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Hardening of fcc hard-sphere crystals by introducing nanochannels: Auxetic aspects

Jakub W. Narojczyk ,1,* Konstantin V. Tretiakov ,1,2 Jerzy Smardzewski ,3 and Krzysztof W. Wojciechowski 1,2,†

1Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
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Tailoring the materials for a given task by modifying their elastic properties is attractive to material scientists.
However, recent studies of purely geometrical atomic models with structural modifications showed that designing
a particular change to achieve the desired elastic properties is complex. This work concerns the impact of
nanochannel inclusions in fcc hard sphere crystal on its elastic properties, especially auxetic ones. The models
containing six nanochannel arrays of spheres of another diameter, oriented along the [110]-direction and
its symmetric equivalents, have been studied by Monte Carlo simulations in the isothermal-isobaric (N pT )
ensemble using the Parinello-Rahman approach. The inclusions have been designed such that they do not affect
the cubic symmetry of the crystal. The elastic properties of three different models containing inclusions of
various sizes are investigated under four thermodynamic conditions. We find that six nanochannels filled with
hard spheres of larger diameter increase system stiffness compared with the fcc crystal without nanoinclusions.
The current finding contrasts the recently reported results [J.W. Narojczyk et al. Phys. Status Solidi B 259,
2200464 (2022)], where the fcc hard sphere crystal with four nanochannels shows reduced stiffness compared to
the system without nanoinclusions. Moreover, the six nanochannel models preserve auxetic properties in contrast
to the fcc hard sphere crystal with four nanochannel arrays, which loses auxeticity.
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I. INTRODUCTION

Auxetics [1,2]—materials with the negative Poisson’s ratio
[3]—draw increasing attention among scientists and materials
engineers. Despite the intense studies over the past thirty
years, our understanding of their nature and the number of
their actual practical applications could still be improved. Not
long after the early reports in the mid-1980s about mechanical
model structures exhibiting negative Poisson’s ratio [4,5], the
manufacture of materials with such extraordinary properties
was made possible, and the first theoretical model of a thermo-
dynamically stable phase with this counter-intuitive behavior
was provided [6–8]. After decades of research that followed,
the auxetic properties have been reported in cubic crystals
[9–14], foams [1,15,16], polymers [2,17,18], and compos-
ites [19–21], as well as in specifically engineered structures
[22–24], nanostructures [25,26], or metamaterials [27–32].
Moreover, significant effort has been put into developing vari-
ous auxetic fabrics [33] for personal applications. Along with
the experimental studies, the theoretical models exhibiting
negative Poisson’s ratio [34–36] help in the understanding
of the auxeticity mechanism and the creation of new auxetic
systems. Noteworthy examples are the well-known models by
Grima et al., which have negative Poisson’s ratio due to the ef-
fects of rotating rigid [37] or semirigid units [38]. Apart from
purely theoretical [19,34,37,39–41] or experimental [42–44]
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studies, one should notice the essential role of computer mod-
eling in auxetic research. These can be roughly divided into
continuum methods [45] (finite element methods) and atomic
models. The atomic models are beneficial in explaining the
origin of auxeticity in natural crystals [9] and basic model
systems (such as hard and soft sphere crystals [46,47]). They
also allow us to study the impact of structure modification at
the microlevel on elastic properties [48,49].

The hard sphere crystal model plays an essential role in
the theory of liquids and condensed matter physics due to
the anharmonicity of the interactions and its athermal nature
[50,51]. The elastic properties of the hard spheres crystal
have been the subject of many studies [46,52–58]. In 1987,
Runge and Chester [53] found that the fcc hard sphere solid
at melting density exhibits the negative Poisson’s ratio in the
[110][11̄0]-direction equal to −0.054(9), and according to the
modern classification, it is a partially auxetic system [10]. It
was later found that the Poisson’s ratio of the fcc hard spheres
crystal, in the close packing limit, in the [110][11̄0]-direction
is −0.072(1) [47].

