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Chemotaxis of an elastic flagellated microrobot
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Machine learning algorithms offer a tool to boost mobility and flexibility of a synthetic microswimmer,
hence may help us design truly smart microrobots. In this work, we design a two-gait microrobot swimming in
circular or helical trajectory. It utilizes the coupling between flagellum elasticity and resistive force to change the
characteristics of swimming trajectory. Leveraging a deep reinforcement learning (DRL) approach, we show that
the microrobot can self-learn chemotactic motion autonomously (without heuristics) using only several current
and historical chemoattractant concentration and curvature information. The learned strategy is more efficient
than a human-devised shortsighted strategy and can be further greatly improved in a stochastic environment.
Furthermore, in the helical trajectory case, if additional heuristic information of direction is supplemented to
evaluate the strategy during the learning process, then a highly efficient strategy can be discovered by the DRL.
The microrobot can quickly align the helix vector to the gradient direction using just several smart sequential
gait switchings. The success for the efficient strategies depends on how much historical information is provided
and also the steering angle step size of the microrobot. Our results provide useful guidance for the design and
smart maneuver of synthetic spermlike microswimmers.
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I. INTRODUCTION

Biological microswimmers live in the regime of low
Reynolds number [1], where the viscous force dominates
the inertial force at microscale. As a result, they propel
themselves using strategies completely different from that of
macroscopic organisms. Evolution has led the microscopic
organisms to develop effective propellers such as wriggling
flagellum and rotating helix [2], which can overcome and even
exploit the overwhelming viscous forces [3,4]. In particular,
bacterial flagellum is one of the most renowned propeller
at microscale [5,6]. To understand life at microscale, it is
crucial to investigate not only the biological structures of the
self-propelling organisms, but also their propulsion mecha-
nism from the perspective of fluid dynamics [7,8]. It is for
this reason that the microscopic propulsion has drawn lots
of attention and fruitful results have been reported in the
past decades [3,4]. Furthermore, studies on microswimmers
may also teach us to design intelligent synthetic microswim-
mers. These microrobots may be used for cargo deliveries and
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biomedical manipulations in microfluidics and even in vivo
systems, hence offer a great potential for noninvasive drug
delivery and medical treatment. Many synthetic microswim-
mers have been invented and further successfully applied:
catalytic Janus particles exploiting the diffusiophoresis or
thermophoresis process to accomplish self-propulsion [9–12];
catalytic nanomotors propelled by generating bubble jet [13];
self-propelling droplet by the Marangoni stress in a surfactant
solution [14]; rotators breaking kinetic symmetry and actuated
by external magnetic field [15]; biohybrid microswimmers
imitating sperm cells [16–18]; and neutrophil-based micro-
robots that can actively deliver cargo to malignant glioma
through chemotactic motion [19]. These examples evidenced
microswimmers as a promising research direction due to the
great potential. However, if the drug delivery is to be ac-
complished, then there are at least two issues to resolve:
the microswimmer must survive the immune attack and
be able to cross biological barriers, and it must maneu-
ver precisely to the target through a complex environment.
In this work, we address ourselves to the maneuvering
problem.

There are many ways to steer a microswimmer toward a
specific direction, such as chemotaxis [20,21], magnetotaxis
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[13,22–24], phototaxis [25,26], gravitaxis [27,28], viscotaxis
[29,30], and so on. Among these, the magnetotaxis is one of
the most frequently adopted in laboratory due to its noninva-
sive characteristics and high efficiency on maneuvering. But
the disadvantage of magnetotaxis is also apparent: It needs a
large system to generate the rotational magnetic field and can
usually manipulate only one microswimmer at a time [24]. In
contrast, biological microswimmers, such as sperm cells [31],
Escherichia coli [32], and green algae [33], often follow the
chemotactic process to swim by themselves towards the target
or to seek food. This has inspired researchers to envisage
and design synthetic microswimmers (e.g., catalytic colloidal
swimmers and droplet swimmers) to implement chemotaxis in
specific environments [20,21,34]. However, it remains open
how a synthetic flagellated microswimmer can be designed
and programed to implement chemotaxis.

It has been found that realistic sperm cells change direction
using either nonzero average flagellum curvature or second
harmonics [35–37]. A sperm cell usually swims in circular
or helical trajectory [38]. It compares the concentration in-
formation along its swimming trajectory and modulates the
flagellar beat to change the trajectory curvature and torsion.
Eventually, the sperm cell steers toward the gradient direction
in drifting circles or deformed helices [31,39]. This inspires
us to design a flagellated microrobot that can implement
chemotaxis in a similar way. However, it is unrealistic to
fabricate a microrobot that can be controlled in a way as
sophisticated as a sperm cell. The less complex is the principle
the more feasible is the realisation. In this work, we propose
a simple in silico elastic flagellated microrobot that can be
controlled through the beating frequency alone. We will first
validate our idea of the microrobot with computational fluid
dynamics simulation and then investigate how such a mi-
crorobot can be steered toward a specific direction through
chemotaxis.

