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Machine learning predicts the glass transition of two-dimensional colloids
besides medium-range crystalline order
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We employ only the positions of colloidal particles and construct machine learning (ML) models to test the
presence of structural order in glass transition for two kinds of two-dimensional (2D) colloids: 2D polydisperse
colloids (PC) with medium-range crystalline order (MRCO) and 2D binary colloids (BC) without MRCO.
ML models predict the glass transition of 2D colloids successfully without any information on MRCO. Even
certain ML models trained with BC predict the glass transition of PC successfully, thus suggesting that universal
structural characteristics would exist besides MRCO.
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I. INTRODUCTION

Whether the glass transition relates to the structure of
glasses is an open and challenging question [1–17], partly
because a certain structural order correlates strongly with the
dynamics of some glasses but fails to explain the dynamics of
other types of glasses [18]. For example, in two-dimensional
(2D) polydisperse colloids (PC), hexatic local structures grow
quickly along with the dynamic correlation length (ξ4) of
PC [2,11], which is well known as the medium-range crys-
talline order (MRCO). MRCO has been, therefore, considered
as structural order that might characterize the glass tran-
sition [12,17,19,20]. In 2D binary colloids (BC), however,
any explicit local structure was not found to grow signifi-
cantly near the glass transition [18]. This poses a question
of whether there would be a universal structural order for
two-dimensional glasses besides MRCO. We construct con-
volutional neural network (CNN) models by employing only
the colloid positions from images of 2D colloids. The CNN
models can distinguish the liquid and the glass states of col-
loids successfully. More interestingly, certain CNN models
trained only with images of BC can predict the state of PC suc-
cessfully without using information on MRCO. This indicates
that there should be a universal structure that characterizes the
2D glass transition.

When liquids are cooled quickly toward the glass transition
avoiding crystallization, the viscosity increases by orders of
magnitude with no apparent structural change [21–24]. The
dynamics of glasses become not only slow but also spa-
tially heterogeneous, thus breaking the fluctuation-dissipation
theorem [2,5,10,17,25–27]. Such slow and heterogeneous
dynamics of glasses can be observed in various systems
including colloidal suspensions, gels, porous materials, and
biological cells [5,19,28–31]. The structure of glasses is
not very different from that of liquids such that the radial
distribution functions, the second-order spatial correlation
of particles, cannot tell the difference between liquids and
glasses, for which the structure-property relationship breaks
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down for the glassy dynamics [32]. The identification of struc-
tural order that characterizes the glass transition and dynamics
has been, therefore, an issue of study [4,6,7,12,15,16,28,33].

2D colloidal systems have served as excellent testbeds
to investigate the structural order in glasses, because the
positions of colloidal particles could be tracked readily in
both experiments and simulations [10,17–19,28,32,33]. 2D
colloids also exhibit rich structures depending on the size dis-
tribution of colloidal particles. When one prepares PC with the
Gaussian size distribution of colloids, local hexatic structures
develop near the glass transition and their correlation length
(ξ6) diverges near the glass transition along with the dynamic
correlation length (ξ4) [2,11,19,20]. On the other hand, the
hexatic local structure develops only weakly for BC such that
the hexatic order and MRCO do not account for the divergence
of ξ4 near the glass transition [13,18,20,34–36]. Recently,
Tong and Tanaka introduced a structural order parameter that
measures the deviation of the local packing from optimized
configuration, which accounts for the slow dynamics of both
PC and BC successfully [13]. The relevance of structural order
to the glass dynamics is still highly system dependent [8], thus
becoming a hurdle to understanding the glass transition.

