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Chemical reactions are usually studied under the assumption that both substrates and catalysts are well-mixed
(WM) throughout the system. Although this is often applicable to test-tube experimental conditions, it is not
realistic in cellular environments, where biomolecules can undergo liquid-liquid phase separation (LLPS) and
form condensates, leading to important functional outcomes, including the modulation of catalytic action. Similar
processes may also play a role in protocellular systems, like primitive coacervates, or in membrane-assisted
prebiotic pathways. Here we explore whether the demixing of catalysts could lead to the formation of microen-
vironments that influence the kinetics of a linear (multistep) reaction pathway, as compared to a WM system. We
implemented a general lattice model to simulate LLPS of a collection of different catalysts and extended it to
include diffusion and a sequence of reactions of small substrates. We carried out a quantitative analysis of how the
phase separation of the catalysts affects reaction times depending on the affinity between substrates and catalysts,
the length of the reaction pathway, the system size, and the degree of homogeneity of the condensate. A key
aspect underlying the differences reported between the two scenarios is that the scale invariance observed in the
WM system is broken by condensation processes. The main theoretical implications of our results for mean-field
chemistry are drawn, extending the mass action kinetics scheme to include substrate initial “hitting times” to
reach the catalysts condensate. We finally test this approach by considering open nonlinear conditions, where
we successfully predict, through microscopic simulations, that phase separation inhibits chemical oscillatory
behavior, providing a possible explanation for the marginal role that this complex dynamic behavior plays in real
metabolisms.

DOI: 10.1103/PhysRevE.108.044410

I. INTRODUCTION

The interplay between physics and chemistry is key to
reach a deep and comprehensive understanding of various
aspects of cell physiology. All metabolic processes take
place under heterogeneous conditions and complex spa-
tial constraints, often involving lipid bilayers and transport
or transduction mechanisms supported by membrane com-
partments. Thus, the modeling of metabolism (or specific
metabolic pathways) as a set of chemical reactions in open
and well-mixed (WM) aqueous solution conditions is, at best,
a crude first-approximation. This is becoming increasingly
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apparent in the last decades, even without taking into account
lipid compartments, given the empirical evidence accumu-
lating about the effects of macromolecular crowding and
biomolecular condensates (membraneless compartments in-
duced by liquid-liquid phase-separation) on various cellular
functions [1–5]. As a result, among other important aspects, a
more realistic and precise characterization of protein activities
in vivo is being achieved.

A particularly relevant derivative of the previous studies
has to do with enzyme catalysis and the re-evaluation of
classical biochemistry models based on mass action kinetics
(MAK) assumptions—e.g., the Michaelis-Menten equation—
which are not realistic under physiological conditions. Several
extensions or alternatives to those traditional approaches
have been proposed over the years. At a phenomenological
level, we can mention power-law approximations to nonideal
behavior (taking Savageau’s seminal work as the main ref-
erence [6,7]) or fractal kinetics (following Kopelman [8,9]).
More recent contributions include geometry-controlled kinet-
ics [10,11] or LLPS-modulated enzyme kinetics [12,13]. In
contrast with those deterministic approaches, more rigorous
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stochastic kinetics formalisms have also thrived, especially
after Gillespie’s simulation algorithms [14–16] were intro-
duced to solve the master equation for Markovian probability
densities. However, the latter methods (which are much more
accurate when molecular copy numbers are small) rely on the
homogeneity of the reaction medium, which is not tenable
under cytoplasmic spatial constraints.

In this context, different strategies can be tried (e.g.,
Ref. [17]), but lattice models constitute a well-suited option,
because they offer an explicit spatial framework to deal with
phenomena like crowding or phase separation, and they can be
combined with a microscopic, statistically coherent formula-
tion of the chemical processes to be explored. For instance,
Schnell and Turner [18] (following Berry [19]), used this
type of Monte Carlo simulations in a 2D lattice to study
how mean-field fractal kinetics and power-law extensions
should be amended when there is molecular crowding (i.e.,
obstacles to free diffusion) in the medium. One can find
abundant lattice models applied to investigate liquid-liquid
phase separation processes (one of our main targets of anal-
ysis here), but not so many have addressed their coupling
with chemistry. Among the few that did, let us mention the
work of Glotzer and colleagues [20], who analyzed phase
separation involving chemically active molecules (i.e., a sit-
uation where the scaffolds, the phase-separating species, are
themselves reactants or products of some chemical transfor-
mation) [21]. This type of phenomenon (recently reviewed
by Zwicker [22]) constitutes an open and promising area or
research.

The central motivation of this work is to investigate how
a group of functional biomolecules may spatially organize
themselves, thanks to weak associative interactions, to per-
form a collective chemical task (namely, multistep catalysis
on a linear reaction pathway). Therefore, we are interested
in the analysis of LLPS processes in which the biopolymers
are both the clients and scaffolds of the condensate, to test
in particular how that modifies their catalytic action. The
standard way of addressing these issues experimentally, in
well-controlled in vitro conditions, tends to split up those
two roles, making use of some biomolecules (e.g., PEG and
dextran [23] or polySH3 and polyPRM [13]) to induce the
condensates, and then analyzing the effects of phase separa-
tion on others performing catalytic function. Yet this is just a
practical, methodological convenience. Nothing precludes the
catalytic biopolymers from generating the condensate them-
selves under in vivo conditions. Quite the contrary: Enzymes
with an inherent oligomerizing propensity often display mul-
tivalent interactions, which give them the potential to trigger
LLPS processes. As a matter of fact, a remarkable number
of metabolism-related enzymes have been observed to form
condensates in bacteria, yeast, and other organisms—as it is
more thoroughly reviewed in Ref. [24].

Our approach here is quite general, not restricted to water-
soluble enzymes or catalysts. Very important physiological
and metabolic processes (think of phospholipid synthesis,
like the Kennedy pathway, signaling pathways or electron-
transfer chains, just to mention some examples) take place
around or within membranes. Therefore, protein aggregation-
disaggregation dynamics in the context of 2D lipid bilay-
ers may play also a key role in complex cell behavior.