Recently, there have been many emerging efforts to design
intelligent microswimmers using machine learning tech-
niques, especially the reinforcement learning (RL) algorithms.
We summarize three main application categories of RL ap-
proach on the intelligent microswimmer. (1) The RL approach
is employed to design locomotion gaits at low Reynolds num-
ber. For example, it has been shown by researchers that with
a simple Q-learning method the Najafi-Golestanian swimmer
[40] and multilink microswimmers [41] can self-learn propul-
sion. When the structure of the swimmer becomes complex,
the RL algorithm can discover new classes of swimming
gaits that are more efficient than a human-designed one. (2)
The RL approach is utilized to discover smart steering strat-
egy to navigate through complex environment. For example,
Alageshan et al. [42] studied the path-planning problem of a
microswimmer through a complex turbulent flow field. They
employed a multiswimmer adversarial Q-learning algorithm
to find the optimised steering strategy towards a specified
target. Gunnarson et al. [43] studied the navigation of a swim-
mer in a time-varying vortical flow field, where they feed
the background flow information (velocity or vorticity) to a
deep neural network that determines the swimmer’s action.
As a result, the swimmers successfully discovered efficient
policies to reach the target. Yang et al. [44] kept a Janus
particle to rotate randomly to perceive the obstacles around

itself, and thereafter applied a deep reinforcement learning
(DRL) algorithm to train the Janus particle. They showed
that the Janus particle guided by the deep convolutional Q
network can act smartly to bypass the obstacles and swim
toward its target. There are many more researches [45–48] in
this category. (3) RL approach can also be used to train the
microswimmer to learn klinotactic behavior. Colabrese et al.
[49] and Gustavsson et al. [50] used the Q-learning method to
train active gravitatic microswimmers to accomplish counter-
gravity navigation through 2D Taylor-Green vortex flow and
3D chaotic flow field, respectively. Hartl et al. [51] studied
the self-learned chemotaxis of a Najafi-Golestanian swimmer
in 1D space. They decouple the task into two parts: to teach
the swimmer to swim, and to train the swimmer to determine
the gradient direction of the chemoattractant concentration
field and steer itself to that direction. They applied the neu-
ral evolution of augmenting topologies (NEAT) technique to
optimize not just the weights of the neural network but also
the topology. Very simple architectures of the neural network
have been found to accomplish the chemotaxis task. Note
that the three application categories sometimes overlap with
each other. For example, in the work of Zou [52], where
the targeted navigation of a three-beads swimmer is studied
using a DRL, the locomotory gaits and steering strategy are
learned simultaneously using the DRL. And in the works of
Colabrese et al. [49] and Gustavsson et al. [50], the RL ap-
proach also guides the gravitactic microswimmers to navigate
through complex flow fields, hence the second category also
fits for these cases. In summary, the RL algorithms have been
proven to be a very powerful tool for intelligent control of
swimmers [53,54]. Nevertheless, most of the studies either
completely neglect the swimmer’s structure details (swim-
mers are assumed to be active material points) or adopt very
simple microswimmers (multibeads swimmers or Janus par-
ticle). In this article, we will incorporate the RL technique to
investigate the maneuvering strategy of an elastic flagellated
microrobot.

We will show that with little information the micro-
robot can autonomously self-learn chemotactic motion by
gait switching. The microrobot makes decision according to
the current and several historical records of chemoattractant
concentration and curvature information. The reward function
is also calculated using these information, thus rendering the
learning an autonomous process. The learned strategy is al-
ways better than a human-devised shortsighted strategy. In
3D motion, the learned strategy has some probability to fail,
but stochasticity can significantly improve its performance
and guarantee a successful chemotactic behavior. If accu-
rate information about direction is supplemented to calculate
a reward function that enhances direction alignment, then
highly efficient strategies can be discovered by the DRL. The
success for such efficient strategies depends on how much
historical information is provided for the microrobot and also
the steering angle step size of the microrobot. Our results
provide useful guidances for the design and smart maneuver
of synthetic spermlike microswimmers.