Machine learning (ML) methods have been employed
extensively to search for the structural order in glasses
[16,37–45]. Bapst et al. reported graph neural networks that
could determine the long-time evolution of particles solely
from initial particle positions of Kob-Andersen (KA) liquids
[43]. Swanson et al. showed that CNN models and message
passing neural networks could classify liquid and glass states
of 2D KA liquids successfully [44]. Since they trained deep
learning models with only particle positions (rudimentary
structural information), the success of those models indicates
that there should exist a structural order that can characterize
the glass transition. Inspired by the work of Swanson et al.
[44], we construct CNN models with images of either PC
or BC. We employ CNN models trained with BC images
to test and predict PC. And we also employ CNN models
trained with PC images to predict BC. This allows us to test
whether MRCO is a structural predictor to characterize the
glass transition of PC and whether there would be a universal
structural order for 2D colloids.
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FIG. 1. (a) Inherent structure energies (〈Eis〉) of PC (blue circles) and BC (red squares) as a function of T . The graph is divided into three
regimes: (i) glass, (ii) supercooled liquid, and (iii) simple liquid. One glass, three supercooled liquids, and two simple liquids are selected to
generate datasets. All the systems are cooled with a given cooling rate � = 3.33 × 10−4. (b) Each dataset contains images of 10 000 glass
configurations (either P0 for PC or B0 for BC) and 10 000 liquid configurations (Pn for PC or Bn for BC with n = 1 to 5). (c) Test schemes in
this study. In straight species tests (SSTs), CNN models trained with PDn (BDn) train sets are tested with PDn (BDn) test sets. In cross species
tests (CSTs), CNN models trained with PDn (BDn) train sets are tested with BDn (PDn) test sets.

II. MODEL AND METHODS

We perform molecular dynamics simulations to generate
configurations of PC and BC in both liquid and glass states
using LAMMPS (large-scale atomic-molecular massively par-
allel simulator) package [46–48]. In the case of PC, we sample
the diameter (σi) of the ith disk from the Gaussian distribution,
which is generated using a Box-Muller transform method. The
average diameter (〈σi〉) of disks of PC is set to 1σ , which
is the unit of length in this study. The polydispersity � ≡√

〈σ 2
i 〉−〈σi〉2

〈σi〉 of PC, defined as the relative standard deviation
of σi, is 0.11. BC consists of equal numbers of large and small
disks of diameters, σL and σS , respectively. The size ratio
� ≡ σL/σS = 1.4, with σL = 1.16σ and σS = 0.83σ for BC.
For both PC and BC, we do not observe any liquid-to-hexatic
phase transition and confirm that the glassy dynamics in this
simulation appears at sufficiently low temperatures.

The total number (N) of disks is 3578 and the size of the
systems (L) is 61.18σ for both PC and BC such that the
area fraction φ ≡ ∑N

i=1(πσ 2
i /4L2) and the number density

ρ ≡ N/L2 are 0.76 and 0.956σ−2, respectively, for all systems
in this study. Disks interact with each other via truncated and
shifted Lennard-Jones potential U (r) as follows:

U (r) =
{

ULJ (r) − ULJ (rcut ), r < rcut,

0, r � rcut,
(1)

where ULJ (r) = 4ε[(σi j/r)12 − (σi j/r)6], ε = 1kBT , rcut =
2.5σi j , and σi j = (σi + σ j )/2. The mass (mi) of the ith disk
is set proportional to the area of the disk, mi ≡ σ 2

i . The unit of
mass is that of the disk of σi = 1σ . kBT and τ =

√
mσ 2/kBT

are the units of energy and time, respectively, where kB is

the Boltzmann constant. We perform simulations under the
canonical NV T ensemble condition with the velocity-Verlet
integrator and Nosé-Hoover thermostat. The integration time
step is set to 0.0025τ .

We prepare 10 000 independent initial configurations for
PC and 10 000 for BC by placing the disks randomly in a
square box with periodic boundary conditions and sampling
the initial velocities randomly from the Maxwell-Boltzmann
distribution at T = 4. All of the initial configurations are
equilibrated until the kinetic and potential energies con-
verge. After the equilibration at T = 4, each system is cooled
down from T = 4 to T = 0.1 with a given cooling rate
� = 3.33 × 10−4. Here, 10 000 configurations are used to
generate liquid configurations at various temperatures and
the 10 000 configurations are used to generate glass con-
figurations at T = 0.1, which is below the glass transition
temperature (Tg).

We calculate the average inherent structure energy (〈Eis〉)
at each temperature by minimizing the energies of given sys-
tems [Fig. 1(a)]. We identify the states of systems based on
〈Eis〉: glass, supercooled liquid, and simple liquid [1,23,49].
The glass transition temperatures (Tg’s) of PC and BC are
about Tg = 0.4 and 0.3. We determine the value of Tg from
the inherent structure energy (〈Eis〉) by identifying the point
of two linear regimes of 〈Eis〉: one for supercooled liquid and
another for glass [44,49–51]. We choose five representative
liquid systems as indicated in Fig. 1(a) including two simple
[(B1, B2) and (P1, P2)] and three supercooled liquid states
[(B3, B4, B5) and (P3, P4, P5)]. Then, we pair 10 000 config-
urations of glasses (B0 or P0) with 10 000 configurations of
one liquid state to make one dataset [Fig. 1(b)]. We prepare
five datasets for PC, which we call PD1 to PD5 in the order of
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decreasing temperature of liquids. Similarly, we also prepare
five datasets for BC from BD1 to BD5.

