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Noise-induced escape of a self-propelled particle from metastable orbits
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Active particles, like motile microorganisms and active colloids, are often found in confined environments
where they can be arrested in a persistent orbital motion. Here, we investigate noise-induced switching between
different coexisting orbits of a confined active particle as a stochastic escape problem. We show that, in the
low-noise regime, this problem can be formulated as a least-action principle, which amounts to finding the most
probable escape path from an orbit to the basin of attraction of another coexisting orbit. The corresponding action
integral coincides with the activation energy, a quantity readily accessible in experiments and simulations via
escape rate data. To illustrate how this approach can be used to tackle specific problems, we calculate optimum
escape paths and activation energies for noise-induced transitions between clockwise and counterclockwise
circular orbits of an active particle in radially symmetric confinement. We also investigated transitions between
orbits of different topologies (ovals and lemniscates) coexisting in elliptic confinement. In all worked examples,
the calculated optimum paths and minimum actions are in excellent agreement with mean-escape-time data
obtained from direct numerical integration of the Langevin equations.
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I. INTRODUCTION

The problem of noise-induced escape from a meta-stable
state is a fundamental challenge in physics, chemistry, and
biology, with implications for fields such as materials science,
biophysics, and neuroscience. In many cases, this problem
can be modeled as the escape of a Brownian particle from
a local minimum of a potential energy landscape through
a saddle point, with the mean escape time following the
classical Kramers formula [1,2]. However, this model has
limitations in describing noise-induced escape problems in
systems where the activation energy depends not only on
the endpoints but also on the specific shape of the escape
trajectory, that is, systems that cannot be reduced to an effec-
tive potential energy. These systems include driven Josephson
junctions [3,4], particles in parametrically excited traps [5,6],
and excitable neuronal models [7,8], among others. The com-
plexity of these problems adds considerable challenge to the
task of understanding and predicting noise-induced escape
dynamics.

The escape of active Brownian particles from local minima
is a particularly interesting example of an activation problem
that depends on the specific escape path [9–18]. This problem
has received a lot of attention recently, in part because of the
increasing interest in predicting and controlling the behavior
of small self-propelled entities in various applications, from
drug delivery and nanorobotics to bacterial motility and col-
lective behavior. These particles are endowed with persistent
motion [19–21], typically modeled as a self-propulsion force
of constant intensity, which allows them to climb an external
potential landscape up to a point where their propulsion force
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is canceled out by the confining force [22–27]. At this point,
the particle stalls but thermal noise can assist it to climb
further away and eventually escape the potential well. Woillez
et al. [13] have shown that the low-noise escape time for this
problem still follows Kramers exponential form, but with the
potential barrier replaced by a pseudo-potential that depends
on both the confining potential and the particle’s propulsion
speed, leading to a range of interesting phenomena. For in-
stance, the particle may “choose” to escape through a lower
or higher barrier height, depending on the propulsion speed.

Some self-propelled microorganisms, like motile Chlamy-
domonas algae [28] and Magnetospirillum bacteria [29],
prefer to orbit around the center of a confining potential rather
than climbing it up to the stall point. A similar orbital motion
is reproduced by an hexbug robot in a parabolic reflector
[30]. Common to these systems is that their dynamics can
be successfully modeled by adding an aligning torque to the
equation of motion of the particle’s orientation vector. This
torque couples the orientation vector to the local force field
and induces spontaneous symmetry breaking, creating the
possibility of either clockwise or counterclockwise circular
orbits [30]. When the potential lacks radial symmetry, as in
the case of elliptic confinement, the particle can perform a
variety of complex orbits, with distinct, well-defined topolog-
ical indices [31]. Interestingly, two or more of these orbits
can coexist in the same region of the parameter space. These
observations pose a noise-induced escape problem fundamen-
tally different from the ones previously discussed: the decay
of a confined active particle from a metastable orbit into
another without ever leaving the confining potential. Indeed,
noise-induced transitions between such orbits have been re-
ported [29–31], but an in-depth study on how the escape rate
depends on the noise intensity and insights on the escape
dynamics are still lacking.
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In the present work, we tackle this problem in the frame-
work of a least-action principle. We show that the low-noise
transition probability is dominated by the path that minimizes
the classical action, resulting in a Kramers-like exponential
escape time, tesc ∼ exp(S/D), where S is the action integral
along the most probable escape path (MPEP). This path is
found by solving the deterministic equations of motion of an
auxiliary Hamiltonian, derived from the least-action principle.
The details of this approach are presented in Sec. II. Then,
we apply this formalism to analyze two distinct scenarios,
presented respectively in Secs. III and IV. In the first one, we
investigate transitions between clockwise and counterclock-
wise circular orbits of an active particle in radially symmetric
confinement. In the limit of strong (hard-wall) confinement,
we show that this problem is reduced to the original Kramers
escape problem, with the effective potential being a function
of the orbit radius and the propulsion speed of the particle,
and derive an analytical expression for the escape rate. For
moderate or weak confinement, the problem can no longer
be defined in terms of an effective potential. In this case,
we find the optimum escape path numerically by minimizing
the action integral between the orbit and the boundary of
its basin of attraction. In the second scenario, we calculate
the optimum escape paths and corresponding escape rates for
noise-induced transitions between multiple orbits of different
topological indexes for the case of elliptic confinement. In
all cases, the minimum action approach is shown to be in
excellent agreement with direct numerical simulations of the
Langevin equations of motion of the active particle. Conclu-
sions and outlook of the work are given in Sec. V.

