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Stiffening mechanisms in stochastic athermal fiber networks
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Stochastic athermal networks composed of fibers that deform axially and in bending strain stiffen much
faster than thermal networks of axial elements, such as elastomers. Here we investigate the physical origin
of stiffening in athermal network materials. To this end, we use models of stochastic networks subjected to
uniaxial deformation and identify the emergence of two subnetworks, the stress path subnetwork (SPSN) and
the bending support subnetwork (BSSN), which carry most of the axial and bending energies, respectively. The
BSSN controls lateral contraction and modulates the organization of the SPSN during deformation. The SPSN
is preferentially oriented in the loading direction, while the BSSN’s preferential orientation is orthogonal to
the SPSN. In nonaffine networks stiffening is exponential, while in close-to-affine networks it is quadratic. The
difference is due to a much more modest lateral contraction in the approximately affine case and to a stiffer
BSSN. Exponential stiffening emerges from the interplay of the axial and bending deformation modes at the
scale of individual or small groups of fibers undergoing large deformations and being subjected to the constraint
of rigid cross-links, and it is not necessarily a result of complex interactions involving many connected fibers.
An apparent third regime of quadratic stiffening may be evidenced in nonaffinely deforming networks provided
the nominal stress is observed. This occurs at large stretches, when the BSSN contribution of stiffening vanishes.
However, this regime is not present if the Cauchy stress is used, in which case stiffening is exponential throughout
the entire deformation. These results shed light on the physical nature of stiffening in a broad class of materials
including connective tissue, the extracellular matrix, nonwovens, felt, and other athermal network materials.
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I. INTRODUCTION

Many engineering materials and most biological materials
have a network of filaments as their main structural com-
ponent. In rubber, epoxy, and other molecular networks, the
filaments are relatively flexible molecules. In the case of the
cytoskeleton, the F-actin protein filaments are semiflexible
[1–3], i.e., although still thermal in nature, their bending stiff-
ness is larger [4], which entails large persistence length. Other
semiflexible molecular networks have been studied, including
fibrin [5–7], vimentin [5,8] and neurofilaments [8]. Collagen
networks are the main constituent of connective tissue and
the extracellular matrix [9,10]. Collagen fibers forming such
networks are athermal. Other athermal fibers include cellulose
and polymeric fibers in paper, nonwovens, and textiles. Such
commonalities unify these seemingly very diverse systems in
the broad class of network materials [11].

All networks encountered in nature have stochastic struc-
ture. A minimum set of parameters defining the structure
includes [11]: the density (total length of fiber per unit
volume), ρ; the mean segment length, lc, which is related
to the number density of cross-links as ρX = ρ/lc; and
the mean connectivity (number of fibers connected at a
cross-link), z. The orientation tensor provides a quantitative
description of the degree of alignment, with scalar measure
< P2 >= 1

2 (3〈cos2θ〉−1) being a convenient measure of
alignment relative to a specified direction (θ is the angle
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between the end-to-end vector of the respective fiber and the
reference direction and 〈· · · 〉 indicates system averaging). In
most cases, fibers are not straight, and the crimp parameter
(ratio of the end-to-end length to the contour length) may be
used to quantify the degree of fiber tortuosity [12]; the per-
sistence length may be used for the same purpose for thermal
fibers.

The mechanical behavior of fiber networks is controlled
by the properties of the fibers and cross-links, and by the
structure of the network [11,13,14]. Semiflexible networks
exhibit strong strain stiffening and multiple stiffening regimes
when probed in uniaxial tension and in shear. Stiffening is
significantly more pronounced than in the case of molecular
networks of flexible filaments, such as rubber, at compara-
ble stretch ratios. They also exhibit a large Poisson effect,
with effective incremental Poisson ratios that increase dur-
ing straining to values much larger than the thermodynamic
limit of isotropic continua of 0.5 [15–17]. Auxetic behavior
is also observed at relatively small strains in densely packed
networks of crimped fibers [18,19]. The strong Poisson effect
is rooted in the kinematics of fibers, just like the inverse Poynt-
ing effect typically observed when testing such networks in
shear [20–22]: a normal stress that tends to shrink the material
develops when shear is applied. This exceptional property set
motivates the interest in identifying the relationship between
structural parameters and mechanics in such materials.