Controlling the auxetic properties of the system by modi-
fying the structure can be essential in creating materials with
predetermined elastic properties. Given that the hard sphere
crystal is partially auxetic, this system is suitable for exam-
ining the influence of purely geometrical factors on elastic
properties, particularly, the auxetic properties. Recently, the
impact of structural modification on the atomic level, in the
form of multiple periodic arrays of nanochannels filled by
hard spheres of another diameter than those forming crystals
and oriented in different directions in hard sphere crystals has
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been studied [59–62]. Those studies showed that designing
a structural modification to achieve the desired elastic prop-
erties is difficult. An fcc crystal of hard spheres containing
a periodic array of identical nanochannel inclusions, oriented
along one of the principal crystallographic directions (e.g., the
[001]-direction), showed a significant decrease of the negative
Poisson’s ratio (as low as −0.87) when inclusions are filled
with the larger diameter spheres [59]. It is worth noting that
such a low Poisson ratio was observed in a crystal where
introduced nanoinclusions caused the loss of cubic symme-
try. Additionally, further studies have shown that an array of
tripled nanochannels, oriented in three mutually orthogonal
directions ([100], [010], and [001]) [60,61] or quadrupled
nanochannels oriented in [111]-direction and its equivalent
ones [62], preserve the cubic symmetry of the crystal. Still,
one observes a substantial increase in Poisson’s ratio. More-
over, partially auxetic properties observed in pure fcc hard
sphere crystal have been weakened or lost. The difficulty
in predicting the influence of microscopic modifications on
macroscopic elastic properties encourages us to design and
investigate the cubic symmetry system with six nanochannels.

This work’s primary goal is to study the elastic properties
of hard sphere crystals comprised of six periodic nanochannel
arrays, each oriented along the [110]-direction and the equiv-
alent ones. Particularly, we study the influence of introducing
inclusions in the form of nanochannels filled by hard spheres
of another diameter then the spheres forming fcc hard sphere
crystal on the auxetic properties of the crystal. Beyond the
cognitive aspect, studies of such models may be interesting
from a practical point of view. The rapid development of
nanotechnology allows us to expect manufacturing of meta-
materials at the nanoscale, e.g., by atomic layer deposition
[63]. Thus, in the not far future, one can expect the fabrication
of materials with nanoinclusions.

The article has the following structure. In Sec. II, the
studied model has been described. Section III provides ba-
sic information on the research methodology. In Sec. IV the
results have been discussed. The summary and conclusions
have been placed in Sec. V.

II. MODELS

The considered models comprise N spheres that form
the face-centered cubic lattice and interact through a hard
potential

βui j =
{∞, ri j < σi j,

0 , ri j � σi j,
(1)

where ri j denotes the distance between centres of spheres i
and j, σi j is the sum of the radii of spheres, β = 1/(kBT ),
kB is the Boltzmann constant, and T is the temperature. We
consider three systems with periodic supercells containing
inclusions presented in Fig. 1. Inclusions are six differently
sized nanochannels oriented in the [110]-direction and the
equivalent ones. Each nanochannel is filled by spheres within
a cylindrical volume designated around a selected crystallo-
graphic axis, with a radius of this cylinder denoted as rc.
For small rc values, only the spheres lying directly on the
channel’s axis form the inclusion, as shown in Fig. 1—the
system with supercell C0, where the inclusion spheres are

FIG. 1. The structures of studied systems with inclusions in the
form of nanochannels in the [110]-direction and its symmetric equiv-
alents. (a) The investigated structure with eight supercells where red
cylinders schematically represent nanochannels. (b) Supercell struc-
tures: the hard spheres forming crystals (green points) are artificially
scaled down to show the topology of inclusions; the colored spheres
belong to the nanochannels. (c) The radius rc is shown on the cross
section of the channel, together with spheres lying on the axis of
the nanochannel (blue), in the first coordination zone (red), and the
second coordination zone (yellow).