We use the Python TensorFlow package [52] to construct
CNN ML models, which carry out binary classifications into
glass and liquid states. In order to let our CNN models
carry out binary classifications with prepared datasets above,
each configuration in the datasets is rendered as a 250 px ×
250 px grayscale PNG image snapshot. We have 3578 white
dots using only the (x, y) coordinates of the disks in a black
background. Note that the sizes of dots are equal in both PC
and BC snapshots such that CNN models perform binary clas-
sifications without any information about the size distributions
or disparities of particles in a configuration. We split each
dataset (from PD1 to PD5 and from BD1 to BD5) into train
set (60%), validation set (20%), and test set (20%).

Our CNN models contain four two-dimensional convolu-
tion layers with 32, 64, 128, and 128 filters, respectively. Each
convolution layer has a 3 × 3 kernel window with stride of
1, which can be considered as an eye of CNN models, and
activated by ReLU activation function. A two-dimensional
max pooling operation layer that has a 2 × 2 pooling window
with strides of 2 is affixed to each convolution layer such
that the feature maps are downsampled by a factor of 2. A
dropout layer with the rate of 0.5, followed by a dense layer
with 512 nodes and ReLU activation function, is added after
four successive convolution layers. As a classifier, another
dense layer with only one node is appended and activated
by the sigmoid function. In our CNN models, binary cross
entropy and RMSprop optimizer with learning rate 0.0001 are
employed as a loss function and an optimizer, respectively.

We use the area under the receiver operating character-
istic curve (AUC-ROC) values to evaluate the performance
of CNN models. In order to calculate the AUC-ROC value
of each CNN model, we first draw the receiver operating
characteristic (ROC) curve by (i) calculating the false positive
rate (FPR, also known as fallout, the ratio of “incorrectly
classified” negative data to all negative data) and the true
positive rate (TPR, also known as sensitivity, the ratio of
“correctly classified” positive data) of the CNN model and
(ii) plotting FPR versus TPR by switching the classification
threshold from zero to one. In this study, “positive” data
are equivalent to “glass” configurations and “negative” data
are equivalent to “liquid” configurations. When the classifier
successfully classifies the data, the ROC graph goes upper left
(which corresponds to low FPR and high TPR) and would
have the area value of unity. On the other hand, when the
classifier completely fails to classify the data, the ROC graph
goes straight from (0,0) to (1,1) (which corresponds to high
FPR or low TPR) and would have the area value of 0.5.
AUC-ROC value of each CNN model in this study is com-
puted by employing keras.metrics.AUC class from Python
Keras API [53] and the num_thresholds argument of 20 000.

We perform two different types of tests for our CNN
models: (1) straight species tests (SSTs) and (2) cross species
tests (CSTs) [Fig. 1(c)]. In the case of SSTs, the colloidal
types of train and test datasets are identical. For instance,
CNN models trained with PC train datasets (PD1–PD5) are
used to predict the states of PC test datasets. In the case of
CSTs, on the other hand, train and test datasets are different.
For example, CNN models trained with BC train datasets

0.001

0.01

0.1

1

10

100

1000

[
r(

t)
]2

1 10 100 1000
t

 T = 4.0
 T = 2.0
 T = 1.0
 T = 0.8
 T = 0.6
 T = 0.1

(a) PC

0.001

0.01

0.1

1

10

100

1000

[
r(

t)
]2

1 10 100 1000
t

 T = 4.0
 T = 2.0
 T = 1.0
 T = 0.7
 T = 0.5
 T = 0.1

(c) BC 5
4
3
2
1
0

g(
r)

86420
r

(d) BC  T = 4.0
 T = 2.0
 T = 1.0
 T = 0.7
 T = 0.5
 T = 0.1

5
4
3
2
1
0

g(
r)

86420
r

 T = 4.0
 T = 2.0
 T = 1.0
 T = 0.8
 T = 0.6
 T = 0.1

(b) PC

FIG. 2. Mean square displacements 〈[�r(t )]2〉 and radial dis-
tribution functions g(r) of (a),(b) PC and (c),(d) BC at given
temperatures.