II. GENERAL FORMULATION

A. Model system and competing orbits

We consider an overdamped active particle in the (x, y)
plane subjected to a confining, conservative force field F(r)
and a generic off-plane torque ẑτ . The corresponding transla-
tional and rotational dynamics are modeled by the following
Langevin equations:

ṙ = v0n̂ + μF + ζ(t ), (1)

θ̇ = βτ + ξ (t ), (2)

where n̂ = (cos θ, sin θ ) is the particle orientation axis, v0

is the self-propulsion speed, and μ (β) is the translational
(angular) mobility. The stochastic forces ξ (t ) and ζ(T ) are
independent Gaussian noises of zero mean and correlation

〈ζμ(t )ζν (t ′)〉 = 2Dtδμνδ(t − t ′), (3)

〈ξ (t )ξ (t ′)〉 = 2Drδ(t − t ′), (4)

where μ, ν = x, y, Dt and Dr are, respectively, the transla-
tional and the rotational diffusion constants.

The torque τ in Eq. (2) is a key ingredient for the ob-
servation of stable orbits. For example, in models of circle
swimmers, one typically consider a constant torque, induced
by some built-in asymmetry of the swimmer’s activation
mechanism. When such particles are confined to, e.g., a har-
monic trap, the interplay of persistent motion, confinement,
and torque does give rise to a stable orbit in the weak noise

FIG. 1. Schematic zero-noise orbits of an active particle (half-
filled dots) modeled by Eqs. (1), (2), and (5) for radially symmetric
(a) and elliptic (b, c) confinement. The blank-to-filled direction in the
dots indicates the propulsion direction, which is typically nontangen-
tial to the orbit. For the elliptic case, orbits of different shapes, such
as ovals (a) and lemniscates (b) can coexist. The labels indicate orbits
where the propulsion axis n̂ undergoes rotation (R) or libration (L)
(see text). The +/− subscripts indicate the sense of the orbit at the
upper lobe as indicated by the arrows.

limit [32]. However, the shape and direction of the orbit of the
circle swimmer are predetermined by τ . Therefore, there are
no competing orbits in this case.

In contrast, for systems with aligning torque, the direction
of the orbit is not decided a priori, but rather the symme-
try is broken spontaneously as discussed below. This torque
typically appears when the swimmer interacts with: confining
walls, as in the cases of geometrically confined, motile bac-
teria and algae [28,29]; phoretic gradients, as in the case of
self-propelled Janus particles [33]; or the potential induced by
the combination of gravity and a curved surface, as in the case
of the hexbug crawler on a parabolic antenna [30]. Typically,
the aligning torque is modeled as [29,34]

τ = b(n̂ × F ) · ẑ, (5)

where b is a constant with dimension of length and F is the
local confining force. Notice that τ = 0 when the particle
climbs up the confining potential in a way that n̂ and F are
parallel to each other. However, for sufficiently high angular
mobility β, this situation becomes unstable and the symmetry
is spontaneously broken, as now the nonzero angle between
n̂ and F can be either positive or negative, resulting in a
torque that can make the particle follow either clockwise
(R+) or counterclockwise (R−) orbit [29,30], as illustrated
in Fig. 1(a). In other words, the dynamics is now bistable.
Furthermore, if the confining potential lacks rotation sym-
metry, there typically appears multiple metastable orbits with
different topological properties coexisting in the same region
of the space of parameters [31]. For example, an elliptic har-
monic potential allows for the coexistence of ovals, where n̂
performs a full rotation (R), leading to a topological index∮