The article is organized as follows. In Sec. II we design
the elastic flagellated microrobot and validate our idea using
smoothed dissipative particle dynamics (SDPD) simulation.
In Sec. III we introduce the simplified microrobot swimming
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FIG. 1. Schematic and snapshot of the microrobot simulation
model. (a) The spermlike microrobot is immersed in fluids simulated
by SDPD. The dashed red line is the static state of the flagellum,
which is curved. (b) The flagellum is modelled using discrete bead-
spring model. The black lines are orthogonal springs, the light red
lines are diagonal springs, the thick green lines are the actuating
springs. (c) The shape of the microrobot at rest. (d) Snapshot of the
SDPD particle model: blue spheres constitute the microrobot; small
red dots are fluid particles; yellow spheres on the bottom are wall
particles.

model, the implementation of chemotaxis through compar-
ison of current and historical signals, the human-devised
shortsighted strategy, the DRL approach, and the simulation
parameters used in our study. In Sec. IV the results using an
autonomous reward function is presented and discussed. In
Sec. V, the results using an direction alignment-based reward
function is presented and discussed. We draw conclusions and
provide some discussions in Sec. VI.

II. AN ELASTIC FLAGELLATED MICROROBOT

We consider a spermlike microrobot propelled by beating
an elastic flagellum. The flagellum is curved in a plane dif-
ferent from the beating plane. We employ SDPD to simulate
the propulsion of such a microrobot in fluids. The author’s
previous SDPD modeling of a 2D sperm cell [55,56] is ex-
tended to a 3D swimmer model developed by Rode et al. [57].
The schematic of the model is shown in Fig. 1. The spermlike
microrobot has a sphere head connected to a long flagellum.
Both the microrobot and the surrounded fluid are discretized
by SDPD particles. And the SDPD particles constituting the
microrobot are connected by harmonic springs [Fig. 1(b)].
This makes the head quasi-rigid, but the flagellum is elastic
due to its slender shape. As shown in Fig. 1(b), the flagel-
lum is constituted by four filament, the springs on the first
and the third filament have varying equilibrium length, while
the springs on the second and fourth filaments have static

equilibrium length:

l i
1 = lb + A sin(klbi − ωt ) + b1,

l i
2 = lb + b2,

l i
3 = lb − A sin(klbi − ωt ) − b1,

l i
4 = lb − b2.

(1)

Here lb is the spring length when the flagellum is straight and
at rest, A is the actuation amplitude, i is the segment index, k is
the wave number, ω is the beating frequency, and b1 and b2 are
constants used to impose intrinsic curvature. When b1 = 0 and
b2 = 0 the flagellum beats in a sinusoidal way [57]. If b1 �= 0
and b2 = 0, then the flagellum is curved at rest, but it is in the
same plane as the beating. This makes the beating asymmetric
but remains planar. If b2 is also nonzero, then the flagellum is
curved in a plane different with the beating plane [Fig. 1(c)].
The beating is nonplanar in this case [Fig. 1(d)]. In this article
we consider only the case b1 > b2 > 0.

The elasticity of the flagellum is characterized by the
Sperm number Sp = L(ξ⊥ω/κ f )1/4, where L is the length
of the flagellum, ξ⊥ is the resistive force coefficient in the
direction normal to the flagellum, κ f is the bending stiffness.
The Sp number is the ratio of the viscous force to the elastic
force. Larger Sp indicates more flexible flagellum. Since Sp

depends on the beating frequency, we expect that by changing
only ω, the beating pattern will also change as a result of
the coupling effects of the viscous and elastic forces. There-
fore, the swimming trajectory will have different curvatures
and torsions, and it is possible to implement chemotaxis by
controlling the beating frequency alone. See the Appendix for
more details about the simulation.

We first show the simulation results of a microrobot swim-
ming in bulk fluid at different beating frequencies. As shown
in Fig. 2(a), the trajectories of the microrobot are helical. The
trajectories have the same starting point but different radius
and pitch. Moreover, when the beating frequency increases the
trajectory flips from being left-handed to right-handed, thus
the net migration direction of the microrobot (i.e., the helix
vector) reverses. This phenomenon is analogous to the bidirec-
tion propulsion of curved elastic filament in 2D [58,59]. We
find that the swimming velocity of the microrobot increases
with beating frequency, as shown in Fig. 2(b). We further
demonstrate that the evolution of curvature and torsion of
the trajectories in Figs. 2(c) and 2(d), respectively. A larger
beating frequency leads to a smaller curvature but a larger
torsion. The sign of the torsion may change if the beating
frequency is large enough, which corresponds to the reverse
of the helix vector.