(BD1–BD5) are employed to predict the states of PC test
datasets.

III. RESULTS AND DISCUSSIONS

A. Transport and structural properties of PC and BC

As the temperature decreases, the colloid diffusion of both
PC and BC slows down significantly, while their structures
[characterized by the radial distribution function g(r)] do
not change much. Figures 2(a)–2(d) depict the mean square
displacements 〈[�r(t )]2〉 of colloid particles and g(r) of
PC and BC at different temperatures. At high temperatures,
〈[�r(t )]2〉 ∼ t1 such that both PC and BC exhibit Fickian
diffusion. For supercooled liquids (for example, at T = 0.6
for PC and T = 0.5 for BC), the subdiffusive regimes appear
in 〈[�r(t )]2〉. For glass states at T = 0.1 for both PC and BC,
however, particles do not diffuse in our simulation timescales.
While particles do not diffuse and their viscosities increase
tremendously, long-range correlations are not observed in g(r)
even at T = 0.1, thus implying that PC and BC are amor-
phous. The peaks of g(r) in BC are sharper than those in PC,
which indicates that PC and BC would have different local
structures.

PC glasses exhibit medium-range crystalline order clearly
while BC glasses do not. We calculate the local hexatic order
parameter (|ψ j

6 |) of each colloidal particle by using ψ
j

6 =
(1/Nj )

∑Nj

k=1 exp (6iθ jk ), where Nj is the number of adjacent
particles and θ jk denotes the angle between a vector from the
jth disk to its kth neighbor disk and an arbitrary reference
vector. Figures 3(a) and 3(b) depict representative snapshots
of PC and BC glasses, respectively, where the color code rep-
resents the value of |ψ j

6 |. In PC glasses [Fig. 3(a)], the yellow
particles with |ψ j

6 | ≈ 1, which maintain highly hexatic orders,
gather together and construct highly crystalline domains. On
the other hand, in BC glasses [Fig. 3(b)], the yellow particles
are scattered throughout the simulation system.
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FIG. 3. Representative snapshots of the MRCO map of (a) PC
glass and (b) BC glass. The color code of the disks represents the
value of the local hexatic order parameter (|ψ j

6 |). (c) The hexatic
order correlation functions [g6(r)] of PCs divided by their radial
distribution function [g(r)] at the selected temperatures. The peaks
of the graph decay exponentially when the system is in the isotropic
fluid phase. (d) The hexatic order correlation length (ξ6) of PC liquids
(blue circles) and BC liquids (red squares).

We estimate the hexatic order correlation length (ξ6) by
calculating the hexatic order correlation function [g6(r) ≡
〈ψ i∗

6 (r)ψ j
6 (0)〉] [Fig. 3(c)]. In the case of the isotropic fluid

phase, g6(r) is expected to decay exponentially, i.e., g6(r) ∼
exp(−r/ξ6), and ξ6 is considered as the characteristic size
of MRCO of the system. Figure 3(c) depicts g6(r) divided
by the radial distribution function [g(r)], where the peaks
in g6(r)/g(r) decay exponentially. As T decreases down to
Tg, ξ6 of PC diverges quickly while that of BC does not
increase rapidly, which is consistent with previous studies
[11,18] [Fig. 3(d)].

B. Straight species tests of CNN ML models

We calculate the AUC-ROC values to evaluate the perfor-
mance of our CNN models. AUC-ROC values have been used
to evaluate the performance of the classification problem for
ML [44,54]. When AUC-ROC ≈ 1, we may regard the CNN
model as a successful one that can predict whether the system
corresponds to either glass or liquid.

In the case of straight species tests (SSTs), where CNN
models trained with PC (BC) training data are employed to
predict the glass transition of PC (BC), most of the AUC-ROC
values are close to 1 for both PC and BC. This indicates that
our CNN models predict the glass transition of 2D colloids
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FIG. 4. AUC-ROC values of the straight species tests (SSTs) for
(a) PC and (b) BC. (c) The MRCO image and (d) the SST Grad-CAM
image of one identical representative PC glass configuration.

quite successfully. Figures 4(a) and 4(b) depict the AUC-ROC
values for various cases of SSTs. For example, AUC-ROC ≈1
with a yellow box at (PD5, PD1) in Fig. 4(a). This is when
a CNN model is trained with the train dataset PD5 and is
employed to predict the test dataset PD1. This indicates that,
when a CNN model is constructed by using the configurations
of PC glasses and PC supercooled liquids (PD5), the CNN
model tells the difference successfully between PC glasses
and PC liquids at a relatively high temperature (PD1). Because
CNN models are trained with only structural information (the
positions of colloids), the success of SSTs indicates that CNN
models can take advantage of structural characteristic for the
classification successfully. This also suggests that there could
be a structural order, which enables the CNN model to char-
acterize the glass transition.