R dθ = ±2π , and lemniscates, where n̂ undergoes libration
(L), that is, it swings back and forth without completing a full
rotation, thus leading to

∮
L dθ = 0. Notice that, for the elliptic

potential, the equations of motion are invariant with respect
to reflections in the x and y axes. Therefore, each orbit is
accompanied by a twin which is its exact mirror image, giving
a total of four coexisting orbits, as illustrated in Figs. 1(b) and
1(c).
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B. Least-action principle and the most probable escape path

Each metastable orbit discussed above is associated with
a basin of attraction, which is a region in phase space con-
taining all the initial conditions that will lead to the orbit in
the absence of noise. The boundary of the basin of attrac-
tion defines the separatrix that separates it from neighboring
basins. During a noise-induced escape, the noise provides
energy to the particle to abandon its current orbit and escape
the corresponding basin of attraction through some point at
the separatrix, where the escape process ends. This process
can be viewed as a stochastic trajectory, the escape path,
that connects the starting point of the escape to the point
where the particle reaches the separatrix. When this process
is finished, the particle enters a new basin of attraction and
relaxes towards the new orbit.

The probability density of a particular escape path 
 can be
estimated as follows [35]. Let dt be the time interval elapsed
as the particle advances from point A at 
 to another point
B infinitesimally close. The probability that B also lies at 


is equal to the probability that the values of the Langevin
forces are exactly those necessary for that end, that is, P ∝
exp[− 1

4D ( 1
uζ2 + ξ 2)dt], where, from here on, we parameter-

ized the noise intensities as Dr = D and Dt = uD. Therefore,
the probability density of the specific escape path 
 is

ρ(
) = Ae−S(
)/D, (6)

where

S(
) = 1

4

∫



(
1

u
ζ2 + ξ 2

)
dt (7)

can be interpreted as the action integral and A is a normalizing
factor. As D → 0, the stochastic escape process is dominated
by the most probable escape path (MPEP), that is, by the path

 that minimizes the action integral and, thereby, maximizes
the probability. The MPEP can be obtained in two steps: (i)
finding the path 
o→s between two given endpoints, one at the
orbit (o) and the other one at the separatrix (s), that minimizes
So→s; (ii) finding which one of the possible pairs of endpoints
minimizes the action integral globally.

The minimization of S between two given endpoints can
be performed by solving the corresponding Euler-Lagrange
equations subjected to the constraints given by Eqs. (1) and
(2). Here we choose the alternative Hamiltonian approach,
which consists in substituting the probability density function
in the form of Eq. (6) into the Fokker-Planck equation corre-
sponding to the Langevin Eqs. (1) and (2):

∂ρ

∂t
= uD∇2ρ + D

∂2ρ

∂θ2
− ∇ · [ρ(v0n̂ + μF )] − β

∂ (ρτ )

∂θ
.

(8)
In the low-noise (D → 0) limit, we can expand Eq. (8) in
powers of D and obtain, to lowest order, a partial differential
equation for S,

−∂S

∂t
= H

(
r, θ, p = ∇S, pθ = ∂S

∂θ

)

= (v0n̂ + μF ) · p + βτ pθ + up2 + p2
θ . (9)

Equation (9) is formally equivalent to the Hamilton-Jacobi
equation of a system described by the coordinates r and θ

and their conjugate momenta p and pθ . Here, H represents
the (Wentzel-Freidlin) Hamiltonian and S the classical action
[36]. The corresponding Hamilton equations of motion are

ṙ = v0n̂ + μF + 2up, (10)

θ̇ = βτ + 2pθ , (11)

ṗ = −μ∇(F · p) − β(∇τ )pθ , (12)

ṗθ = −v0(ẑ × n̂) · p − β
∂τ

∂θ
pθ . (13)

Therefore, given a starting point in the attraction basin ar-
bitrarily close to the orbit, the escape trajectory is given
deterministically by the solution of Eqs. (10)–(13). From
Eq. (9), the stationarity of S requires that H = 0 (eikonal con-
dition), that is, the escape path from a given initial condition
is also a zero energy solution.