If the microrobot swims near a wall, then it is attracted
to the wall due to the dipolar force flow field it sets up [3].
The corresponding simulation results are presented in Fig. 3.
Note that the parameters are all the same as in Fig. 2, except
the presence of a wall on the bottom. As shown in Fig. 3(a),
in all cases the microrobot is first attracted to the wall, and
then it swims in circular trajectories within a plane parallel to
the wall. The circular trajectories are different for different
beating frequencies. A larger frequency leads to a smaller
distance to the wall, presumably due to the stronger dipolar
flow field generated at the higher frequency. The evolution
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FIG. 2. Simulation result of a curved flagellated microrobot swimming in bulk fluid. (a) The swimming trajectories. The black dot marks
the starting point of the trajectories, the red stars are the end points. (b) The swimming velocity. (c) The curvature of the trajectories. (d) The
torsion of the trajectories. The dashed lines and the error bars mark the mean and standard error respectively.

of the swimming velocities is shown in Fig. 3(b) and the
evolutions of the curvatures and torsions of the trajectories are
demonstrated in Figs. 3(c) and 3(d), respectively. We observe
clearly that for each set of parameters there is always a tran-
sient stage corresponding to the process of being attracted to
the wall. After the transient stage, v, κ , and τ become nearly
constant. The stable swimming velocity increases with the
beating frequency. Similar to the case in bulk fluid, a higher
frequency also leads to a smaller curvature when the wall is
present. But unlike the bulk case, the stable torsion becomes
zero eventually, which indicates a planar trajectory as a result
of the wall confinement.

The results above unveil that the curvature and torsion of
the swimming trajectory can be controlled through the beating
frequency alone. Therefore, from the perspective of steering
a flagellated microrobot, it is not necessary to change the
intrinsic curvature of the flagellum independently to steer the
microrobot. To independently control the intrinsic curvature
would require either additional actuation units to be installed
inside the flagellum, or to use some stimuli-responsive ma-
terials to fabricate the flagellum, either of which raises the
difficulty in implementation at microscale. As an alternation,
we can rely on the passive body-environment interaction to
steer the microrobot by changing its beating frequency alone.
This fact inspires us to explore how chemotaxis can be imple-
mented by controlling the frequency of an elastic flagellated
microrobot alone. Since only the velocity, curvature and tor-
sion are important to describe the swimming trajectory, in the

next section, we will neglect the hydrodynamics and adopt
a simplified swimming trajectory model to investigate the
chemotaxis problem of the microrobot.

Note that the SDPD simulations presented in this sec-
tion serve merely as a validation of our idea to steer the
microrobot through the beating frequency alone. The accu-
rate relationships among the beating frequency, the flagellum
material properties, the flagellum geometric parameters, and
the trajectory characteristics are not investigated in detail. In
the next sections we will further take the liberty to pose many
hypothetical combinations of different trajectory parameters
and explore the conditions of efficient steering strategy to be
discovered. The question that how a microrobot can swim in
those exact trajectory parameters is left for future study.

III. MODELS AND MATERIALS

In the biological world, sperm cells swim by generating
waves of deformation propagating along their flagella and
change directions through nonzero average curvatures [31,35]
and/or second harmonics [37]. Although it has been shown
that the first steering mechanism has higher effectiveness [36],
there is a similar signal transferring process in both mecha-
nisms. In short, the chemoattractants in the environment bind
the receptors on the surface of the sperm cells and initiate a
signaling cascade to change the intracellular concentration of
Ca2+. Moreover, the Ca2+ concentration influences the activ-
ity of the dynein motors, which further modulate the beating
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FIG. 3. Simulation result of a curved flagellated microrobot swimming near a wall. (a) The swimming trajectories. The black dot marks
the starting point of the trajectories, the red stars are the end points. The wall is on the bottom parallel to the x − y plane. (b) The swimming
velocity. (c) The curvature of the trajectories. (d) The torsion of the trajectories. The dashed lines and the error bars mark the mean and standard
error respectively.

waveform of the flagella. The sperm cells rely on the whole
process above to change directions. Phenomenologically, the
chemotactic signaling network initiates a series of complex
tasks: temporally comparing the chemoattractant concentra-
tions along the swimming trajectory; determining the gradient
direction of the concentration field; and steering the sperm
to swim toward the gradient direction upwards. In the works
of Friedrich et al. [31,39,60], an adaptive dynamical system
has been designed to imitate the behavior of the chemotactic
signaling network and capture the essence of the chemotaxis
behavior.

In this work, we aim to investigate the chemotaxis of a
microrobot. To fabricate complex mechanics at microscale is
of great challenge, we do not expect that a microrobot can
maneuver itself in a way as sophisticated as a sperm cell does.
In contrast, we assume the microrobot to be as simple as pos-
sible. Therefore, the flagellated microrobot described in the
above section is considered here, and we suppose that it can be
controlled by changing its beating frequency alone. It is also
assumed that the microrobot can sense and record the local
concentration field at discrete time steps. We explore how
the microrobot can implement chemotaxis through compar-
ing the current and historical concentration information and
varying its beating frequency. Furthermore, we suppose the
microrobot can switch between only two beating frequencies,
making it essentially a two-gait microrobot (Table I).