marked in blue. As the value of rc increases, the nearest
neighbor spheres, colored in red in Fig. 1, are also included
in the nanochannel, and we obtain the system with supercell
C1. With the further increse of rc, the next nearest neighbors
(yellow spheres) are also added to the channels, see Fig. 1(c),
and one obtains the system with supercell C2. Further, we will
refer to the systems with these three sizes of inclusions as
the crystals with supercells C0, C1, and C2. All the inclusion
spheres are identical but differ in their diameters from the ones
forming the base crystal. The sphere diameter of the crystal is
equal to σ , and the diameter of channel spheres is equal to
σ ′ �= σ . Each of the described systems will be parametrized
by the ratio σ ′/σ , also referred to as the diameter scaling
factor. For example, for a crystal’s sphere diameter of σ = 1.0
and inclusion sphere diameter of σ ′ = 1.01, the scaling factor
equals 1.01, and 0.98 for σ ′ = 0.98. The studied systems with
inclusions contain different numbers of spheres (Ninc) that
constitute the inclusion. Parameters of the studied structures
have been gathered in Table I.

III. COMPUTATIONAL DETAILS

The free enthalpy change corresponding to a thermo-
dynamically reversible elastic deformation under external
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TABLE I. The inclusion parameters for the C0, C1, and C2 sys-
tems. The number of inclusion spheres (Ninc) in systems of N = 864
(corresponding to 6 × 6 × 6 fcc unit cells) and systems of N = 6912
(corresponding to 12 × 12 × 12 fcc unit cells).

Ninc Ninc

Cx rc[σ ] (N = 864) (N = 6912)

C0 <
√

3/2 64 512
C1 <1 256 2048
C2 <

√
2 346 2768

pressure (p) reads [64],

�G = Vp

2

3∑
i jkl

Bi jklεi jεkl , (2)

where Bi jkl are the elastic constants at constant pressure, εi j

are the components of the (Lagrange) strain tensor, Vp is the
volume of the equilibrium (reference) state at p, and i jkl are
x, y, z.

The Monte Carlo (MC) computer simulations, based
on the Parrinello-Rahman approach [64–66], allow us to
calculate the elastic properties of studied systems within
the isothermal-isobaric ensemble (N pT ). According to the
Parrinello-Rahman method, the box matrix h and the refer-
ence box matrix hp can be used to express the Lagrange strain
tensor [66],

ε = 1
2

(
h−1

p .h.h.h−1
p − I

)
, (3)

where I is a unit matrix, h and hp (for convenience) are as-
sumed to be symmetric. The rows/columns of the box matrix
correspond to the edge vectors of the simulation box. The
reference matrix hp is the average value of the h matrix at
equilibrium under pressure p, hp ≡ 〈h〉. Here and further, 〈...〉
is the average in the N pT ensemble, calculated as

〈 f 〉 =
∫

dε(6) f exp(−βG)∫
dε(6) exp(−βG)

. (4)

The elastic compliance tensor is calculated from fluctua-
tions of the strain tensor for the system under pressure [64]

Si jkl = βVp〈�εi j�εkl〉, (5)

where Vp = |det(hp)| is the volume of the system at equilib-
rium (reference) state at p, and �εi j = εi j − 〈εi j〉.

The elastic constants Bi jkl are related to the elastic compli-
ances Si jkl by the equation [67]∑

n,m

Si jmnBmnkl = 1
2 (δikδ jl + δilδ jk ), (6)

where δi j is the Kronecker delta.
In particular, for cubic symmetry, the Gibbs free energy can

be written as follows:

�G = 1
2 B11Vp

(
ε2

xx + ε2
yy + ε2

zz

)
+ B12Vp

(
εxxεyy + εyyεzz + εxxεzz

)
+ 2B44Vp

(
ε2

xy + ε2
yz + ε2

xz

)
, (7)

where Voigt’s notation used the indices 1–6 to replace xx, yy,
zz, yz, xz, and xy, respectively.