The nonlinear response of networks observed in experi-
ments has three regimes [11,23–25]: regime I is linear elastic
and is observed at small stretches; regime II is characterized
by a power law relation between the tangent stiffness, Et ,
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and stress, Et ∼ SqII (S stands for the nominal, first Piola-
Kirchhoff stress); while regime III is characterized by a
similar power function, Et ∼ SqIII . Collagen tissues and re-
constructed collagen, as well as other networks exhibit qII ≈
1, which implies exponential stiffening, S ∼ exp λ [15,24].
qII = 3/2 is reported for actin [4,8] and vimentin networks
[15]. qIII = 1/2 is predicted by the majority of models, e.g.,
[20,26,27], and is observed in experiments in which this
regime can be reached before the onset of failure or damage
[6,24].

The physical nature of strain stiffening in semiflexible net-
works has been debated for almost two decades. The initial
thought was that network-scale stiffening is due to the non-
linear axial behavior of fibers (entropic stiffening) [28]. If
the network is assumed to deform affinely, fibers are loaded
axially, and if their axial response is nonlinear, this prop-
erty is inherited by the network. Using the wormlike chain
(WLC) model [29,30] to capture the effect of pulling thermal
fluctuations of semiflexible filaments—a model considered
adequate for filaments such as DNA, actin, and other protein
fiber networks [31]—stiffening with exponent qII = 3/2 can
be reproduced [23]. It was later determined that networks
with stochastic structure do not deform affinely and fibers
are not loaded just in the axial mode [32–34]. It was shown
using various types of models that beamlike fibers deform
predominantly in the axial and bending modes, while the
shear and torsion modes store much less energy and contribute
insignificantly to stress production [15,20]. This shifted atten-
tion from the fiber scale to the effect of network kinematics
on stiffening.

Two lines of thought emerged to explain the two regimes
of stiffening. One such perspective [27,35,36] is based on
the observation that stress paths (force chains) develop in the
network throughout regimes II and III. Stress paths form a
subnetwork (SPSN) of fibers carrying high axial strain energy.
A stress path is composed of multiple fibers and forms a
zigzag path across the network. An athermal stress path taken
out from the network and loaded in tension leads to Et ∼ S3/2

[37], i.e., a relation identical to that obtained for the thermal
filament described by the WLC model [28]. This physical
picture implies that the transition between regimes I and II,
T1, is associated with a shift to axial dominance. An alternate
perspective [23,28] is that regime II is entirely bending domi-
nated, and stiffening is associated with the gradual elimination
of soft bending modes and is sustained by the pronounced
nonaffinity of network kinematics. In this view, transition
T1 between regimes I and II is due to bending buckling of
fibers and not to the transition to the axial mode; however,
the transition between regimes II and III, T2, is assumed to
coincide with the shift to axial mode dominance. An attempt
was made to associate stiffening in regime II with the inverse
Poynting effect and the emergence of the normal stress [38].
This is based on the notion that tensile macroscopic prestress
increases the stiffness of a network probed in shear [39,40].
These two perspectives have been compared in [37].