A. Simplified microrobot model

For simplicity, the swimming model from Friedrich and
Jülicher [31,39] is employed here. The interacting details
between the flagellum and the fluid are neglected and the
position of a sperm cell is represented by the average position
of the center of mass in one beating cycle. The swimming
trajectory is then described by the Frenet-Serret equation:

ṙ = vt, ṫ = vκn, ṅ = −vκt + vτb, ḃ = −vτn, (2)

where r is the position vector of the sperm cell, t is the
unit tangential vector, n is the unit normal vector, b is the
unit binormal vector, v is the swimming speed, and κ is the
curvature of the swimming trajectory that will be modulated
by an agent. The reason for the employment of this model
is twofold: first, its dynamics is sufficiently complex, which
imitates the realistic behaviors of the microrobot; second,
it does not involve difficult computations of fluid-structure

TABLE I. Two gaits of the microrobot.

Parameters Gait 1 Gait 2

Beating frequency f f1 f2

Swimming velocity v v1 v2

Trajectory curvature κ κ1 κ2

Trajectory torsion τ τ1 τ2
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interactions so that we can devote more efforts to discover the
intelligent steering strategies.

Equation (2) can be integrated numerically. It is first re-
framed to be [61]

ṙ = v(t )t, ṫ = � × t, ṅ = � × n, ḃ = � × b, (3)

where � is angular velocity:

�(t ) = v(t )[τ (t )t(t ) + κ (t )b(t )]. (4)

Then the position can be updated using Euler scheme, the
rotation angle is also determined using Euler scheme (or
Euler-Maruyama scheme if the curvature and torsion fluctu-
ate), the direction vectors can be updated using the Rodrigues
rotation formula.

The microrobot can switch between two gaits with differ-
ent swimming trajectory parameters (Table I). Note that in the
simplified swimming model, the beating frequency parameter
becomes redundant. Since we intend to investigate how the
relationship among κ1, κ2, τ1, and τ2 impacts on the maneu-
vering strategy, we will also pose some hypothetical value
combinations for them later.

There are two time steps in this problem: the time step �T
which is the time interval between two consecutive actions
of switching gaits, and the time step �t which is the time
step for the Euler integration scheme. If �t is fixed, then it
is difficult to guarantee that the division between �T and �t
is an integer. This may interfere the accurate timing of the
actions and leads to error accumulation. To overcomes this
problem, we select a preferred �t but also allow the value to
float around the preferred one to make sure that �T/�t is
always an integer.

B. Environment information, action frequency, and memory
capacity

We consider a microrobot that swims in a field of chemoat-
tractant, which is described by the concentration c(r). The
microrobot is aware of the concentration in its current position
and can also remember it for a period of time. When the
microrobot is about to take action, it first put the current
concentration information into its memory, and use all the
concentration information in the memory to make decision.
We use fT to denote the action frequency, NT to denote the
number of discrete time points that the microrobot can re-
member. Then �T = 1/ fT , NT �T is the total time period the
microrobot can remember. In a realistic chemotactic process,
a sperm cell swims in a helical or circular trajectory to sample
the concentration field. It perceives periodic stimulus from the
environment and regulates the curvature and torsion of the
trajectory accordingly so that it can bend the trajectory toward
the chemoattractant source. In light of this, we need to allow
our microrobot to remember the past information at least for
one average period of the helical swimming. Therefore, it
is straightforward to set NT �T = 2π/ω0, with ω0 being the
average frequency of the helical or circular swimming:

ω0 = 1
2

[
v1

(
κ2

1 + τ 2
1

)1/2 + v2
(
κ2

2 + τ 2
2

)1/2]
. (5)

Then the most simple and nontrivial case is NT = 2, which
means that the microrobot can only remember information at
two time points, and make decision twice every period. In this

Algorithm 1. A shortsighted maneuvering strategy.

1: t = 0
2: while t < tlife do
3: Integrate and update r, t, n, b from t to t + �T
4: Update t = t + �T
5: Get the concentration value at the current position c(t )
6: if c(t ) == max([c(t ), c(t − �T ), · · · , c(t − (NT − 1)�T ])

then
7: if r1 < r2 then
8: Set v = v1, κ = κ1, τ = τ1

9: else
10: Set v = v2, κ = κ2, τ = τ2

11: end if
12: else if c(t ) == min([c(t ), c(t−�T ), · · · ,c(t−(NT −1)�T ])

then
13: if r1 < r2 then
14: Set v = v2, κ = κ2, τ = τ2

15: else
16: Set v = v1, κ = κ1, τ = τ1

17: end if
18: else
19: Do nothing
20: end if
21: end while

article, we intend to keep the microrobot as simple as possible,
so only two cases: NT = 2 and NT = 4 are considered.