By comparing Eqs. (10) and (11) with Eqs. (1) and (2),
one identifies the generalized momenta as p = ζ/2u and pθ =
ξ/2. This establishes the formal correspondence between the
solutions obtained for p and pθ and the exact sequence of
fluctuations necessary to assist the particle through the op-
timum path. Furthermore, the corresponding action can be
obtained by integrating the Lagrangian L = p · ṙ + pθ θ̇ − H .
Using Eqs. (10), (11), and (9), the Lagrangian can be reduced
to L = up2 + p2

θ , which leads to the same form of the action
integral given by Eq. (7). Therefore, the MPEP is the path
corresponding to the minimum action integral,

S = min [S(
)] = min

[∫



(up2 + p2
θ )dt

]
. (14)

III. TRANSITIONS BETWEEN METASTABLE
CIRCULAR ORBITS

For radially symmetric confinement, V (r), it is convenient
to express the deterministic version of Eqs. (1) and (2) in
terms of the polar coordinates, r and φ, and the tilt angle
χ = ∠(n̂, r) = θ − φ. This way, r and χ form an independent
subspace, described by the equations [31]

ṙ = v0 cos χ − μV ′(r), (15)

χ̇ =
(

βbF − v0

r

)
sin χ, (16)

while φ can be obtained straightforwardly from φ =
v0

∫
dt r−1 sin χ . These equations admit as steady state solu-

tions two circular orbits of radius R, tilt angle χ = ±χ0, and
constant angular speed φ̇ = ±ω, where

R = v0

bβ

1

F (R)
, (17)

χ0 = arccos (α), (18)

ω = v0

R

√
1 − α, (19)

and α ≡ μ/(bRβ ). The orbits are stable for any attractive
confining potential, that is V ′(r) � 0, ∀ r, as long as α < 1
[31]. Notice that in the limit α → 1− one has χ0 = 0, ω = 0,
and V ′(R) = v0/μ, so that R coincides with the stall point and
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the period of the orbit diverges. This corresponds precisely to
the climbing phase. Therefore, by decreasing α from α > 1,
the climbing state (χ = 0) gives place continuously to one
of two equally stable orbiting states (χ = ±χ0), similar to
spontaneous symmetry-breaking phase transitions observed in
thermodynamic systems like an uniaxial ferromagnet.

A. Transitions in the hard-wall potential

Here we consider an active particle of radius Rp geomet-
rically confined by a circular wall of radius Rw, similar to
the experiments of Refs. [28] and [29]. In this kind of con-
finement, the particle interacts with the wall mainly via steric
forces, so that V ′(r) is essentially zero for r < R � Rw − Rp

and very large for r > R. This results in a large V ′′(r) in the
close vicinity of the orbit radius, which makes this problem
essentially 1D, as shown below.

For small deviations (δr, δχ ) from the circular orbit and for
V ′′(R) 
 v0/μR, Eqs. (15) and (16) can be expressed as the
following linear system:[

δṙ
δχ̇

]
�

[ −μV ′′(R) −ωR
ω

αv0
μV ′′(R) 0

][
δr
δχ

]
. (20)

The eigenvalues, λ1 = −μV ′′(R), associated with a mixed
change of r and χ , and λ2 = −v0α(1 − α2)/R, associated
with displacements of χ without changing the orbit radius, are
both negative, thereby guaranteeing the stability of the orbit.
Furthermore, since |λ1| 
 |λ2|, changing the orbit radius is
much harder than changing the tilt angle. Therefore, δṙ � 0,
so that μV ′ = v0 cos χ at all times, and the dynamics can be
described by a single approximate equation,

χ̇ = f (χ ) + ξ = v0

αR
sin χ (cos χ − α) + ξ, (21)

where now the deterministic term f (χ ) depends only on χ

and we add the orientational Langevin force ξ (the effect of
translational fluctuations will be discussed later on).

Within the simplifications discussed above, the switching
of the orbit direction can be seen as the noise-induced escape
of a particle confined in a one-dimensional effective potential
ψ (χ ) = − ∫

f (χ )dχ or

ψ (χ ) = v0

2αR
cos χ (cos χ − 2α). (22)

As shown in Fig. 2, the behavior of ψ (χ ) nicely illustrates
the spontaneous symmetry breaking taking place when β >

μ/bR and giving rise to two degenerate local minima located
at ±χ0. The minimum at negative (positive) χ corresponds
to the clockwise (counterclockwise) orbit. The decay of an
orbit into the other occurs by noise-induced activation over
the barrier located at χ = 0. Therefore, the escape rate can be
determined using Kramers formula for the effective potential
ψ (χ ). However, it is instructive to find the escape rate using
the theory presented in Sec. II to check for its consistency.