The Poisson’s ratio for a selected pair of 	n and 	m (mutually
orthogonal directions) can be obtained in the following
way [68]:

νnm = −mimjSi jkl nknl

npnrSprst nsnt
, (8)

where n and m indicate two directions. 	n is the direction of the
applied stress, and 	m is the direction in which the system’s re-
action to the applied stress is measured. The ni and mj are their
respective direction cosines. More details regarding the calcu-
lations of elastic properties have been given in the Ref. [64].
Monte Carlo simulations in N pT ensemble were performed
for systems consisting of N = 864 and N = 6912 particles
in periodic boundary conditions. One should notice that in
the Monte Carlo method, when performing simulations in the
NpT ensemble with varying box shape, two extremes can be
applied regarding the box motions. First, the box trial motions
can accompany any trial motion of a particle. Second, they can
be done after each cycle, i.e. after trial motions of all the parti-
cles in the box. In this work the standard MC scheme [51] with
the typical Metropolis algorithm based on two kinds of trial
motions was used. The first kind is the changes in the sphere
positions, and the second one is the changes in the components
of the symmetric box matrix (h). The acceptance ratio for both
types of movements was close to 40%, and the changes of the
components of the symmetric box matrix have been attempted√

N times less frequently than the spheres’ motions.
The hard sphere crystals with three types of supercells, C0,

C1, and C2, and with different sizes of the nanochannel’s
spheres (with σ ′ between 0.95σ and 1.07σ ) were studied
at the dimensionless pressures p∗ = pβσ 3 = 50, 100, 250,
and 1250. Only stable cubic structures have been considered.
Thus, the range of σ ′/σ for obtained results varies depending
on the system type and pressure. One hundred independent
simulation runs have been performed for each pair of σ ′/σ
and p∗ values. Each run took 107 MC cycles for systems
N = 864, from which the first 106 cycles were discarded from
further analysis (treated as the period to reach the thermo-
dynamic equilibrium). For systems composed of N = 6912,
the length of a single simulation run has been increased by
eight times to 8 × 107 MC cycles. This extended the sim-
ulation time for a single run to approximately eight weeks
of CPU time.

IV. RESULTS AND DISCUSSION

The introduction of inclusions into the crystal structure
impacts the system’s geometry for any σ ′ �= σ . (When σ ′ =
σ, one has the case of the pristine fcc hard sphere crystal.)
This has been illustrated in the plots in Fig. 2, where the
components of the box matrix h have been plotted with respect
to the scaling factor σ ′/σ . The figure shows that an increase of
σ ′/σ and inclusion size leads to the larger values of diagonal
components (h11, h22, and h33) of the box matrix. In addition,
h11 = h22 = h33 and the values of off-diagonal elements of the
matrix are zero within the accuracy of the calculations (the
bottom row of Fig. 2). That suggests systems with inclusions
may retain cubic symmetry.
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FIG. 2. The diagonal box matrix components hii (top row) plotted with respect to σ ′/σ . Ratios of the diagonal and off-diagonal h
components (bottom row). The data for corresponding pressure values have been indicated with colors. Data for different inclusion sizes
have been organized in three columns for C0 (left), C1 (center), and C2 (right). This convention for colors and column arrangement is kept
throughout the paper.

A. Elastic properties of systems with six nanochannels

Figure 3 presents all the components of the elastic constant
matrix B for all studied systems at various thermodynamical
conditions. It is important to note that all the required relations
for the cubic symmetry [69] are satisfied. As shown in Fig. 3,
the Bii = Bj j holds for i, j = 1, 2, 3 and separately for i, j =
4, 5, 6, and B12 = Bk3 is true for k = 1, 2. The remaining
elements of the elastic constant matrix equal zero within the
range of computational accuracy. As a result, we observe three
nonzero components of the elastic constant matrix, B11, B12,
and B44, characteristic of cubic symmetry. Thus, the elastic
constant matrix is given in the following form:

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 B12 0 0 0
B12 B11 B12 0 0 0
B12 B12 B11 0 0 0
0 0 0 B44 0 0
0 0 0 0 B44 0
0 0 0 0 0 B44

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

Figure 3 shows that for all studied pressures, the values of the
elastic constants increase with the size of the particles consti-
tuting the nanoinclusion in the range σ ′/σ > 1. In addition,
the dependences of the elastic constants on the scaling factor
(σ ′/σ ) have similar behavior for different pressures and differ
only quantitatively.