One of the hallmarks of athermal network behavior is
the prevalence of exponential stiffening, i.e., qII = 1. Most
biological tissue, including tendon, skin, the amnion, and
the liver capsule strain stiffen exponentially [38,41–43]. This
functional form is independent of the network density, pro-

vided the networks deforms nonaffinely [24,38,44]. The same
behavior is observed in shear [24,44] and under multiaxial
loading conditions [41,45]. In triaxial loading the stress at
the transition from regime I to II is smaller than in biaxial
loading, which is smaller than measured in uniaxial tests [45].
The presence of crimp has no effect on the functional form
of stiffening and qII is independent of the crimp parameter
[35,46]. The only effect of increasing fiber tortuosity is to shift
the transition to regime II to larger stretches. If a network
of fibers made from the same elastic material strain stiffens
exponentially, the same network in which the elastic stiffness
of fibers is selected from a distribution also stiffens expo-
nentially, with qII = 1 [40,47]. This outlines the impressive
robustness of exponential stiffening.

In this work we revisit these concepts and address the
question of the deformation mode and the mechanism con-
trolling stiffening in regime II. We determine that stiffening
is determined by the behavior of individual or small groups
of beamlike fibers with constrained relative angles at cross-
links subjected to large deformations and rotation. We observe
that axial dominance occurs at stretches smaller than those
previously reported and largely defines regime II. Hence, the
proposed perspective combines elements of current models of
stiffening, focusing on individual or small groups of fibers
rather than on the large-scale correlated kinematics of fibers
forming stress paths. It also demonstrates the stabilizing role
of the bending-dominated subnetwork which is not part of the
stress paths and its role in defining the onset of regime III.

II. METHODS AND MODELS

Models of athermal cross-linked fibers without embedding
matrix are used in this work [26,46]. The fibers are modeled as
beams of circular section and diameter d . The cross-links are
welded and transmit forces and moments. The relative angle
between any pair of fibers coming into a cross-link is fixed.
The fiber material is linear elastic with Young’s modulus E f ;
the Poisson ratio of the fiber material is irrelevant in this
model. Fibers may deform in the axial, bending, shear, and
torsional modes. Direct contact between fibers may take place,
but it is infrequent when the network is loaded in tension [26].

The model is defined in a cubic domain of edge length
L by constructing a Voronoi tessellation based on randomly
distributed seed points. The edges of the Voronoi tessellation
are retained as fibers. The number density of seed points
defines the network density ρ, while the vertices of the tessel-
lation are the network cross-links. The nominal connectivity
of this network is z = 4. The fiber length (distance between
two cross-links) is Poisson distributed and the mean fiber
length, lc, is related to the density as ρl2

c ≈ 1 [48]. Fibers
have no preferential orientation in the initial configuration,
are straight, and are modeled using quadratic Timoshenko
beam elements. The solution is obtained using the commer-
cial software ABAQUS EXPLICIT, version 2023 [49]. The finite
element method solves a numerical representation of the vari-
ational form of the equilibrium equations and the solution is
the displacement field that minimizes the potential energy.
However, the deformation of network materials involves large
geometric nonlinearity and the potential for the emergence
of local instabilities, and cannot be solved in the static sense
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FIG. 1. 2D projection of a three-dimensional (3D) Voronoi-type
fiber network model with boundary conditions shown. The 3D do-
main is cubic with edge length L.

using an implicit formulation, except in the limit of infinites-
imal strains. Here we obtain the quasistatic solution using a
forward marching integration scheme and adequate damping
such as to keep the effect of inertia forces vanishingly small
and the kinetic energy smaller than 5% of the total energy.
Further details of the method are discussed in [50–52].

Figure 1 shows a model and the boundary conditions
applied: the displacement of all nodes at x1 = 0 is zero,
u1(0, x2, x3) = 0, while that of the nodes at x1 = L is speci-
fied, u1(L, x2, x3) = δ. Therefore, the applied stretch is λ1 =
λ = 1 + δ/L. Rigid body translations are eliminated by re-
moving the other degrees of freedom of one of the model
boundary nodes at x1 = 0. The nodes on the lateral faces are
constrained by imposing kinematic ties such that these faces
are free to move in the direction orthogonal to the loading
direction and remaining planar.

The model size is selected large enough, L/lc = 36, to
minimize size effects on the stress-stretch curve [53,54]. Con-
sidering six realizations of such models it is inferred that, at
each stretch value, the stress has a spread characterized by a
coefficient of variation ranging from 4% to 6%.