Furthermore, under much simpler conditions, the combi-
nation of chemical transformations and physical or spatial
constraints seems to be critical, as well, for the process of
emergence of biological cells (hence, the current weight of
the “protocell camp” within origins-of-life research: see, e.g.,
Refs. [25–28]). Phase separation into coacervates [29] was
actually long ago proposed by Oparin [30] as a crucial step
for prebiotic chemistry to unfold. The hypothesis was left
aside for many years (in particular, with the advent of li-
posome science [31], favoring vesicles as protocell models
[32–34]) but has been revisited and gained new momentum
in recent years [35]. Taking all these considerations into ac-
count, we will formulate the chemical part of the problem
here in rather general terms, without sticking to the standard
mechanism of catalysis (as it is performed by enzymes in
open aqueous solution—i.e., the Michaelis-Menten scheme),
but with a broader view of catalytic action that could apply
to allegedly prebiotic or membrane-associated linear reaction
pathways.

The article is structured as follows. First, in Sec. II, we
briefly describe the lattice model employed to explore mi-
croscopically the LLPS dynamics of a group of catalysts
[36–40] which is extended to simulate a simple chemistry
(a collectively catalyzed linear reaction pathway) by con-
sidering the various reactants as “random walkers” on the
lattice. The results of our theoretical work are then reported
in Sec. III, divided into Sec. III A, where the main outcomes
of the simulation runs are summarized (in terms of the ef-
fects that different equilibrium configurations of the catalysts
have on the global reaction time required to complete the
pathway), and Sec. III B, in which the implications for mass
action kinetics are drawn. The model is also tried for a more
complex chemistry taking place in nonequilibrium conditions.
In Sec. IV, we conclude with a short discussion about the
potential and limitations of our approach, indicating possible
lines of work for the future.

II. THE MODEL

We consider a linear reaction pathway where an initial
substrate S0 is transformed through consecutive steps and
intermediary substrates Sμ into a final product P. Each re-
action step is catalyzed by a specific biomolecule [41] Eμ,
Sμ−1 → [Eμ]Sμ, so we have

S0
E1−→ S1

E2−→ S2 . . . SL−1
EL−→ P, (1)

where we denote the number of catalysts L, corresponding to
the length of the reaction pathway. It is assumed that these
L catalysts have a mild attraction to each other (typically,
through multivalent interactions) and therefore they can un-
dergo phase-separation. As depicted in Fig. 1, to simulate
the LLPS of the catalysts, space is discretized into a two-
dimensional, d×d regular lattice, where each site i is in a state
σi = 0, 1 . . . L representing the type of catalyst inhabiting the
respective site, and 0 representing the solvent. The energy of
a certain configuration of catalysts on the lattice is given by

H (�σ ) = −
∑
〈i, j〉

J (σi, σ j ). (2)
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FIG. 1. (a) The lattice model. Biomolecules Ei occupy single squares on the bottom grid (the catalyst-lattice), where different colors
stand for different catalysts (white squares represent the solvent). Multiple substrates Si can occupy a single square on the top grid (the
substrate-lattice). (b) Typical equilibrium configuration from simulations with lattice size d = 100, pathway length L = 20, area fraction
φtot = 0.3, interaction strength J = 1.0 and inverse temperature β = 0.01. (c) Typical equilibrium configuration for the same parameters as in
panel (b), except for β = 5.0.

The function J (σ, σ ′) determines the strength of interaction
between two compounds and takes the form of a symmetric
matrix Jσσ ′ = Jσ ′σ . The brackets in the sum stand for neigh-
boring lattice sites. In this work we do not take into account
solvent-solvent nor solvent-catalyst interactions: i.e., J00 =
Jσ0 = 0. Notice that in our convention Jσσ ′ > 0 corresponds
to attraction, while Jσσ ′ < 0 corresponds to repulsion. Follow-
ing standard statistical mechanics, we consider equilibrium
configurations whose probability is given by the Boltzmann-
Gibbs distribution

P(�σ ) ∝ e−βH (�σ ), (3)

where β = 1/T is the inverse temperature. We limit ourselves
to attractive interactions and for further simplicity, we assume
that all catalysts attract each other with the same strength: i.e.,
Jσσ ′ = J, ∀σ, σ ′ 	= 0. This last assumption will be slightly
modified when discussing the problem of the homogeneity of
the condensate, later on. Our approach builds upon previous
work on the thermodynamics of phase separation following
these premises: [36–40,42].

Each catalyst Eμ is present on the lattice in a certain vol-
ume or, rather, area fraction φμ—with φtot = ∑

μ φμ being
the total area fraction of catalysts on the lattice. We further
assume that each catalyst has the same area fraction, i.e.,
φμ = φtot/L. In that case, it is easy to show that this model
is formally equivalent to the Ising model at conserved or
constant magnetization, which is known to undergo phase
separation. This behavior can be captured qualitatively by

the regular solution model and easily simulated in the lattice
with a Metropolis Monte Carlo algorithm (more precisely,
implementing the Kawasaki rule [43] for the conservation
of enzyme copy numbers). The diffusive dynamics of the
substrates is modeled as a standard Brownian motion phe-
nomenon: i.e., as a simple lattice random walk. Regarding
the value of the diffusion constant, this is set (neglecting
physical interaction with the catalysts) to D ∼ a2/dt , where
a is the lattice spacing and dt is the time step of the random
walk. For simplicity, here we will consider units that make
D = 1. For reference, in 3D the typical values diffusion con-
stant for metabolites in water are around D ∼ 600μm2 s−1,
and if we take the lattice spacing a ∼ 5 nm (which is the
size of a typical macromolecular catalyst [44]), we get dt ∼
40 ns. In 2D, taking into consideration a solvent phase made
of lipids (like in a membrane bilayer), for the same lat-
tice spacing, diffusion constants reduce to D ∼ 10μm2 s−1,
[45], from which dt ∼ 2 μs. In any case, in the presence of
the catalysts, diffusive behavior will be altered by physical
interactions and this is also bound to affect kinetics (see
Sec. III A 1).