The dependences of the Poisson’s ratio in the main crystal-
lographic directions on σ ′/σ are shown in Fig. 4(a). Poisson’s
ratio has the lowest value for a system without inclusions,
i.e., pristine hard spheres crystal. The presence of spheres
with another diameter in the system leads to an increase in
Poisson’s ratio. Since the considered systems are anisotropic,
the values of Poisson’s ratio will differ depending on the
choice of 	n and 	m directions. Presenting the full range of PR

values for each system in one plot is not feasible. However, it
is possible to present extreme Poisson’s ratios for different 	n
directions. Figure 4(b) presents the maximum and minimum
values of Poisson’s ratios in spherical coordinates at p∗ = 50
for different scaling factors (σ ′/σ ). An increase in the Pois-
son’s ratio in any direction is observed at σ ′/σ �= 1 for all
studied systems (C0, C1, and C2).

It should be noted that a finite-size effect (the dependence
of the obtained results on the size of the studied system)
was negligible. Figure 4 clearly shows that the results for the
system N = 864 particles and N = 6912 particles are in good
agreement.

B. Elastic properties of system with six nanochannels
vs system with four nanochannels

Considering that the dependences of the elastic constants
(Fig. 3) and Poisson’s ratios (Fig. 4) on the scaling factor
(σ ′/σ ) are respectively similar for different pressures, fur-
ther discussion was carried out for the pressure p∗ = 50 as
a typical case. The elastic constants of system C1 with six
nanochannels at p∗ = 50 and the analogous system C1 with
four nanoinclusions (in the [111]-direction and equivalent
ones, studied recently [62]) as a function of σ ′/σ are pre-
sented in Fig. 5. Comparison of elastic constants of systems
with six and four nanochannels reveals the entirely different
character of their behavior with respect to the scaling fac-
tor. For the systems with six nanochannels at σ ′/σ > 1, an
enhancement of the stiffness of hard sphere crystals due to
the introduction of nanochannels in the [110]-direction and
equivalent ones is observed. Oppositely, for the system with
four nanochannels in the [111]-direction and equivalent ones
at σ ′/σ > 1, we see the decrease in B11 and B44 values. For
σ ′/σ < 1 in both cases, all elastic constants have the same
dependences on σ ′/σ , and the values of the corresponding
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FIG. 3. The components B∗
i j = Bi jβσ 3 of elastic constant matrix B, plotted with respect to σ ′/σ . The rows show results for different

pressures. The columns show results for systems C0, C1, and C2, which are additionally described by graphical inserts.

elastic constants are similar. This shows the possibility of
strengthening or weakening the crystal stiffness only by in-
troducing inclusions in the form of nanochannels in different
crystallographic directions. In addition, it is worth emphasiz-
ing that the cubic symmetry of the crystals is preserved in both
cases.

Another significant conclusion can be drawn from the
comparison of the Poisson’s ratio in the crystallographic
direction [110][11̄0], in which the system of hard spheres
shows auxetic properties. In Fig. 6, we can see that when a
nanochannel is filled with spheres of a larger diameter than
the spheres forming the rest of the crystal, an increase in
Poisson’s ratio is observed in both systems. However, for
the system with four nanochannels (in the [111]-direction
and equivalent), the auxetic properties disappear entirely

(for σ ′/σ > 1.04), while the system with six nanochannels
(in the [110]-direction and equivalent) retains the auxetic
properties.