When CNN models are trained using configurations of
glasses and high temperature liquids, the CNN models fail
to classify the glasses and the low temperature supercooled
liquids [the upper left corners of Figs. 4(a) and 4(b)]. This
is because the CNN models are forced to learn the features
of the high temperature liquids. Then, the CNN models may
not capture the difference between supercooled liquids and
glasses relatively well.

When our CNN models try to predict the glass transition,
they consider a more complex structural pattern rather than
MRCO. We employ the Grad-CAM (gradient-weighted class
activation mapping) algorithm [55] to interpret how CNN
models tell the difference between liquid and glass states. The
image of Grad-CAM allows us to investigate which region
of the image is being used for the CNN model to make a
prediction. Grad-CAM results of CNN models are constructed
via the following steps. First, we identify the last convolu-
tional layer, which is the convolutional layer with 128 filters
in this study. Second, we calculate the neuron importance
weight αC

k = 1
uv

∑u
i

∑v
j

∂yC

∂Ak
i j

of the kth feature map of the last
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SST Grad-CAM images and the CST Grad-CAM images for PC and
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convolutional layer. Here, yC is the score for class C (which
is composed of two elements, glass and liquid), Ak

i j is the
(i, j) component of the kth feature map, and u and v are the
width and the height of the kth feature map, respectively. Ak

i j
is the (i, j) component of the kth feature map. Finally, we
compute the ReLU score of linear combination of the weights
and the corresponding feature map LC = ReLU(

∑
k αC

k Ak
i j ) =

max (0,
∑

k αC
k Ak

i j ) and make a heat map image using this
ReLU score. Figures 4(c) and 4(d) depict the representative
images of MRCO and Grad-CAM of the identical glass con-
figuration of PC. The MRCO domain with high hexatic order
(|ψ j

6 |) does not correspond to the region of the image that the
CNN model considers critical.

In order to calculate the correlation between MRCO and
the structure that our CNN models consider critical, we con-
vert MRCO and Grad-CAM images, which are generated
during SSTs for all the glass configurations in the test dataset,
into grayscale figures. Also, we compute the correlation co-
efficients (ρM) between them by comparing the brightness of
each pixel [Fig. 5(a)]. For the fair comparison, we resize the
Grad-CAM images to the size of MRCO images by using the
bilinear interpolation method. If the MRCO domain were to
correspond to the region highlighted in the Grad-CAM image,
ρM ≈ −1. As shown in Fig. 5(a), ρM ≈ 0 for both PC and
BC glasses, thus indicating that CNN models do not employ
MRCO but predict the glass transition of both PC and BC
glasses successfully.

C. Cross species tests of CNN ML models

We also perform cross species tests (CSTs), i.e., we train
a CNN model with a BC train set and utilize the CNN model
to predict the glass transition of a PC test set, and vice versa.
Figures 6(a) and 6(b) depict the performance (AUC-ROC) of
CSTs of CNN models. Not surprisingly, the performance of
CNN models for CSTs is not as good as for SSTs. However,
when CNN models are trained with BC glasses and super-
cooled liquids (BD5 train set), the CNN model can predict
the glass transition of PC quite successfully except for the
PD5 test set. Similarly, when CNN models are trained with
PC glasses and high temperature liquids (PD1 train set), the
CNN model can predict the glass transition of all BC test sets
successfully.
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FIG. 6. AUC-ROC values of the cross species tests (CSTs) for
(a) PCs and (b) BCs. (c) The SST Grad-CAM image and (d) CST
Grad-CAM image of an identical representative PC glass configura-
tion. (e) The SST Grad-CAM image and (f) CST Grad-CAM image
of an identical representative BC glass configuration.