For this 1d problem, the auxiliary Hamiltonian is H =
f pχ + p2

χ and the corresponding Hamilton equations are

χ̇ = f (χ ) + 2pχ , (23)

ṗχ = − f ′(χ )pχ . (24)

FIG. 2. (a) Effective potential ψ for an active particle in hard-
wall confinement as a function of tilt angle χ for different values of
the angular mobility β [Eq. (22), with α = μ/(bRβ )]. (b) Minimum
action for the switching between clockwise and counterclockwise or-
bits as a function of β [Eq. (26)]. Symbols are numerical estimates of
activation energies obtained from direct simulations of the Langevin
equations. Both S and ψ are in units of v0/R and β is in units
of μ/bR. Inset: semilog plot of the mean escape time, τesc = 1/k,
as a function of 1/D calculated from simulations (symbols) and
analytically using Eq. (27) (dashes) for selected values of β. Open
symbols correspond to the linear part of the data used for extracting
the activation energy by an Arrhenius fitting (solid lines).

As discussed in the previous section, the MPEP must sat-
isfy the eikonal condition, H = 0, which leads to a simple
nontrivial solution for the conjugate momentum, pχ = − f .
Substituting this result in Eq. (23), we obtain

pχ = χ̇ = − f (χ ), (25)

that is, the MPEP corresponds to the time-reversed version of
the deterministic motion, as expected for a 1d escape problem.
From Eqs. (14) and (25), the action integral along this path can
be expressed as the difference in effective potential between
the local minimum (χ = ±χ0) and the saddle point (χ = 0),

S = −
∫ 0

χ0

f (χ )dχ = ψ (0) − ψ (χ0) = v0(1 − α)2

2αR
. (26)

This demonstrates the consistency of the MPEP approach, ap-
plied to the problem of an active particle in hard-wall circular
confinement, with the classic Kramers theory for a Brownian
particle in a 1d potential. In this case, the prefactor of the
escape rate can be calculated using Kramers formula [37],
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leading to

k = v0

√
(1 − α)(1 − α2)

2παR
exp

[
−v0(1 − α)2

2αRD

]
. (27)

To validate these theoretical results, we performed numer-
ical simulations of Eqs. (1) and (2) for a circular particle of
radius Rp confined geometrically by a circular wall of radius
Rw for different values of noise intensity D. The particle-wall
interaction is modeled by a truncated Lennard-Jones (WCA)
potential, U (d ) = 0, for d > 21/6, and U (d ) = 4ε(d−12 −
d−6) − ε, for d < 21/6, where d = (Rw − r)/Rp is the re-
duced radial distance between the particle center and the wall.
For each value of D, the equations of motion were integrated
following a stochastic second-order Runge-Kutta algorithm
starting from a perfect counterclockwise circular orbit all the
way until the particle first crosses the separatrix, which in
this case corresponds to the surface χ = 0. The mean escape
time, τesc = k−1, was then estimated by averaging the crossing
time over 104 realizations of the stochastic force. Once D falls
below a certain threshold, the τesc(1/D) data approaches the
Kramers law, as illustrated in the inset of Fig. 2. The slope
of the fit to the data points in the linear regime (unfilled
points) is taken as an estimate of the activation energy. Finally,
in Fig. 2(b), we show the agreement between the activation
energy estimated from simulations and the analytical result
Eq. (26).

B. Transitions in the harmonic potential and effect
of translational noise

Here we consider a much softer kind of confinement, the
parabolic well V (r) = 1

2κr2. For this problem, circular orbits
are the only stable attractors of the dynamics for β > βc ≡
μ2κ/bv0 and their radius and tilt angle are given by

R = Rstall

√
βc

β
and χ0 = arccos

√
βc

β
, (28)

where Rstall = v0/κμ is the stall point of the particle in the
harmonic potential. In contrast to the hard-wall case, here the
escape problem cannot be reduced to one dimension, requiring
one to consider the full set of Eqs. (1) and (2) to correctly
model the problem. Moreover, the right hand side of these
equations cannot be expressed as the gradient of a potential,
so Kramers rate formula does not work here. Therefore, it is
necessary to find the MPEP by minimizing the action inte-
gral. We perform this task by solving Eqs. (10)–(13) starting
from 105 random initial conditions in the close vicinity of
the source orbit all the way up to the separatrix, which, by
symmetry, corresponds to the φ = θ (χ = 0) plane in the rφθ

phase space. For the initial conditions we fixed a point at
the orbit, (r, φ, θ ) = (R, 0, χ0), and chose 105 different values
of the momenta uniformly distributed on the surface of a
sphere of radius 10−6 and centered at (pr, pφ, pθ ) = (0, 0, 0).
This shooting method allows for sampling different take-off
directions, each one generating an escape path that minimizes
the action locally. The MPEP is chosen as the one path that
minimizes S globally.