To facilitate the comparison of the results for different
systems, it is helpful to present them in a spherical coordinate
system like in Fig. 4(b). Insets of Fig. 6 show the surfaces of
the minimum values of Poisson’s ratio in all crystallographic
directions for σ ′/σ = 1.055, for systems with six and four
nanochannels in comparison with results for the pristine hard
sphere crystal (σ ′/σ = 1.0). There are no crystallographic
directions with a negative Poisson’s ratio for a system with
four nanochannels. At the same time, it can be seen that the
auxetic properties of the system with six nanochannels are still
present, although they are weaker than compared to the crystal
of hard spheres without nanochannels. Additionally, the value
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(a)

(b)

FIG. 4. (a) The Poisson’s ratio in main crystallographic directions. Results for systems C0, C1, and C2 (indicated at the top of the figure)
are presented in columns. Open symbols represent the results obtained for systems consisting of N = 864 particles. Full small symbols describe
results for system N = 6912 spheres. (b) The absolute value of the minimum negative Poisson’s ratio and the maximum value of the Poisson’s
ratio in all crystallographic directions plotted in spherical coordinates for p∗ = 50.

of minimum positive Poisson’s ratio increases with σ ′/σ for
both systems in all crystallographic directions.

Remark. Recently, Charbonneau et al. [70] published a pa-
per on stability of hard sphere crystals in dimensions between

three and ten. The results published there encourage one to
study the elastic properties of such models in the context of
auxeticity and the influence of “nanochannel” inclusions on
their elastic properties.
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(a)

(b)

(c)

FIG. 5. The elastic constants of system C1 with six nanochannels
(in the [110]-direction and equivalent ones) and system C1 with four
nanochannels (in the [111]-direction and equivalent ones) at p∗ =
50. Open circles represent the results obtained in this work. Results
of MC simulations are described in open squares from Ref. [62].

V. CONCLUSION

The elastic properties of the hard sphere crystal with six
nanochannels filled with spheres of another diameter were
determined using Monte Carlo simulations. The axes of
nanochannels are oriented in the [110]-direction and equiv-
alent ones. Three types of nanoinclusions formed by spheres
of different diameters have been studied.

The studies showed that not only the different diameter
of inclusion spheres but also the size, shape, and orientation
of the inclusion are critical factors in the modification of
elastic properties of the cubic crystal. The introduction of
inclusions into the pristine hard sphere crystal was found to
increase Poisson’s ratios. This effect is strongly correlated
with the type of inclusion and the difference in sizes of the
inclusion spheres and the spheres forming the crystal. Ad-
ditionally, it was found that filling nanochannels with larger
diameter spheres than spheres formed the crystal increased

FIG. 6. The Poisson’s ratio in the [110][11̄0]-direction of system
C1 with six nanochannels (in the [110]-direction and equivalent
ones) and system C1 with four nanochannels (in the [111]-direction
and equivalent ones) at p∗ = 50. Open circles represent the results
obtained in this work. Results of MC simulations are described in
open squares from Ref. [62]. The inserts represent the minimum pos-
itive Poisson’s ratio (yellow) and the absolute value of the minimum
negative Poisson’s ratio (blue) in all crystallographic directions for
σ ′/σ = 1.0 and σ ′/σ = 1.055.

the values of elastic constants, and enhanced the stiffness of
the fcc hard sphere crystal. Comparison of elastic constants
of systems with six nanochannels in the [110]-direction and
equivalent ones and systems with four nanochannels in the
[111]-direction and equivalent ones [62] showed the possibil-
ity of enhancing or weakening crystal stiffness, depending on
the orientation of the respective nanochannels. One should
add that the cubic symmetry is the highest crystalline one.
From this point of view, one can pose a question if, within
this high symmetry, it is possible to obtain qualitatively
different behaviors of elastic properties in the hard sphere
system. The present paper gives a positive answer to this
question.

Another interesting and important observation concerns the
auxetic properties of the studied systems. In particular, the
introduction of four nanochannels in the [111]-direction and
equivalent ones into the system of hard spheres (in a way to
preserve the cubic symmetry) led to the loss of auxetic proper-
ties [62]. The present study revealed that the system with six
nanochannels oriented in the [110]-direction and equivalent
ones retained not only cubic symmetry but also the auxetic
properties.

The most important finding of this work is that in a system
consisting of only hard spheres by introducing six nanochan-
nel arrays, the effect of strengthening the crystal stiffness
can be obtained while also maintaining the crystal’s cubic
symmetry and auxetic properties.
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