C. A shortsighted maneuvering strategy

When the microrobot is swimming in helical trajectory, the
centerline of the trajectory is

Rc = r + rin, (6)

where ri is the radius:

ri = κi

κ2
i + τ 2

i

. (7)

Therefore, if the microrobot changes its curvature and torsion
from κ1, τ1 to κ2, τ2 in an instant, then there is a displacement
on the center of the helix:

�RC = (r2 − r1)n. (8)

If �Rc is along the gradient direction of chemoattractant, then
the center of the helical trajectory is slightly shifted toward
the gradient direction. In light of this, we can devise a simple
strategy (Algorithm 1) that guides the microrobot to swim
toward higher concentration. The basic principle is that if the
concentration value at the current position is the largest one
compared with all the historical records from the past period,
then the normal vector is likely pointing toward the negative
gradient direction, thus the microrobot should switch to the
gait with smaller trajectory radius. If the current concentration
value is the smallest one, then the normal vector is likely
pointing toward the gradient direction. In this case, the micro-
robot should switch to the gait with larger trajectory radius. In
this strategy the microrobot moves its trajectory center toward
higher concentration whenever it sees an opportunity, that is
why we call it a shortsighted strategy. We expect that DRL
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FIG. 4. Schematic of the deep Q network. The inputs nodes
represent the states of the swimmer including current and historical
states. The output nodes represent the legal actions, their values are
their corresponding Q values.

could discover strategy that is more far-sighted and moves the
microrobot faster toward the gradient direction.

D. Deep Q network as decision-making agent

In the context of reinforcement learning, the concentration
information together with the microrobot’s curvatures form
the state s. A so-called agent can take in the state information
and propose the next action a for the microrobot to maximise a
reward function. The proposed action is then utilized to update
the dynamics of the microrobot. As we employ an artificial
neural network (deep Q network) to represent the agent, as
shown in Fig. 4, the input vector consists of a temporal se-
quence of the concentrations and trajectory curvatures:

c(t ), κ (t ),

c(t − �T ), κ (t − �T ),

...

c(t − (NT − 1)�T ), κ (t − (NT − 1)�T ). (9)

Therefore, a state s has 2NT elements in total. Note that the
torsion and velocity information are not necessary, since they
have unique reflection to the curvature. The output nodes
represent the legal actions, and their values are the Q values.
The input vector is connected to the output neurons through
several layers of hidden neurons. All the adjoining layers are
fully connected. The tanh activation function is used for the
input and hidden layers while the linear activation function is
used for the output layer. A double deep Q-learning procedure
[62] is applied to update the weights of the connections θi

aiming to approximate the maximum action-value function
Q∗(s, a) via the deep Q network. The reward is represented
as R(s, a, s′) when the microrobot takes the action a and the
state transfers from s to s′. The network should predict a target

Q value:

Qtarget = R(s, a, s′) + γ Q−[s′, argmaxaQ(s′, a; θi ), θ
−
i ],

(10)
where γ is the discount-rate parameter, and Q− is a target
network. At state s′, the training network Q is used to se-
lect which action has the largest Q value, but the actual Q
value is evaluated using the target network Q−. The target
network is updated less frequently than the update of the
training network. It is updated by simply copying the weights
of the training network. The Q value predicted by the deep Q
network is Qpredicted(s, a, θi ). Therefore, the loss function can
be defined as

Li(θi ) = Eπ [Qtarget − Qpredicted(s, a; θi )]
2, (11)

which is to be minimized. The experience replay technique
[63] is applied to randomize the experience data and alleviate
the autocorrelation problem. Therefore, a replay buffer of
finite size is created at the beginning of the learning. Every
�T the agent’s experience et = (s, a, r, s′) is stored into this
buffer. During learning, a minibatch of experience is randomly
drawn from the buffer to update the Q network using Eq. (11).
The experience is replayed every time as the simulated swim-
mer reaches the end of its lifespan (tlife). The finish of a replay
marks the end of an episode of the learning. Afterwards, a new
swimmer with random initial position and direction is created
to start a new episode.

During the simulation of each swimmer, the ε-greedy pol-
icy is used by the agent to select its actions, which balances the
exploration and exploitation. An action is selected according
to the probability:

π (a|s) =
{
ε/2 + 1 − ε, if a∗ = argmaxaQ(s, a),
ε/2, otherwise, (12)

where π (a|s) is the probability to select action a at state s.
Note that the first row is the probability for the optimal action
(predicted to be optimal by the Q network) to be selected, the
second row is the probability of the other action to be selected.
The value of ε starts with 1.0 and slowly anneals to εmin during
the learning.