In Fig. 3 we show the MPEP obtained by this method
for different values of β (1.2, 1.6, and 2.0, in units of

FIG. 3. The most probable escape path (solid line) from counter-
clockwise orbit and the relaxation path (dashes) towards clockwise
orbit for an active particle in parabolic confinement for (a) β = 1.6
and (b) β = 1.2 and 2.0. Grayscale lines in panel (a) are 50 randomly
chosen nonoptimum escape attempts, which minimize the action S
only locally; the lighter the line, the larger the action along the
corresponding path. The transparent noisy lines in panel (b) depict
a small subset of 20 escape trajectories obtained by numerically
integrating the original stochastic problem for β = 1.2 (red) and 2.0
(blue). Here, r and β are expressed in units of v0/κμ and μ2κ/bv0,
respectively.

βc = μ2κ/bv0) and u = 0 (negligible translational noise). No-
tice that, since this problem is symmetric with respect to
the variable φ, the escape problem can be fully described in
the rχ plane, with the orbit being represented by a single
point located at (R, χ0). A few remarkable points are readily
noted: (i) for larger values of β, the MPEP presents a spiral
shape, meaning that the escape trajectory typically wobbles
around the circular orbit before reaching the boundary; (ii)
the MPEP ends at the stall point, (r, χ ) = (Rstall, 0), which
thereby can be viewed as the saddle point for the escape;
(iii) the relaxation from the saddle to the new orbit or back
to the original one (dashed line) is not anti-parallel to the
optimum escape path, which is a consequence of the time
irreversibility of the system. In contrast, nonoptimal escape
attempts [shown as gray-shaded lines in Fig. 3(a)] end up
at a radial position r < Rstall. These paths have higher action
integral (lighter shade of gray) and therefore are less probable
routes.

To validate the MPEP approach applied to this particular
example, we performed simulations of the Langevin equa-

044605-5



DAMASCENA AND DE SOUZA SILVA PHYSICAL REVIEW E 108, 044605 (2023)

FIG. 4. Minimum action (in units of 1/κμ) for the switching
between clockwise and counterclockwise orbits of an harmonically
trapped active particle as a function u = Dt/Dr (in units of R2

stall).
Symbols correspond to activation energies estimated by fitting the
low-noise data of direct Langevin simulations. Inset: MPEPs in the
rχ plane calculated for a few selected values of u.

tions of motion and calculated the mean escape time τesc

(averaged over 104 realizations) as a function of noise in-
tensity D. As in the previous example, we estimated the
low-noise activation energy of the escape by fitting the linear
part of the log τesc versus (1/D) data. Once again, the numeri-
cally estimated activation energies are in excellent agreement
with the action integral along the MPEP, as discussed in more
detail further below. In Fig. 3(b), we compare the MPEP
with 20 randomly chosen realizations of escape trajectories
obtained by integrating the Langevin equations for β = 1.2βc

(D = 0.001) and β = 2.0βc (D = 0.01). These values of D
were chosen within the range where the log τesc simulation
data scales linearly with 1/D. Although the escape trajectories
are considerably noisy, they follow in average the theoretical
MPEP and the escape through the boundary of the attraction
basin takes place at points close to the stall point, as predicted
by the minimum action principle.

C. Effect of translational noise

In thermal equilibrium, the translational and rotational
noises acting on a spherical active particle are related by
u = Dt/D = σ 2/3. Since in most cases of interest the particle
diameter σ is small compared to other relevant length scales,
the contribution of translational noise is often neglected, spe-
cially considering that other nonthermal noise sources usually
contribute to decrease u even further [38]. For the case of
confined active particles, the particle size is typically consid-
erably smaller than the trapping region (σ < Rstall. Therefore,
one typically has u � R2

stall. Nevertheless, in what follows, we
shall also consider u > R2

stall to have a broader picture of the
effect of translational noise.

