(z)
, �i j (z) =

∑
kl

Ci j,kl G
�
kl (z), (A8)

Ĝ�(z) = 1

1 − �̂�(z)
, ��

kl (z) =
∑

i j

Ci j,kl Gi j (z). (A9)

As follows from Eq. (6), the matrix �̂(z) plays the role
of an effective force-constant matrix �̂eff (z) describing the
properties of an effective medium:

�eff
i j (z) = �i j (z). (A10)

For any given covariance matrix Ci j,kl , one can solve Eqs. (A8)
and (A9) and find the effective force-constant matrix
�̂eff (z).

In the case of uncorrelated bonds, the matrix elements Aik

and Ajl are independent for k �= l . The corresponding covari-
ance matrix is

Ci j,kl = C(k)
i j δkl . (A11)
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In this case, Ĝ�(z) has a diagonal form, G�
kl (z) = γk (z)δkl ,

and the solution of Eqs. (A8)–(A9) can be presented in the
following simplified form:

�eff
i j (z) =

∑
k

C(k)
i j γk (z), (A12)

γk (z) = 1 + Tr

[
γk (z)Ĉ(k)

(
m̂z −

∑
l

γl (z)Ĉ(l )

)−1]
. (A13)

APPENDIX B: AMORPHOUS SOLID WITH
HOMOGENEOUS AND ISOTROPIC

STATISTICAL PROPERTIES

One can assume that γl (z) = γ (rl , z) is close to γk (z) =
γ (rk, z) for neighbor bonds k and l . In this case, Eq. (11) can
be written as

γk (z) = 1 + Wk (Z ) +
∑

l

Wkl (Z )
γl (z) − γk (z)

γk (z)

+
∑
lm

Wklm(Z )
[γl (z) − γk (z)][γm(z) − γk (z)]

γ 2
k (z)

, (B1)

where Z = z/γk (z) and

Wk (Z ) = Tr

[
Ĉ(k) 1

m̂Z − 〈�̂〉
]
, (B2)

Wkl (Z ) = Tr

[
Ĉ(k) 1

m̂Z − 〈�̂〉Ĉ(l ) 1

m̂Z − 〈�̂〉
]
, (B3)

Wklm(Z ) = Tr

[
Ĉ(k) 1

m̂Z − 〈�̂〉Ĉ(l ) 1

m̂Z − 〈�̂〉Ĉ(m)

× 1

m̂Z − 〈�̂〉
]
. (B4)

At the same time, γl (z) − γk (z) can be written as

γl (z) − γk (z) =
∑

α

∂γ (rk, z)

∂rα

(rlα − rkα )

+ 1

2

∑
αβ

∂2γ (rk, z)

∂rα∂rβ

(rlα − rkα )(rlβ − rkβ ).

(B5)

As a result, the following differential equation for γ (r, z) is
obtained:

γ (r, z) = 1 + W (r, Z ) + 1

γ (r, z)

∑
α

W ′
α (r, Z )

∂γ (r, z)

∂rα

+ 1

γ (r, z)

∑
αβ

W ′
αβ (r, Z )

∂2γ (r, z)

∂rα∂rβ

+ 1

γ (r, z)2

∑
αβ

W ′′
αβ (r, Z )

∂γ (r, z)

∂rα

∂γ (r, z)

∂rβ

, (B6)

where

W (rk, Z ) = Wk (Z ), (B7)

W ′
α (rk, Z ) =

∑
l

Wkl (Z )(rlα − rkα ), (B8)

W ′
αβ (rk, Z ) = 1

2

∑
l

Wkl (Z )(rlα − rkα )(rlβ − rkβ ), (B9)

W ′′
αβ (rk, Z ) =

∑
lm

Wklm(Z )(rlα − rkα )(rmβ − rkβ ). (B10)

Static properties are defined by the limit z → 0 and Z → 0.
In this case, there are the following sum rules:∑

k

Wk (0) = N0 − N, (B11)

∑
l

Wkl (0) = −Wk (0), (B12)

∑
m

Wklm(0) = −Wkl (0), (B13)

where N0 is the number of trivial zero-frequency modes (trans-
lations and rotations), which can be neglected for N � 1.
Using Eqs. (B11)–(B13), for an amorphous solid with homo-
geneous and isotropic statistical properties, one obtains

W (rk, 0) = −N

K
, (B14)

W ′
α (rk, 0) = 0, (B15)

W ′
αβ (rk, 0) = N

K
ξ 2

b δαβ, (B16)

W ′′
αβ (rk, 0) = −N

K
ξ 2

b δαβ, (B17)

where ξb is a typical radius of the bonds. As a result, in the
static case (z = 0) we obtain

γ (r, 0) = 1 − N

K
+ N

K
ξ 2

b ∇2 ln γ (r, 0). (B18)
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