The values of input vector are normalized before they are
actually taken to the network:

c∗(t − i�T ) =
⎡
⎣c(t − i�T ) − 1

NT

NT −1∑
j=0

c(t − j�T )

⎤
⎦ κ̄

|kc| ,

i = 0, 1, · · · , NT − 1, (13)

where κ̄ is the characteristic trajectory curvature κ̄ = (κ1 +
κ2)/2 and kc is the typical gradient of the concentration field.
In a linear gradient field kc is simply the constant gradient of
the field. If the field has many different gradients, then we can
choose the average of the absolute values of the gradients to
be |kc|. The NT records of the curvature information are also
normalized:

κ∗(t − i�T ) = 2
κ (t − i�T ) − κ̄

|κ1 − κ2| , i = 0, 1, · · · , NT − 1.

(14)
We train the microrobot in a linear concentration field:

c = kcy + c0, (15)
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and test the learned strategy in the same linear concentration
field.

E. Reward function

We still need a reward function to evaluate each action
during the learning. Assuming that the inputted state of the
agent is s at time t , the agent takes the action a so that the state
transfers to s′ at time t + �T , we define the reward function
as

R1(s, a, s′)

= 1

|kc||r1 − r2|

×
⎡
⎣ 1

NT

NT −2∑
j=−1

c(t − j�T ) − 1

NT

NT −1∑
j=0

c(t − j�T )

⎤
⎦

= c(t + �T ) − c[t − (NT − 1)�T ]

NT |kc||r1 − r2| . (16)

Here, the agent determines the reward in an autonomous way:
It utilizes only the current and historical concentration in-
formation, no external information is needed. Therefore, the
same information the swimmer has gathered for decision-
making is also used to infer the reward and evaluate its
strategy.

For 3D helical swimming problem, we can also use the
inner product of the helix vector h and the gradient direction
vector ey to define another reward function:

R2(s, a, s′) = h · ey, (17)

where h can be calculated by

h =
{

sin θ0t + cos θ0b, θ0 � 0,

− sin θ0t − cos θ0b, θ0 < 0,
(18)

with θ0 = tan−1(τ/κ ) being the helix angle. In R2 we have
assumed that there is an omniscient observer who knows the
accurate direction of the helix vector and the chemoattractant
gradient and uses these information to evaluate the maneuver-
ing strategy of the microrobot.

With R1 the learning process is more like that a micro-
robot explores the environment and utilizes the information
it gathers by itself to discover effective maneuvering strategy.
We use R1 to investigate whether the microrobot can learn
chemotaxis autonomously, analogous to the way biological
swimmers develop chemotaxis behavior through generations
of evolution. With R2 the learning process is more like that the
microrobot explores and we use our knowledge (heuristics) to
help the microrobot to evaluate and select better strategies.
We use R2 to investigate conditions for the DRL to discover
efficient strategy and provide guidance for the design of mi-
crorobot.

F. Simulation parameters

We mainly consider four cases for the microrobot: (I) the
microrobot swims near a wall, therefore the torsion is fixed
at 0, and the motion is planar; (II) the microrobot swims
in bulk fluid, and the torsion has different sign at the two

TABLE II. Basic parameters for the simulations.

Parameters Values Values in SI units

Curvature at gait 1 κ1 5.5 0.055 µm-1

Curvature at gait 2 κ2 7.5 0.075 µm-1

Velocity at gait 1 v1 2.1 210 µms-1

Velocity at gait 2 v2 1.9 190 µms-1

Case I: Planar motion
Torsion at gait 1 τ1 0 0
Torsion at gait 2 τ2 0 0

Case II: Flipping torsion
Torsion at gait 1 τ1 1 0.01 µm-1

Torsion at gait 2 τ2 −1 −0.01 µm-1

Case III: Negative torsion (τ1/κ1 ≈ τ2/κ2)
Torsion at gait 1 τ1 −5.7 −0.057 µm-1

Torsion at gait 2 τ2 −7.7 −0.077 µm-1

Case IV: Positive torsion
Torsion at gait 1 τ1 7.7 0.077 µm-1

Torsion at gait 2 τ2 5.7 0.057 µm-1

Integration time step �t 0.002 0.002 s
Physical integration time in learning tlife 80 80 s
Physical integration time in tests tlife 80 80 s
Concentration gradient parameter kc 1 100 µm-1