In Fig. 4, we present the action integrated along the MPEP
as a function of u for fixed β = 2βc. We also estimated

the activation energy from numerical simulation data of the
Langevin equations for different values of u. As shown in
Fig. 4, the simulation data points are in excellent agreement
with the action integrated along the MPEP (line) in the full
range of u values investigated. The results evidence a strong
dependence of the MPEP and the corresponding minimum
action on u. Overall, as u increases, the MPEP oscillates
more violently around the circular orbit before reaching the
boundary (inset), while the corresponding action integral de-
creases. In particular, for u = 0.33R2

stall, which corresponds to
a particle of radius Rstall/2 in thermal equilibrium, the action
is approximately half the value observed for the u = 0 case.

IV. TRANSITIONS BETWEEN METASTABLE
NONCIRCULAR ORBITS

Here, we turn our attention to transitions between noncir-
cular orbits of an active particle trapped in the elliptic potential
V (x, y) = 1

2κ ( 1
1−e2 x2 + y2), where e is the eccentricity. As

shown in Ref. [31], this potential allows for the coexistence
of a variety of orbits, of different shapes and topological
indexes. To be specific, we focus on the case e = 0.731 and
β = 2.5 µ2κ/bv0, where two reflection-symmetric oval orbits
(R+ and R−) and two reflection-symmetric lemniscates (L+
and L−) coexist with each other, as shown in Fig. 5. Further,
we assume negligible translational noise (u = 0).

The task of finding the MPEP in this case is considerably
more challenging than in the previous examples. First, the
basins of attraction are highly nontrivial, making it necessary
to map them numerically. For that, we solved the noiseless
version of Eqs. (1) and (2) for ∼2 × 108 initial conditions de-
fined in a regular grid in the region −1.5 < x < 1.5, −1.5 <

y < 1.5, −π < θ < π of phase space and classified each grid
point according to which orbit the trajectory ends up. Second,
the lack of rotational symmetry of the orbits makes it neces-
sary to sample escape attempts taking off from different places
of the orbit to find the MPEP. Accordingly, we integrated
the Hamilton’s Eqs. (10)–(13) from 107 takeoff points chosen
randomly in the close neighborhood of the whole extension of
the source orbit. For that, we chose 100 different points at the
source orbit and for each of them we chose 105 different val-
ues of the momenta uniformly distributed on the surface of a
sphere of radius 10−6 and centered at (px, py, pθ ) = (0, 0, 0).
An example of MPEP calculated following this procedure is
shown in Fig. 5 for the case where R+ is the source orbit.
The color background indicates projections of the attraction
basins.

In principle, a full comprehension of the noise-induced
transitions between these orbits requires investigating all 12
possible transitions. This complexity can be mitigated by con-
sidering the symmetry properties of the noiseless version of
Eqs. (1) and (2). For the elliptic potential, these equations are
invariant under π rotations, (x, y, θ )→(−x,−y, θ + π ), and
reflections in the x axis, (x, y, θ )→(x,−y,−θ ). Therefore,
to each escape path, there are three other paths that can be
mapped exactly to the first one by some combination of these
symmetry operations. For example, under a π rotation R+
transforms to itself whereas L− transforms to L+, as can be
inferred from Fig. 5(a). Therefore, there exists a path from R+
to L+ that is identical to the MPEP from R+ to L− shown
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FIG. 5. (a) Most probable escape path (black dashes) from orbit
R+ (orange) and subsequent relaxation path (red dashes) towards L−
(blue). Also shown are orbits R− and L+ (gray transparent lines),
which are not involved in this particular escape. The yellow, orange,
blue and light blue backgrounds depict the attraction basins of R+,
R−, L−, and L+ respectively. The basins are projected on the xy
plane at θ = 2.26 rad, corresponding to the propulsion direction at
the point where the escape trajectory first enters the attraction basin
of the target orbit in all three projections, xy (b), xθ (c), and yθ
(not shown). (d) Mean escape time τesc versus 1/D obtained from
direct Langevin simulations of R+ → L± and L− → R± escapes
(symbols). The open symbols were selected for Arrhenius fits (lines),
which allowed us to estimate the activation energies Ea

R→L = 3.5 ×
10−4 and Ea

L→R = 2.0 × 10−4, remarkably close to the corresponding
least actions, SR→L = 3.4 × 10−4 and SL→R = 1.9 × 10−4.

in Fig. 5, but rotated by π . Similarly, other paths can also be
found by performing symmetry operations as illustrated in the
diagram below.