Considering (i) that PC glasses do own MRCO domains
but BC glasses do not and (ii) that a certain CNN model
trained with BC glasses still may predict the glass transition
of PC, MRCO would not be the structural information that
CNN models take advantage of for the prediction. More in-
terestingly, CNN models trained with BC are likely to utilize
structural information similar to what CNN models trained
with PC consider important. Figures 6(c) and 6(d) depict the
Grad-CAM images that CNN models trained with PC and
BC test sets produced while predicting the glass state of the
identical PC glass configuration. The highlighted regions of
Fig. 6(c) correspond to those of Fig. 6(d). Similarly, Figs. 6(e)
and 6(f) show the Grad-CAM images of an identical BC glass
configuration generated by CNN models trained with BC and
PC, respectively. Note that both CNN models highlight similar
regions.

We calculate the correlation coefficients (ρX ) between
Grad-CAM images generated by CNN models trained with
PD1 and BD1 for all the glass configurations [Fig. 5(b)].
ρX quantifies how much similar structural information would
be used by CNN models trained with PC and BC when
predicting the states of identical glass configurations. Fig-
ure 5(b) depicts the values of ρX for the predictions of BC
(red) and PC (blue) glasses. ρX ≈ 0.52 and 0.7 for BC and
PC glasses, respectively, thus indicating that the structural
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the correlation coefficients (ρ�) between the images of Tong-Tanaka steric favorability order parameters and the SST Grad-CAM images for
PC and BC glass configurations.

information captured by CNN models trained with PC is cor-
related strongly with the structural information captured by
CNN models trained with BC. In other words, the structural
information obtained from BC glasses during training can be
still utilized to predict the glass transition of PC. This also
suggests that there should be a universal structural information
in 2D colloids besides MRCO.

In order to find any structural characteristics that cor-
relate with what our CNN models consider significant, we
estimate the local number density, the local disorderedness
parameter derived from hexatic order parameter [17], and the
Tong-Tanaka steric favorability order parameter [13]. In order
to calculate Pearson correlation coefficients between those
parameters and Grad-CAM images, we divide our system into
27 × 27 lattices and count the particle number of each lattice.
We normalize the local parameters by the particle number in
the local lattice and generate 27 px × 27 px grayscale PNG
images for those local parameters. Each pixel of the image has
the normalized brightness value (0 for black and 1 for white)
of the normalized local parameter.

Grad-CAM images that our CNN models produce during
SSTs do not correlate any of those local parameters that we
consider in this study. Figure 7 depicts the probability distri-
bution functions [P(ρD), P(ρω ), and P(ρ�)] of correlations
between local parameters [the local density (D), the local
disordered parameter (ω), and the Tong-Tanaka steric favor-
ability order parameter (�)] and the Grad-CAM images for
both PC and BC glass configurations. All of those distribution
functions are peaked at zero such that what our CNN mod-
els capture from glass configurations does not correlate with
those local parameters.

It is of academic importance to understand whether the
glass transition relates to the structural glasses and whether
there would be a universal structure that characterizes the
glass transition. Our study with CNN models suggests that
there would be a universal structural characteristic besides
MRCO, especially when predicting the glass transitions of
2D glasses. Unfortunately, however, in this study we cannot
identify the salient (universal) structure that our CNN mod-

els take advantage of. We investigate local parameters such
as the local density, the local disordered parameter, and the
Tong-Tanaka steric favorability order parameter. But we find
that they do not correlate with the Grad-CAM images pro-
duced by our CNN models. In our future study, we plan to
extend our study and investigate Kob-Andersen and Wahn-
ström systems. We plan to investigate whether the structural
information used for CNN models in this study can be still
applied to those systems.

IV. SUMMARY AND CONCLUSIONS

In this study, we introduce CNN ML models that we train
with positions of colloids obtained from molecular dynam-
ics simulations for PC and BC. The CNN models predict
the states of 2D colloids in the straight species tests (SSTs)
successfully, where CNN models trained with PC (BC) are
employed to predict the states of PC (BC). This indicates that
there should be structural characteristics that ML models can
employ to predict the glass transition of 2D colloids. Also,
certain CNN models perform well even in cross species tests
(CSTs), where CNN models trained with BC (PC) are em-
ployed to predict the states of PC (BC). We also find that CNN
models trained with either PC or BC consider similar regions
of 2D colloids when trying to predict the states of the 2D
colloids. This indicates that even though PC glasses do have
a medium-range crystalline order (MRCO) but BC glasses
do not, ML models may still capture a universal structural
characteristic in 2D colloids besides MRCO.
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