We assume (diffusion-limited [46]) perfect catalysis and
irreversible reactions: every time an intermediate substrate
encounters its corresponding catalyst in the pathway, it gets
immediately transformed into the next intermediate substrate
in the linear chain, which starts its random walk from the
position of the catalyst that has led to it. The model and its
overall features are illustrated in Fig. 1.
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Our aim in the current paper is to investigate, within this
simple setting, how the behavior of the reaction pathway,
defined by Eq. (1), is affected if the catalysts are well-mixed
[as shown in Fig. 1(b)] or if they phase separate into a surface
droplet [as shown in Fig. 1(c)]. In particular, to quantify the
behavior of the reaction pathway we will compute the mean
reaction-time tR, which is the average time for an initial sub-
strate S0 to complete the reaction; namely, to be transformed
into the final the product P. Therefore, in the context of
our simulations, tR corresponds to the average time it takes
a substrate that is initialized as S0 to physically encounter
all the catalysts Eμ in the correct order, as defined by the
reaction pathway in Eq. (1). Depending on the equilibrium
configuration of the condensate (and on the other parameters
of the simulations), a number of different outcomes were
statistically collected, as we report next.

III. RESULTS

In the following discussion, we use the abbreviations WM
and PS for well-mixed and phase-separated reaction systems,
respectively.

A. Main simulation results

1. Substrate-catalyst affinity accelerates pathway
completion in PS systems

As the first result, let us show how a minimal degree of
affinity between the substrates and the catalysts is critical
for the condensates to enhance catalysis through a concen-
tration mechanism. With this aim, we introduce parameter I ,
which quantifies the strength of the substrate-catalyst inter-
action [47]. The presence of such interaction amounts to a
bias in the random walk simulating the substrate dynamics.
Under these conditions, then, the rate at which the substrate
leaves regions occupied by solvents and enters regions oc-
cupied by the catalysts is simply modulated by a Boltzmann
weight:

W (i → j|σi = 0, σ j > 0) ∝ eβI ,

W (i → j|σi > 0, σ j = 0) ∝ e−βI , (4)

where the proportionality constant ensures normalization. To
investigate the effect of the substrate-catalyst interaction I on
the reaction time through the spectrum of systems ranging
from well-mixed to fully phase-separated, we computed the
mean time to react tR from numerical simulations at increasing
β, that is, transitioning from a WM system to a PS system.
In Fig. 2 we illustrate graphically this effect by comparing
two systems: one with no substrate-catalyst interaction and
one with mild attraction between substrates and catalysts. In
the former case tR is constant for low β but starts to increase
once a condensate starts to form (region III in Fig. 2). In
the case of substrate-catalyst attraction, tR shows an initial
increase, as small droplets start to form (region II in Fig. 2)
but then decreases, once the droplets percolate and form a
macroscopic condensate. In general, I > 0 means then that the
catalysts can “trap” the substrate molecules within the con-
densate, where they can find the right enzyme in the pathway
much quicker (in comparison to the WM-case), given their

higher local concentration. This mechanism also explains the
uptick in region II, because there are incipient droplets that
can trap the substrate, but evidently lack exemplars of all
the catalysts of the pathway. For instance, a droplet may
contain E1, E2, E4, . . . , EL, but not E3. As a result, the sub-
strate is unable to complete the full reaction pathway within
a single droplet, which leads to higher concentrations of in-
termediates. In contrast, for no attraction at all (I = 0), in
the PS regime the condensate is not able to keep the sub-
strate inside, with intermediates diffusing in and out and
finally leading to less efficient catalysis, compared to the WM
regime. A certain degree of attraction is therefore necessary
to enhance catalysis in the PS regime, so in the following sec-
tions we will assume a mild substrate-catalyst attraction (i.e.,
the condensate will be considered, by default, a “trapping”
condensate).

2. Multistep reaction kinetics is not scale invariant in PS systems:
Pathway length and size effects

Next we turn our attention to the dependence of the average
reaction time tR on the pathway length L. The first important
difference between the WM and PS cases concerns the system
size d: a WM system is scale invariant while a PS is not, since
the time required for a substrate S0 to reach the condensate
increases with the system size. In Appendix A 1 we derive the
following formula for the dependence of tR on L and φtot for
a WM system:

t wm
R = a

L2

φtot
, (5)

where a is a constant with regard to L and φtot but is a function
of several other parameters, like the lattice geometry, the dif-
fusivity of the substrate, etc. In essence this time is inversely
proportional to the probability of reaching the correct enzyme
by the substrate during its random walk.

Now, for the PS case one can assume that, once inside
the condensate, if the latter is homogeneous, the substrate
will experience an environment similar to the WM case but
with a local area fraction of enzymes of φ′

tot ∼ 1. However,
the initial substrate S0 first needs to find the droplet. Thus,
for the substrates which are initially outside the droplet, the
mean reaction time is delayed by this initial time to “hit”
the droplet, which we will denote as tH (the hitting time).
Thus, for the substrate molecules starting from outside, the
following expression is derived:

tR = aL2 + tH (φtot, d ). (6)

In other words, tH (φtot, d ) implies an offset for the mean
reaction time that depends on φtot and the lattice size d . In
Appendix A 2 we derive an exact formula for the case with
circular symmetry, finding the overall scaling for t ps

R to be

t ps
R = aL2 + bd2g(φtot ). (7)

We tested these predictions for the mean reaction time by
performing simulations and computing tR for systems of
variable pathway-length L and different lattice size d (with
a couple of fixed β values, one leading to a WM system
and the other to a PS system). Our results are illustrated in
Fig. 3.
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I II III IV

I II III IV

FIG. 2. Average reaction time tR as a function of the inverse temperature β from simulations performed at two different levels of substrate-
catalyst interaction: I = 0.0 (no attraction, blue curve) and I = 1.0 (attraction, red curve). Otherwise, parameters were fixed (lattice size
d = 100, pathway length L = 20, catalyst area fraction φtot = 0.3, catalyst-catalyst interaction strength J = 1.0). The curves have been aver-
aged over 72 independent simulations with the error bar showing the standard deviation. Boxes I–IV: snapshots of equilibrium configurations
at β = 0.0, 1.0, 2.0, 3.0.