The discussion is carried out using the nominal stress, S,
unless otherwise specified. Let S11 = S be the only nonzero
component of the stress in uniaxial deformation. The tan-
gent stiffness is computed as Et (λ) = dS/dλ, with E0 =
Et (1) being the small strain stiffness and λ the stretch in
the x1 direction. The total energy is written as the super-
position of contributions of the axial, bending, shear, and
torsional deformation modes of fibers: U = U a + U b + Ut +
U s. Since the shear and torsional components are negligible
(as observed here and broadly in the literature, e.g., [32,34],
we approximate U ≈ U a + U b. The nominal stress can be
written as the superposition of the corresponding stress com-
ponents: S = Sa + Sb = (∂U a/∂λ + ∂U b/∂λ)/L3, while the
tangent stiffness may be also decomposed as Et = Ea

t + Eb
t =

(∂Sa/∂λ + ∂Sb/∂λ).
The network is characterized by the density, ρ, and fiber

diameter, d . The mechanical behavior and the degree of non-
affinity of a network are typically discussed in terms of the
nondimensional parameter w = log10ρl2

b , with lb = d/4 [11].

Networks undergo a nonaffine to affine transition as w in-
creases above a threshold, w0 [26,32,55,56]. For the type of
networks considered here, w0 ≈ −2 [57], which corresponds
to an aspect ratio of fiber segments, lc/d ≈ 3. w also con-
trols the dominant energy storage mode: the bending mode
dominates at small strains for w < w0, while the axial mode
dominates for w > w0. Hence, the small strain stiffness of
the network, E0, is proportional to the axial rigidity of fibers,
E0 ∼ E f d2, for w > w0, and to the bending rigidity, E0 ∼
E f d4, for w < w0 [32,55,56]. In this work we consider two
types of networks, with w = −3.77 and w = −2.37, which
are nonaffine and close to the nonaffine-to-affine transition.

III. RESULTS

A. Nonlinear elastic behavior

To make the ideas outlined in the Introduction more spe-
cific, we briefly describe the nonlinear behavior of interest.
Figure 2(a) shows the stress-stretch curves for the two w

values considered, with the three regimes and the respective
transitions indicated. The regimes are defined based on the
tangent stiffness-stress representation of the data shown in
Fig. 2(b). The model predicts qII ≈ 1 (i.e., exponential stiff-
ening) and qIII ≈ 1/2. As w increases, the range of regime II
decreases and eventually vanishes, but qIII does not change ap-
preciably. This independence of qII of parameter w is broadly
reported in the literature [24,38,44]. Figure 2(c) shows the
incremental Poisson ratio, νi = −d log λ2/d log λ function of
the stretch (with λ2 = λ3 since the sample is isotropic at λ = 1
and transversely isotropic during deformation). As previously
reported [15], for w < w0, νi increases from an initial value
of ∼ 0.3 in regime I, to a peak value at the end of regime II,
after which it remains constant and then decreases. The peak
value is much larger than the isotropic continuum limit of 0.5
due to the large free volume of the network. The volume of
the sample decreases almost linearly with λ in regime II and
much slower in regime III, as also seen in collagen networks
[58,59].

B. Contribution of bending and axial deformation modes

In this section we address the question “what deformation
mode controls stiffening in regime II.” Figure 3(a) shows the
variation with stretch of the ratios of the axial and bending
energies, U a/U b; axial and bending contributions to stress
production, Sa/Sb; and axial and bending contributions to
stiffness, Ea

t /Eb
t . Transitions T1 and T2 are defined based on

the slope of the Et (S) curve, Fig. 2(b), and the onset of regime
III coincides with U a/U b = 1 for nonaffine networks, w <