R+ → L− R+ → L+

R− → L− R− → L+

π rotation

x reflection x reflection

π rotation

A crucial question is whether all the paths generated by
these symmetry operations also minimize the action, that is,
are all of them MPEPs? To be MPEP, each of them must be an
equivalent solution of the least-action problem. Notice that the
Hamilton’s equations are not invariant under the rotation and
reflection operations defined above. However, we can extend
them to the six-dimensional Hamiltonian phase space by also
requiring that (px, py, pθ )→(−px,−py, pθ ) under π rotations

and (px, py, pθ )→(px,−py,−pθ ) under x reflections. This
way, Hamilton’s equations (10)–(13) are fully invariant and
so is the action integral, since it is insensitive to the sign
of the conjugate momenta. Therefore, all four transitions are
degenerate MPEPs, that is, they produce the same least-action
integral. This was indeed verified within the numerical accu-
racy of our least-action calculations, where we found SR→L =
3.4 × 10−4 (κµ)−1. Analogously, all four escapes from libra-
tion to rotation can also be recovered from a single one, say
L− to R+. In this case, our MPEP calculation leads to SL→R =
1.9 × 10−4 (κµ)−1, revealing that, in general, escapes from R
to L are not symmetrical to escapes from L to R.

These observations were confirmed by direct simula-
tions of the Langevin equations, which resulted in similar
number of escapes from R+ to L− and from R+ to L+ in
the full range of investigated noise values as well as approxi-
mately the same value of activation energy estimated from the
low noise data [see Fig. 5(d)]. The same applies for escapes
from L orbits. The activation energies for both L → R and
R → L escapes were estimated from Arrhenius fitting the
log τesc versus 1/D data, averaged over 5 × 103 independent
realizations of the problem. As in the previous examples,
the activation energies are in good agreement with the action
integral over the corresponding MPEPs.

Finally, we also calculated optimum escape paths between
orbits of the same species. These escapes are obviously sym-
metrical, in the sense that R+ → R− has the same action
integral as R− → R+. However, for the chosen values of β

and e, direct transitions between orbits of same species have
considerably higher action integral: SR→R � 350SR→L and
SL→L � 10SL→R. Therefore, at the low noise limit, a full
reversal of the R+ (L+) orbit towards its twin R− (L−) is only
possible by first visiting the attraction basin of one of the lem-
niscate (oval) orbits, that is R+ → L± → R− (L+ → R± →
L−). Indeed, in our simulations of the Langevin equations,
escapes between orbits of the same species are never observed
for D < 10−3. Of course, these results are not general, as the
hierarchy of the most probable target orbits might change
completely for other values of the system parameters β and
e.

V. CONCLUSIONS

In this study, we introduced a method rooted in the
least-action principle to rigorously investigate the noise-
induced escape of active particles from metastable orbits in
the low-noise limit. We methodically analyzed transitions
between various dynamical orbits spanning different confine-
ment scenarios. From transitions between basic clockwise and
counterclockwise circular orbits in radially symmetric traps to
more complex orbits in elliptic confinements, our theoretical
results align consistently with direct numerical simulations
based on the Langevin equations of motion.

The formalism we presented not only simplifies the task
of accurately determining the activation energy tied to orbital
transitions but also offers pivotal insights. One salient reve-
lation is that under low-noise conditions, particle adhere to a
well-defined trajectory: the most probable escape path. This
path is intricately influenced by various system parameters,
such as angular and translational mobilities, self-propulsion
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velocity, and the specific nature of the confining poten-
tial. Furthermore, the derived Hamiltonian equations possess
symmetry properties essential for pinpointing degenerate es-
cape paths and for establishing a hierarchy amidst multiple
competing orbits.

Our findings open avenues for expanded research on the
dynamical properties of confined active matter. Potential di-
rections include exploring noise-induced escapes from chaotic
orbits and investigating synchronization phenomena. Beyond
these theoretical prospects, our results hold potential signifi-
cance for practical applications. Active particles, due to their
persistent motion, can get ensnared in specific dynamical
states. Such patterns, while intriguing, can introduce com-
plications in real-world scenarios, like drug delivery, where

specific behaviors or trajectories are desired. Unveiling the
role of noise on switching between different dynamical states
can shed light on new strategies for manipulating particle
behaviors for specific tasks.
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