The values for tR obtained in the WM-case coincide for
all choices of d (scale invariance) and they follow a parabolic
trend that is well fitted by Eq. (5). By contrast, in the PS-case
one can see that, while the tR values obtained lie on parabolas
with the same slope, there is an offset that increases with the
system size, which is in good accordance with our prediction
in Eq. (7), based on considering the size dependence of the
hitting time. In general, we can state that there is a certain
critical length Lc of the reaction path above which the mean
reaction time is shorter for a PS system (in comparison to a
WM system) and thus catalysis is enhanced by the formation
of a condensate. We can get a formula for Lc by putting
together Eqs. (5) and (7):

Lc = d

√
b

a

φtot

(1 − φtot )
g(φtot ). (8)

Thus, our equations predict that Lc ∝ d for a given φtot, and
this is verified by numerical simulations (as it is easy to
infer from Fig. 3, where we obtain Lc ∼ 6, 12, 18 for d = 50,

100, 150 respectively).

3. Dependence of the reaction-time on the homogeneity
of the condensate

Up to this point all interactions were assumed to be ho-
mogeneous. However, in a more realistic setting different
enzymes and catalysts will show different modes and intensi-
ties of attraction between each other due to geometry, charge
distribution, ionization, functional groups, etc. This leads to a
variety of multivalent interactions that determine the structure
and dynamical properties of the condensates which, in turn,
affect their catalytic performance. To analyze this aspect, we
introduce here a certain degree of heterogeneity by changing
the catalyst-catalyst interaction J back from a single scalar
parameter to a real matrix, where the different entries Jσρ re-
flect the strength of interaction between each pair of catalysts
σ, ρ (as we said above, this matrix will be symmetric: i.e.,
Jσρ = Jρσ ). We consider a random matrix whose entries will
be identical and independently distributed gaussian random
variables with average value that we call μJ and standard
deviation that we call σJ . We set μJ = 1 and restrict our-
selves to the case σJ/μJ � 1, in such a way that the majority
of interactions are attractive and the system phase separates
with a thermodynamic behavior that is slightly perturbed with
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FIG. 3. Average reaction time tR as a function of the pathway length L (φtot = 0.3, J = 1.0). Simulations were carried out for different
lattice sizes d = 50, 100, 150 (indicate as circles, square, and triangles, respectively) and comparing WM systems (blue, β = 0.0 and I = 0.0)
with PS systems (red, β = 5.0 and I = 1.0). Solid lines: fit of the simulation data using Eqs. (5) and (7) for the WM and the PS systems,
respectively, with a = 2.40, b = 0.165.

respect to the homogeneous case (σJ = 0). Similar to what
we did in Sec. III A 1, the global average reaction time was
computed through numerical simulations as a function of β

and for diverse values of σJ .
Our results are reported in Fig. 4(a). Similarly to the ho-

mogeneous case (Fig. 2), the mean reaction time initially
increases when increasing β (this corresponds to the small

surface-droplet forming region) but then decreases, once β

is in the region where a macroscopic condensate starts to
form.

In contrast to the homogeneous case, however, where fur-
ther increasing β does not change tR, we can see that for
larger values of σJ the mean reaction time starts to increase
again. In other words, the trend is nonmonotonous, with a

FIG. 4. (a) Global average reaction time tR as a function of the inverse temperature β (lattice size d = 100, pathway length L = 20, enzyme
area fraction φtot = 0.3, mean catalyst-catalyst interaction strength μJ = 1.0, substrate-catalyst interaction strength I = 1.0), for different
σJ (different line colors). (b) Upper panel: equilibrium configuration for a system with σJ = 0.3 and β = 2.0. Lower panel: equilibrium
configuration with σJ = 0.3 and β = 5.0.
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FIG. 5. Time dynamics for the substrate concentrations Cμ(t ) from full microscopic simulations (points) and the analytical solution of
the mass actions ODE (lines) in a WM system (lattice size d = 100, pathway length L = 5, catalyst area fraction φtot = 0.3, catalyst-catalyst
interaction strength J = 1.0, substrate-catalyst interaction strength I = 0.0, inverse temperature β = 0.05).

well-defined minimum—or an optimal inverse temperature
βo—where catalysis is more efficient.

This nonmonotonous behavior is mainly due to the fact
that, for lower temperatures, the condensate itself is not
well-mixed and substrates typically travel longer distances
before encountering the right catalyst. This explanation is
coherent with a correlation that we observe between the
increase of reaction times and the formation of patches
in the condensate for lower temperature (as illustrated in
Fig. 4(b), upper panel versus lower panel). The presence of
these patches (for which there is evidence in the literature on
biomolecular condensates [48]) makes it more difficult for a
substrate inside the droplet to find the catalysts in the right
order (larger σJ value means a more “patchy” droplet, as the
interactions are more heterogeneous).