w0. Stress production becomes axially dominated at smaller
stretches, while the stiffness becomes axially dominated even
earlier, roughly in the middle of regime II. The bending to
axial transition is marked by “BA” in Fig. 3. Hence, axial
dominance emerges at stretches smaller than previously re-
ported. Clearly, this transition is not the cause of regime II
and of the associated exponent qII ≈ 1. The data confirm that
deformation is bending dominated at the onset of regime II,
as proposed in [23], but do not support the idea that it (specif-
ically S and Et ) is bending dominated throughout regime II
as claimed in the same references. In the approximately affine
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FIG. 2. (a) Nominal stress-stretch, (b) tangent stiffness-stress, and (c) incremental Poisson ratio vs stretch for networks with w = −3.77
and w = −2.37. The transitions between regimes I and II and between regimes II and III are marked by square and circle symbols, respectively
(nonaffine, w = −3.77 case), and the transition between regimes I and III in the more affine, w = −2.37, case is marked by a triangle.

case of w = −2.37, the deformation is axially dominated once
regime I ends. In fact, for larger w, axial dominance extends
into regime I.

Further, it is useful to compare curves Et (S), Ea
t (Sa), and

Eb
t (Sb) for the nonaffine system (w = −3.77), Fig. 4(a). The

curves are not aligned in the horizontal direction since the
contribution to stress of the two deformation modes is dif-
ferent (see the position of symbols marking the T1 and T2

transitions). Both axial and bending modes strain stiffen dur-
ing regime II, but with different exponents. The exponent of
the axial mode is qIIa ≈ 1, while that of the bending mode
is qIIb ≈ 1/2. At the onset of regime III, the bending mode
stops contributing to the incremental stiffness and the bending
contribution to stress becomes constant. In regime III the axial
mode stiffens with exponent qIIIa ≈ 1/2 which, due to the
axial dominance in this regime, becomes identical to qIII.

The behavior of the bending contribution correlates with
the incremental Poisson contraction, Fig. 2(c). Once the
bending component of stress becomes constant (Eb

t → 0),
incremental νi levels off. This suggests that bending provides
a background resistance to Poisson contraction, i.e., a bending
support subnetwork (BSSN) which controls not only νi, but
also the rate of formation of the SPSN during regime II.

Figure 4(b) shows similar results for the approximately
affine network with w = −2.37. The bending contribution to
stiffness is constant during regime I and during the beginning

part of regime III; the network enters regime III right after
regime I. In regime III, qIII ≈ 1/2 and stiffening is entirely
controlled by the axial mode.

C. Stiffening mechanisms

1. Regime II

It is instructive to consider the behavior of periodic net-
works with unit cells shown in Fig. 5(a). Frames F1 and
F2 have welded cross-links and all segments are beams of
the same E f and d . When loaded in tension in direction x1,
segments AC, AD, BC, and BD bend and stretch to form the
equivalent of SPSN, while the bending-dominated segment
AB provides resistance to transverse contraction and performs
the function of the BSSN. The angles between any pair of
fibers merging into a cross-link remain unchanged during
deformation.

The tangent stiffness-stress curves (computed based on the
nominal stress) for the two structures in Fig. 5(a) are shown
in Fig. 5(b). The behavior is similar to that seen in Fig. 2.
Regimes I and II are well defined and exponential stiffening
(qII = 1) is observed. Exponential stiffening persists over a
broad range of stretches (λ ≈ 1.1, 1.4) and fiber segment
aspect ratios; the independence of the fiber aspect ratio is
equivalent to the independence of exponential stiffening on
w in stochastic networks. Regime III is not present up to the

FIG. 3. Variation with the stretch of the ratios of the axial and bending energies, U a/U b; axial and bending contributions to stress
production, Sa/Sb; and axial and bending contributions to stiffness, Ea

t /Eb
t , for (a) w = −3.77 and (b) w = −2.37. The dotted horizontal

line corresponds to the transition from bending to axial mode (BA) for these ratios.
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FIG. 4. Stress and stiffness due to axial Ea
t (Sa), and bending, Eb

t (Sb), deformation modes for networks with (a) w = −3.77 and (b) w =
−2.37. Symbols mark the transition between regimes defined based on Fig. 2(b). The horizontal and vertical dotted lines correspond to the
bending to axial transitions defined based on the stiffness and stress criteria, respectively.

upper marked point shown in Fig. 5(b), where the structure be-
comes too distorted to be representative for the network. The
stiffness-stress curve computed based on the Cauchy stress
is parallel to the curve shown. Since the material is linear,
the observed behavior is due to the kinematics of the defor-
mation originating from bending and geometric nonlinearity,
conditioned by the nature of the cross-links. The physical
picture that emerges is that exponential stiffening results from
the interplay of axial and bending modes as fibers undergo
large deformations and rotations subjected to the condition
of rigidly held angles at cross-links. This also explains the
preponderance of this type of stiffening in network materials.

A stress path separated from the stochastic network, which
is a zigzag of fiber segments, deforms in a manner similar
to that described in Fig. 5 and in Fig. 2 for w = −3.77.
This relates to the description provided in [27,35,36] in which
stiffening is explained based on the pull-out of SPSN. How-
ever, here we indicate that considering entire stress paths is
unnecessary as each fiber of the structure (or small groups of
fibers) exhibits a geometrically nonlinear large deformation
behavior compatible with exponential stiffening.

We emphasize the importance of the rotational constraint
at cross-links (welded cross-links) for the emergence of ex-
ponential stiffening. This is supported by other results from
the literature. The opposite limit of the problem is a network

with pin-joint cross-links and truss fibers. A structure of this
type and with z = 4 is subisostatic. It acquires stiffness upon
stretching and exhibits quadratic stiffening rate (slope of 1

2
in the stiffness-stress plot based on the nominal stress) upon
further straining [20]. The bending mode is not engaged in
this case. In models in which fiber bending is mimicked using
cross-links that penalize the relative rotation of fibers, i.e.,
both moments and forces are transmitted at cross-links, expo-
nential stiffening emerges [20,60] (if the linear fiber material
is replaced with the wormlike chain model, the slope of 1
in the stiffness-stress plot is replaced by 3

2 ). This is the case
even in fibrous network models of long fibers, each carrying
multiple cross-links, in which moments are transmitted at
cross-links along each fiber, but not between fibers [24].

It is necessary to discuss at this point the relevance of
the welded cross-link model for various network materials.
While dwelling on this topic is out of place here, one may
observe that (i) nonwovens and networks of spun polymeric
fibers are typically cross-linked by merging fibers in contact,
a case in which the weld model is appropriate; (ii) F-actin,
which is the dominant protein network of the cytoskeleton,
is cross-linked by actin binding proteins having an intrin-
sic nonvanishing stiffness [61]—this may be modeled as a
fibrous network connected by rotating springs that transmit
moments between fibers; (iii) collagen fibers, which form

FIG. 5. (a) Unit cells of periodic network of beams, and (b) the corresponding stiffness-stress curves. Deformed configurations of F2 for a
few selected states are shown.
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FIG. 6. Tangent stiffness-stress curves for networks with (a) w = −3.77 and (b) w = −2.37 computed based on the Cauchy and nominal
(PK1) stresses. (c) Incremental nonaffinity measure for networks, � = 〈|	unetwork − 	uaffine|〉/lc, with 	u being the incremental change in
displacement field for w = −3.77 and w = −2.37. The bending to axial transition points (BA) for stress and stiffness (from Fig. 3) are shown
in (c).

the extracellular matrix and various connective tissues, have
a hierarchical structure and are, in fact, bundles of fibrils
held together by covalent bonds—bundles split and merge at
the network cross-links and hence moments are transmitted
between network segments due to the bending stiffness of the
sub-bundles forming each cross-link [62]. While situations in
which molecular filaments are cross-linked by fully flexible
molecules may be envisioned (a case in which moments are
not transmitted between network segments), the prevailing
situation appears to be one in which cross-links transmit both
forces and moments and restrict fully or partially the relative
translation and rotation of the cross-linked segments, as con-
sidered in the present models.