B. Theoretical implications

1. A mean-field approach to model reaction kinetics for PS systems

In this section we will go beyond the computation of the
global reaction-time tR and analyze more carefully the full
pathway reaction kinetics and, in particular, the effect of phase
separation of the catalysts involved. We will consider the case
in which this phase separation leads to condensates where
the catalysts are homogeneously distributed (not in patches),
and study the dynamics in time of the substrate concentration,
Cμ(t ). To make an estimation for Cμ(t ), we can assume that
mass action kinetics holds in a WM system and, thus, formu-
late the following set of ODEs:

Ċ0 = −kC0,

Ċμ = k(Cμ−1 − Cμ), ∀μ � 1. (9)

Here we have omitted the concentration of the final prod-
uct, which is easily obtained using mass conservation. (See
Appendix B for more details.) All reactions in Eq. (1) are
considered to have the same reaction rate k (congruent with
the assumption that all the different kinds of catalysts occupy
the same area fraction). Solving these ODEs, with initial con-
ditions corresponding to a given amount of S0 introduced in a
closed system, yields (for the WM system):

C wm
μ (t ) = kμC0(0)

tμ

μ!
e−kt , (10)

with C0(0) being the initial amount of S0 on the lattice. We
have tested these analytical expressions against full micro-
scopic simulations. Our results are shown in Fig. 5: the time
traces Cμ(t ) from the numerical simulation are reproduced
quantitatively using Eq. (10) by just fitting one free parameter.

This result is to be expected, since it is known that the law
of mass action emerges statistically in a well-mixed micro-
scopic framework, like the one of our simplified model. Based
on our previous simulation results we can propose here a
simple extension of mass action kinetics to study PS systems.
For this we modify the ODEs of Eq. (9) by assuming that the
reaction rates k are all the same, except for the first
reaction (k0):

Ċ0 = −k0C0,

Ċ1 = k0C0 − kC1,

Ċμ = k(Cμ−1 − Cμ), ∀μ � 2.

(11)

This is to take into account that the first step is dominated by
the time it takes the initial substrate to find the condensate.
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FIG. 6. Time dynamics for the substrate concentrations Cμ(t ) from full microscopic simulations (points) and the analytical solution
of the (adapted) mass action ODEs (lines) in a PS system (lattice size d = 100, pathway length L = 5, catalyst area fraction φtot = 0.3,
catalyst-catalyst interaction strength J = 1.0, substrate-catalyst interaction strength I = 1.0, inverse temperature β = 5). Inset: intermediate
concentrations. The parameters used to plot the analytical solution are given in Appendix B 3.

Solving these ODEs yields for a (homogeneous) PS system:

C ps
0 (t ) = C0(0)e−k0t ,

C ps
μ (t ) = k0kμ−1C0(0)e−kt fμ, μ � 1,

fμ = 1

(k − k0)μ

⎡
⎣e(k−k0 )t −

μ−1∑
m=0

[(k − k0)t]m

m!

⎤
⎦. (12)

More details regarding the derivation of these equations for
the WM and PS cases are presented in Appendix B.

Again, we tested our approach against full microscopic
simulations and the results are shown in Fig. 6. Although a
relatively good agreement was found for the trajectories of
the initial substrate and final product, the trajectories of the
intermediates are not so precisely reproduced (see the inset of
Fig. 6). In any case, our approach of modifying mass action
kinetics by taking into account the difference in the initial
reaction step captures qualitatively the system behavior. The
formation of the condensate creates a spatial asymmetry (or
scale effect) that is transduced, so to speak, to a temporal
asymmetry. When the process of phase separation leads to
a homogeneous condensate, this would take place just once.
When the condensate is “patchy” (see previous section) one
could project, from this first result, that subsequent scale-
effect transduction steps could occur in the system. Further
research is required in this direction (see additional remarks
below, in the conclusion section).

2. Phase separation process suppresses
feedback-induced oscillations

In this final subsection of results we consider a more re-
alistic and complex setting for our reaction pathway, having
in mind a biological, cellular context. With that aim, more
specifically: (i) we “open” the system, allowing the in-flow
of the initial substrate, S0, as well as the out-flow of the final
product, P; then (ii) we introduce a “product-inhibition” feed-
back mechanism, by which P hinders the inflow of S0. This
is actually a common homeostatic mechanism, operating in
many linear metabolic pathways (typically acting through the
allosteric regulation of the first enzyme by the final product)
[49]. The new conditions can be summarized by the following
picture:

(13)

Given its importance in biochemistry and metabolism, such a
reaction system has been extensively studied, using MAK, and
it has been established that the feedback can induce nonlinear
oscillations [50], where a necessary condition for the onset of
oscillations is the homogeneity of reaction kinetic constants.

Yet, our previous results show that the phase separation of
the enzymes in a condensate would break the homogeneity
of the kinetic steps, where the first step is dominated by the
process in which the substrate has to reach the condensate.
Our framework thus predicts that the triggering of phase sep-
aration could cancel out oscillations that would be present in
the WM-case.
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(a)

(b)

FIG. 7. Time trends of initial substrate and C0(t ) and final prod-
uct CP(t ) concentrations from microscopic simulations (lattice size
d = 30, pathway length L = 10, enzyme area fraction φtot = 0.3
interaction strength J = 1.0). (a) WM system: substrate-enzyme
interaction I = 0.0 and an inverse temperature β = 0.0. (b) PS sys-
tem: substrate-enzyme interaction I = 1.0 and inverse temperature
of β = 5.

Indeed, we tested this prediction against microscopic sim-
ulations and our results [shown in Fig. 7(a)] confirm that
oscillations in the concentrations of initial substrate C0(t )
and final product CP(t ) for the WM system [Fig. 7(a)] are
effectively suppressed in a PS system [Fig. 7(b)].

The mathematical expression we use for the feedback is
a discrete simplified version of the original one of Ref. [50],
according to which the rate of creation of the initial substrate
S0 is inhibited by the presence of the product P, making use
of a Hill equation with a high Hill parameter. We consider a
rate of creation of the substrate Wi at a site i that depends on
the number of final product particles in first-neighbor sites Ni

via a simple Heaviside step function

Wi =
{

u if Ni = 0,

0 otherwise,

where for the actual simulation shown in Fig. 7, u = 0.05,
while the rate of final product removal per particle is r = 0.01.

Interestingly, many pathways in central metabolism
present a similar product inhibition motif, supposedly leading
to oscillatory behavior, but the latter is rarely observed—with
the notable exception of glycolysis [51,52]. Our results are in
agreement with this fact, and could be taken as a first theoret-
ical hint about where to search for an explanation, although a
proper approximation to the problem should include both (i) a
more suitable modeling of metabolic processes and (ii) a more
comprehensive account of the spatial constraints involved
(not only LLPS-related ones).

IV. CONCLUSION AND OUTLOOK

The analytical calculations and computer simulations per-
formed, according to our modeling assumptions, suggested
that when liquid-liquid phase separation drives a group of
catalysts into a condensate there are, indeed, important effects
on their collective action over a linear, multistep reaction
pathway. A first important observation is that completion of
the reaction pathway benefits from phase separation if there is
a minimal affinity between catalysts and substrates, so that the
condensate effectively becomes a microenvironment for the
multistep reaction to proceed. The mean time computed for
the full pathway to yield a product molecule depends, quite
naturally, on this parameter (the overall substrate-catalyst in-
teraction strength) but also on several other factors. One is
the length of the pathway: in the comparison between the
WM- and PS-cases, we found that there is typically a critical
length above which the overall process turns out to be faster
under catalyst demixing. Thus, we can conclude that spatial
organization via phase separation can make catalytic action
more efficient when pathways are relatively long. In our simu-
lation results, the lower bound was roughly five reaction steps,
although this will depend on other parameters and constraints
(for instance, more accurate results could be obtained by tak-
ing into account knowledge and data about diffusion processes
in disordered media [53]).

A less intuitive or less straightforward result (with impor-
tant implications, we believe, for biological systems) is that
such a critical pathway length changes with the dimension
of the lattice: the bigger the system, the longer the critical
length for which PS induces a significant difference in terms
of accelerating the overall process (always relative to the
WM-case, where that scaling effect is not present). Since all
this is, of course, for a given volume-area-fraction occupied
by the catalysts in the corresponding space, it introduces a
limitation for this type of control mechanism. Therefore, it
looks like there could be an optimum, intermediate range
of sizes for PS to operate more readily (and, perhaps, also
to be subject to regulation, alternating from one state to the
other, back and forth—although the latter is yet to be properly
explored). Somehow, a compromise solution may have to be
reached between the dimension of the condensates formed
within the cytoplasm and the amount of different catalysts
involved (namely, the length of the multistep reactions to be
kinetically controlled).

In any case, this interesting size-effect will depend on
the geometries and the various degrees of homogeneity or
inhomogeneity present in the system. Within our theoretical
treatment of the problem, strictly speaking, the condensate
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consists in a 2D microenvironment, which may be suitable to
capture the configuration of a set of catalysts coming together
on a surface (e.g., on a lipid bilayer). Our results could be
extended and generalized to 3D, but the scaling factor would
accordingly change, and the simulation work required would
become computationally more demanding. It is also important
to remark that the size-effect, which translates into a tempo-
ral delay, might “percolate” in the system, if the condensate
is not homogeneous (i.e., if the catalysts brought together
are not well-mixed, among them, and create further patterns,
like the “patches” observed above, in Sec. III A 3). Thus, a
cascade or a multiple combination of effects of this kind could
be operating at once. Asymmetries in the catalyst-catalyst
interaction matrix (reflecting differences in their mutual affini-
ties) could also lead to diverse scenarios, to be addressed
and more carefully analyzed in future work. But our current
approach already illustrates that the space of dynamic possi-
bilities for a real cell is very rich, and varies according to its
physiological conditions and the 2D or 3D configurations that
its components may fall into.

The extent to which previous MAK-based models should
be modified to account for this complexity will depend on the
phenomenon under exploration and level of refinement to be
accomplished. As we showed, a rough qualitative approxi-
mation should take care of the initial reaction time involved
whenever a condensate is formed. But this amendment may
have to be repeated several times, at each scale in which PS
effectively acts as a driving force to generate condensates.
The most promising avenue of investigation, however, will
be to “open” the system and analyze what should happen
in nonequilibrium conditions, like we did for a relatively
simple case in the last part of our work. Diverse phenomena
that are in principle expected to occur under WM-conditions,
like oscillatory behavior in the presence of a feedback inhi-
bition mechanism, might get canceled, as we demonstrated,
and is in good agreement with metabolic phenomenology.
Still, many other correlations and multiple cross-effects are
bound to emerge, complicating the picture. For instance, even
staying within our 2D framework, an intriguing possibility
would be to consider that the initial substrate and the final
product of the reaction chain are solvent molecules (e.g.,
lipids), whose balance would actually modify the properties
of the physical environment (that is, the lattice itself) where
PS processes take place, an aspect that we leave for future
developments.
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APPENDIX A: ESTIMATING THE REACTION TIME

In general we have a two-dimensional lattice of linear
dimension d that contains L different catalysts, i.e., the length
of the reaction-cascade is L, the total area fraction of catalysts
is φtot and we assume that each type of catalyst occupies the
same area fraction, thus φμ the area fraction of a certain cata-
lyst type Eμ is φμ = φtot/L. Our goal is to make an estimation
for tR, the mean time it takes to finish the reaction-cascade. In
the context of the microscopic simulation this corresponds to
the time it takes for a random walk on the lattice to encounter
all L catalysts in the correct order. There are two cases: the
well-mixed system and the phase-separated system, which we
will analyze in the following.

1. Well-mixed system

In a well-mixed system the catalysts are homogeneously
distributed in the lattice. The probability pμ for a substrate
particle Sμ−1 to randomly jump to a lattice site occupied by
a catalyst Eμ is proportional to its concentration and, thus, to
its area fraction φμ, i.e., pμ∝ φμ. The mean time for a single
particle to reach a catalyst Eμ is then

tμ∝ 1

pμ

∼ 1

φμ

= L

φtot
.