2. Regime III

Regime III in nonaffine networks (w < w0) is different
from regime III observed in approximately affine networks
with larger w, despite the fact that stiffening is described by
qIII = 1

2 in both cases and the deformation is controlled by
the axial mode. To shed light on this difference it is useful
to replot the tangent stiffness vs stress curves of Fig. 2(b) by
using the Cauchy stress. Figure 6(a) shows Et (S) computed
based on the Cauchy and PK1 stresses for the nonaffine case
with w = −3.77. The slope in regime III for the Cauchy curve
is 1, while for the PK1 curve it is 1

2 , as also seen in Fig. 2. The
difference is caused by the effect of the transverse contraction,
which is considered only when working with the true, Cauchy
stress. It results that the real stiffening of nonaffine networks
is exponential throughout regimes II and III, while qIII = 1

2
is an artifact resulting from the use of the nominal stress.
This underlines the importance of the mechanism described
in Sec. III C, which therefore controls stiffening of nonaffine
networks in both regimes II and III.

Figure 6(b) shows similar results for the network with
w = −2.37. Due to the weak Poisson effect in this case [see
Fig. 2(c)], the difference between the curves corresponding
to the Cauchy and nominal stresses is minimal and both may
be approximated with qIII ≈ 1/2. The nominal curve departs
slightly from the Cauchy curve at the stretch at which Eb

t → 0
in Fig. 4(b). In this close-to-affine case lateral contraction is
minimal and the BSSN is not engaged.

The incremental nonaffinity, computed as the mean of
differences between incremental displacement field of net-
work and affine prediction, � = 〈|	unetwork − 	uaffine|〉/lc,
is shown in Fig. 6(c) for both w values. The incremental
nonaffinity of the w = −2.37 network is much smaller than
in the w = −3.77 case and decreases monotonically during
deformation. The incremental nonaffinity of the w = −3.77
network increases in the initial stages of regime II, reaches
a plateau when the deformation becomes axially dominated
(Ea

t /Eb
t > 1), and remains approximately constant through-

out the second half of regime II and into regime III. Once
again, transition T2 makes little difference in the incremental
nonaffinity as it does in Et (S) computed based on the Cauchy
stress.

This discussion leads to the conclusion that in both non-
affine and approximately affine networks deformation has
only two regimes: a linear regime at small strains followed
by a nonlinear regime. Stiffening is exponential in the case
of nonaffine networks and quadratic in the approximately
affine case. The weaker stiffening in the affine case is due
to the much more modest lateral contraction compared to the
nonaffine case.

It is also useful to recall a result from polymer physics
where the stiffening rate of the central force network (truss
structures with no bending energy storage) was evaluated
[63]. The nominal stress in uniaxial loading is given by S ∼
J (λ−J/λ2), where J is the Jacobian of the transformation. If
J is considered independent of λ [see Fig. 2(c) where νi varies
slowly with the stretch], the function Et (S) decreases contin-
uously for all stretches considered here. This indicates that
the interplay of the bending and axial deformation present in
beamlike fibers is required to reproduce the type of stiffening
observed in semiflexible and athermal networks.