This is in principle the mean time for an individual reac-
tion to finish. We can assume that the mean reaction-time
tR is proportional to the sum of all the individual reaction
times, i.e.,

tR ∝
L∑
μ

tμ =
L∑
μ

L

φtot
= L

L

φtot
.

We thus have for t wm
R the mean reaction-time in a well-mixed

system:

t wm
R = a

L2

φtot
(A1)

with a being a proportionality constant.

2. Phase-separated system

In a phase-separated system, as the temperature drops, the
catalysts will eventually start forming a droplet. Thus, the
mean-reaction time, i.e., the time to find the catalysts in
the correct order, is delayed by the time to encounter
the droplet. In our simulations, the initial substrates are
distributed uniformly throughout the area. The substrate
molecules that are initially within the droplet do not have this
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FIG. 8. To get the “hitting time” tH we assume a circular system
with a reflective boundary-condition at R2 and absorbing boundary-
condition at R1.

delay, and in fact, they encounter the catalysts much quicker
than in the WM case. we assume that

tR =
{

t b
R starting inside,

t b
R + tH starting outside,

(A2)

with t b
R the mean reaction time within the droplet and tH the

average time to reach and hit the droplet (i.e., the “hitting
time”), averaged over all reactants S0 with initial positions
outside of the droplet and over all their possible trajectories.
In other words, we effectively split the problem into two parts.

For the reaction time inside the droplet we can make a
simple assumption: As the particles stay inside the droplet and
the catalysts are homogeneously distributed inside the droplet
we can regard this situation as a well-mixed system with a
total concentration of φ′

tot ∼ 1, thus from Eq. (A1) we have

t b
R = aL2. (A3)

The mean time for single particle (i.e., averaged over all its
possible trajectories) to reach the droplet T (�x) is a function of
the starting position �x. We assume radial symmetry for sim-
plicity (see Fig. 8), so T depends only on the radial coordinate
r and it verifies the Poisson equation

∇2T = − 1

2D
.

This is the equation for the mean first exit time from a region
that can be obtained from the backward Fokker-Planck (FP)
equation as explained in Chapter 6 of Ref. [54] [Eq. (6.6.8)].
For clarity, we keep the diffusion constant explicit in this
equation (in our case, D = 1).

Expanding the Laplacian in polar coordinates, this reduces
to a second-order inhomogeneous ODE

1

r

∂

∂r

(
r

∂

∂r
T

)
+ 1

2D
= 0,

T ′′ + 1

r
T ′ + 1

2D
= 0.

In general, the solution for an inhomogeneous ODE is the
sum of the solution for the homogeneous ODE (Th, not to be

confused with tH ) and particular solution Tp,

T = Th + Tp.

For the homogeneous ODE we have

T ′′
h + 1

r
T ′

h = 0.

Using a substitution method (T ′
h = u) to reduce this to a first-

order ODE we can get for the homogeneous solution

Th = A log r + B.

Through standard techniques (polynomial ansatz) we get for
the particular solution

Tp = − 1

8D
r2 + C.

Thus, collecting Th and Tp we have

T (r) = A log r − r2

8D
+ B.

For the constant factors A, B we can use the following bound-
ary conditions (BC) at R1, R2: T (R1) = 0 (absorbing BC) and
∇T (R2) = 0 (reflecting BC). Thus, we finally have

T (r) = R2
2

4D
log r − r2

8D
+ R2

1

8D
− R2

2

4D
log R1

= R2
2

4D
log

r

R1
−

(
r2 − R2

1

)
8D

. (A4)

We now have to integrate T (r) over the outside area to average
over the starting positions outside the droplet,

t = 1

A

∫
T (r) r dr dθ

= 1

πR2
2(1 − φtot )

∫ R2

R1

T (r)2πrdr,

where A = πR2
2 − πR2

1 = πR2
2(1 − φtot ). Evaluating the inte-

gral, we get

t = R2
2

16D

(−3 + 4φtot − 2 log φtot − φ2
tot

)
(1 − φtot )

.

In the case of a regular rectangular lattice of linear dimension
d , we can approximate 2R2 ∼ d . This finally gives the hitting
time as

tH = d2

64D

(−3 + 4φtot − 2 log φtot − φ2
tot

)
(1 − φtot )

. (A5)

In Eq. (A2), the probabilities for the two cases should be
proportional to the corresponding area fractions, so the mean
time for reaction, starting from anywhere within the system
should be

t ps
R = φtot t b

R + (1 − φtot )
(
t b

R + tH
)
.

Substituting the values from Eqs. (A3) and (A5),

t ps
R = aL2 + d2

64D

(
4φtot−3 − 2 log φtot − φ2

tot

)
= aL2 + bd2g(φtot ).

(A6)
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(a)

(b)

FIG. 9. Average reaction time tR as a function of the total area
fraction φtot (J = 1.0, d = 50). Simulations were carried out for
(a) L = 5 and (b) L = 10, comparing WM systems (blue dots,
β = 0.0 and I = 0.0) with PS systems (red dots, β = 5.0 and I =
1.0). Solid lines: fit of the simulation data using Eqs. (A1) and (A6)
for the WM and PS systems, respectively, with a = 2.40, b = 0.165.

Comparing Eq. (A1) and Eq. (A6) we see that t ps
R is ba-

sically t wm
R but with a different slope and an offset value

dependent on d and φtot. It can also be easily seen that t ps
R =

t wm
R for φtot = 1, as expected. In the main text, the dependence

of the mean reaction time tR on the pathway-length L, pre-
dicted by Eq. (A1) and Eq. (A6), was tested (see Fig. 3). In
Fig. 9 we furthermore tested the dependence of tR on the
area fraction φtot, as predicted by the same equations. The
parameters a and b were obtained by performing a simple
least-squares fit on all data points in Figs. 3 and 9 simulta-
neously, and the values obtained are

a = 2.40, b = 0.165.