3. Stress path and bending support subnetworks

It is of interest to trace the evolution of the SPSN and
BSSN subnetworks throughout the deformation history. The
subnetworks are identified as follows: the system is loaded
into regime III and the fibers carrying 99% of the axial strain
energy are identified as the SPSN. The evolution of the frac-
tion of fibers carrying 99% of the axial, ϕa, and bending,
ϕb, energies at each stretch is shown in Fig. 7(a) for the
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FIG. 7. (a) Fraction of fibers carrying 99% of bending and axial energies at each strain for the network with w = −3.77; the inset shows
the same fractions for the case with w = −2.37. (b) Tangent stiffness-stress curves computed based on the SPSN and BSSN subnetworks
along with the corresponding curves computed based on the axial and bending energies, from Fig. 4(a). (c) Average orientation, 〈P2〉, of the
SPSN and BSSN subnetworks along with the 〈P2〉 of the entire network. The inset shows these subnetworks traced back to the reference
configuration.

w = −3.77 case. ϕb ≈ 0.8 and is constant during the defor-
mation. ϕa decreases rapidly during regime II and becomes
constant in regime III to form the SPSN, i.e., ϕSPSN = ϕa

in regime III. In the case of the network with w = −2.37,
both ϕa and ϕb are approximately constant throughout the
deformation, as shown in the inset to Fig. 7(a).

BSSN is identified as the set of fibers that carry 99% of
the bending energy in regime III but do not belong to SPSN.
It results that ϕBSSN ≈ 0.6 in the w = −3.77 case and 0.33
in the w = −2.37 network. Not only are ϕSPSN and ϕBSSN

constant in regime III, but also the fibers that belong to these
subnetworks remain in the respective categories throughout
regime III.

To demonstrate the importance of this partition, we con-
sider that the specific fibers identified in regime III as forming
the SPSN and BSSN trace their evolution in regimes I and
II, and compute their contribution to stress and stiffness. Fig-
ure 7(b) shows Et (S) corresponding to the two subnetworks
for w = −3.77, i.e., ESPSN

t (SSPSN) and EBSSN
t (SBSSN), along

with Ea
t (Sa) and Eb

t (Sb). It is observed that ESPSN
t (SSPSN) ≈

Ea
t (Sa) and EBSSN

t (SBSSN) ≈ Eb
t (Sb) for most of the stiffening

regime, which indicates that the fibers belonging to these
subnetworks are critical to the overall network behavior.

Figure 7(c) shows the orientation, P2, computed relative to
the loading direction, x1, of these two sets of fibers traced
throughout the loading history. It is seen that SPSN is com-
posed of fibers that are preferentially oriented along the
loading direction and that align faster than the system average
during regime II, while in regime III SPSN follows the trend
of the system average. Conversely, BSSN is preferentially
oriented in the direction orthogonal to the SPSN, which is
compatible with the view that BSSN provides a support struc-
ture against network collapse in regime II.

These data provide support to the physical picture de-
scribed above in which the SPSN is axially dominated,
preferentially oriented in the loading direction, and controls
stiffening throughout the second half of regime II, and in

regime III, while BSSN is bending dominated, it is oriented
approximately orthogonal to the loading direction and con-
trols the Poisson contraction.

IV. CONCLUSIONS

Using models of fiber networks, we explore the physi-
cal basis of strain stiffening in network materials. Stiffening
was previously associated with the formation of the stress
path subnetwork. We show that SPSN organization is condi-
tioned by the simultaneous formation of a bending support
network (BSSN) which is preferentially oriented in the direc-
tion orthogonal to SPSN and to the applied uniaxial tensile
load. Although the strain energy is bending dominated as the
network stiffens (regime II of the deformation), we provide
evidence that the stress and stiffness production become axi-
ally dominant at far smaller stretches than previously reported.
Based on these data, deformation is axially dominated for
most of regime II and throughout regime III. In an attempt
to explain the exponential functional form of stiffening, we
explore several unit cell models and show that exponential
stiffening emerges from the behavior of individual or small
groups of fibers, and invoking the complex process of SPSN
organization to explain stiffening is not necessary. Further,
we show that in regime III stiffening is also exponential if
the true, Cauchy stress is considered. This contrasts with the
quadratic stiffening reported in the literature for this regime
which is observed when the nominal stress is used instead.
Finally, we conclude that BSSN controls lateral contraction
and is responsible for the shift from exponential to quadratic
stiffening observed for affine network materials.
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