3. Distribution of reaction times

In the main text as well as in the preceding sections, we
have only discussed the average reaction time. The complete
distribution of reaction times for all the substrate molecules is,
in fact, significantly different across the two types of systems
examined.

(a)

(b)

FIG. 10. Distribution of total reaction times (J = 1.0,

d = 50, φtot = 0.3). Simulations were carried out for (a) L = 5 and
(b) L = 10 for both WM system (blue, β = 0.0 and I = 0.0) and PS
system (red, β = 5.0 and I = 1.0). Dashed lines show the average
reaction time tR for both cases.

As it is shown in Fig. 10, the distribution of reaction times
in the PS system exhibits a sharp initial peak and a long
exponential tail, unlike the WM system. Substrate molecules
are initiated at random locations in the system during the sim-
ulations, and in the case of the PS system, some of them start
from within the droplet, causing them to quickly complete
all the reaction steps. This is the reason for the initial spike
in the distribution of reaction times in the PS system. The
long exponential tail, however, comes from the distribution of
hitting times tH of individual substrate molecules starting from
different positions outside the droplet and following different
trajectories.

APPENDIX B: MEAN-FIELD MODEL FOR THE CHANGE
OF CONCENTRATION

In principle our enzymatic cascade-reaction is an L-step
sequential chemical reaction:

S0
k0−→ S1

k1−→ S2 · · · SL−1
kL−1−−→ P.
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We can formulate for these chemical reaction equations a set
of coupled ODEs as

Ċ0 = −k0C0,

Ċμ = kμ−1[Cμ−1] − kμ[Cμ], ∀μ � 1,

ĊP = kL−1CL−1.

(B1)

Taking into account our general setting, the initial conditions
are: C0(0) = const, Cμ(0) = 0 ∀μ � 1, and CP(0) = 0. In the
following we solve this set of ODEs for certain special cases.

1. Homogeneous reaction rate constants

We first look into the case of homogeneous reaction rate
constants, i.e., kμ = k,∀μ. This corresponds to a well-mixed
system. We get for Eq. (B1)

Ċ0 = −kC0,

Ċμ = k(Cμ−1 − Cμ), ∀μ � 1,

ĊP = kCL−1.

(B2)

The homogeneous ODE for C0(t ) can be easily solved with
the initial conditions established above:

C0(t ) = C0(0)e−kt .

Turning now to the inhomogeneous ODEs for Cμ(t ), we can
use the method of the integrating factor to get a recursive
formula:

Cμ(t ) = e−kt

[∫
kCμ−1(t )ekt dt + K

]
,

from which we get

Cμ(t ) = kμC0(0)
tμ

μ!
e−kt .

To solve the last ODE for CP(t ), we can use mass conser-
vation, to obtain the following expressions for the case of
homogeneous rate constants:

C h
μ (t ) = kμC0(0)

tμ

μ!
e−kt ,

C h
P (t ) = C0(0)

⎡
⎣1 − e−kt

L−1∑
μ=0

(kt )μ

μ!

⎤
⎦.

(B3)

2. Homogeneous reaction rate constants with a different
rate in first reaction

A slight variation of the above system would be to leave
the reaction rate constants the same for all reactions, except
for the first one: i.e., k0, and kμ = k,∀μ � 1. This is the case
for substrates starting from outside the droplet for a phase-
separated system. We get for Eq. (B1):

Ċ0 = −k0C0,

Ċ1 = k0C0 − kC1,

Ċμ = k(Cμ−1 − Cμ), ∀μ � 2,

ĊP = kCL−1, (B4)

with the initial conditions established above. Thus,

C0(t ) = C0(0)e−k0t ,

and we obtain in general, for Cμ(t ) (μ � 1):

Cμ(t ) =C0(0)k0kμ−1e−kt

× 1

(k − k0)μ

⎡
⎣e(k−k0 )t −

μ−1∑
m=0

[(k − k0)t]m

m!

⎤
⎦.

Finally, the last ODE for CP(t ) can be integrated using mass
conservation, leading to the following expressions for the case
that considers a different rate in the first step:

C d
0 (t ) = C0(0)e−k0t ,

C d
μ (t ) = C0(0)k0kμ−1e−kt fμ, μ � 1,

C d
P (t ) = C0(0)

⎡
⎣1 − k0e−kt

L−1∑
μ=0

kμ−1 fμ

⎤
⎦,

fμ = 1

(k − k0)μ

⎡
⎣e(k−k0 )t −

μ−1∑
m=0

((k − k0)t )m

m!

⎤
⎦.

(B5)

3. Change of concentration in WM and PS systems

For the WM system, with homogeneous reaction rate con-
stant kwm, the change in concentration Cμ of substrate Sμ must
be given by Eq. (B3) as

C wm
μ (t ) = C h

μ (kwm; t ).

For the PS case, once again, the substrate molecules which
are initially outside the droplet have a different rate con-
stant kps

0 instead of kps for the first step, and their dynamics
is described by Eq. (B5). As detailed in Appendix A 2,
since the initial substrate S0 is uniformly distributed through-
out the whole area, the probabilities of these two cases
must be proportional to the corresponding area fractions.
Hence,

C ps
μ (t ) = φtot C h

μ (kps; t ) + (1 − φtot )C d
μ

(
kps

0 , kps; t
)
.

In both cases, the concentration of the final product is obtained
easily from mass conservation as

CP(t ) = C0(0) −
L−1∑
μ=0

Cμ(t ).

The analytical solutions in Figs. 5 and 6 were plotted by
using the above expressions to obtain a least-squares fit to the
simulation data, minimizing the errors on the concentration
profiles of all substrates simultaneously. In addition, φtot was
also allowed to vary, as a free parameter to fit. The parameter
values obtained from the fit are

kwm = 0.033, kps
0 = 0.003, kps = 0.084, φtot = 0.36.

As expected, kps
0 � kwm < kps.
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