Concentration constant c0 20 20

gaits; (III) the microrobot swims in bulk fluid, and torsion is
nonzero but has the same negative sign at the two gaits; (IV)
the microrobot swims in bulk fluid, and torsion is nonzero but
has the same positive sign at the two gaits. We distinguish case
II to IV using the sign of the torsion, but later we will show
that the sign of the torsion is not essential; we will clarify
the true relevant factors affecting the chemotactic motion. The
simulation parameters are summarized in Table II, while the
DRL training parameters are summarized in Table III. If not
stated otherwise, then values in the two tables are adopted.
Note that we focus on how a two-gait microrobot can imple-
ment chemotaxis, the accurate value of the curvature, torsion,
and velocity are not essential. We have assumed that the mi-
crorobot has an average velocity of 200 µm-1, and an average
curvature 0.065 µm-1—the same as a typical sea urchin sperm
cell [60]. Then we pose hypothetical parameter values for the
curvature, torsion, and velocity at different gaits (Table II),

TABLE III. Basic parameters for the DRL trainings.

Parameters Values

Learning rate α 0.01
Learning-rate decay 0.1
Discount-rate parameter γ 0.9 for R1, 0.1 for R2

Minimum ε-greedy parameter εmin 0.1
Number of hidden dense layers Nhidden 4
Number of nodes in each hidden layer Nn 32
Episodes 1600
ε decaying rate 0.998
Batch size 128
Update frequency of the target network 25
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Case I: planar motion 
           (zero torsion) Case II: flipping torsion

Case III: negative torsion
             (τ1/κ1  ≈ τ2/κ2) Case IV: positive torsion

(a) (b)

(c) (d)

FIG. 5. The accumulative rewards during the deep reinforcement learning processes. (a) Case I: planar motion (zero torsion); (b) Case II:
flipping torsion; (c) Case III: negative torsion; (d) Case IV: positive torsion. Reward function: R1.

following the rule we found in our SDPD simulation: Higher
curvature corresponds lower torsion and lower velocity. In
simulation, the length scale is rescaled using 100 µm as a
length unit. All simulations and trainings run with Python
3.6.13 and Tensorflow 2.6.0 on the Windows 11 desktop in-
stalled with Intel Core i7-1165G7 CPU and NVIDIA GeForce
RTX 3080 GPU.

IV. RESULTS WITH REWARD FUNCTION R1

A. Planar motion results

When the microrobot swims near a wall the attraction of
the wall constrain the swimming trajectory to be circular and
parallel to the wall. This corresponds to case I in Table II with
τ = 0. In this case, the deep reinforcement learning processes
are shown in Fig. 5(a) for both NT = 2 and NT = 4.

As already explained above, NT denotes how many records
of perception are used as input information for the decision-
making machinery. We set NT ∈ {2, 4} and perform training
for 1600 episodes. During the learning processes the accumu-
lative rewards of the microrobot increases with the episode
and reaches a stable value at the end of the learning. The
stable reward is larger in the case of NT = 4 than in the case
of NT = 2, since the microrobot can perform maneuver in a
more sophisticated way at NT = 4.

We first examine the results of NT = 2. In Fig. 6, we show
how a microrobot trained with DRL switches between the
two gaits and swims toward higher concentration of chemoat-
tractant. For comparison, we also show the results using the
periodically alternating curvature pattern and the shortsighted
strategy. In the alternating pattern, the curvature changes every

NT �T/2. As shown in Fig. 6(a), most of the time, both the
DRL and the shortsighted strategy follow closely the alter-
nating pattern. Figure 6(b) shows that the microrobot swims
in drifted circles and the centerline of the trajectory is an arc
when the alternating pattern is adopted. However, the micro-
robot would swim back to its initial position if the pattern were
not broken at some point. Both the shortsighted strategy and
DRL break the alternating pattern periodically, but the tim-
ing is different. The shortsighted strategy breaks the pattern
when the centerline of the trajectory starts to go toward lower
concentration. While the DRL breaks the pattern earlier and
more frequently. Moreover, Fig. 7(a) shows the centerlines
of many test microrobots with random initial position and
direction, while Fig. 7(b) shows their final gains. The overall
swimming directions of the microrobots guided by the DRL
and the shortsighted strategy are not perfectly in line with the
gradient direction of the chemoattractant. The DRL achieves
visually worse alignment of trajectory with the gradient direc-
tion, as shown in Fig. 7(a), but the centerline is straighter. It
sacrifices the angle alignment to achieve straighter centerline.
The average final gains of the DRL is also always higher
than that of the shortsighted strategy. This indicates that the
DRL algorithm has discovered a better timing to break the
alternating curvature pattern.

Second, we examine the case of NT = 4. Again, we com-
pare the results among the alternating curvature pattern, the
shortsighted strategy and the DRL. In the alternating pattern,
the curvature changes every NT �T/2. As shown in Fig. 8(a),
the DRL and the shortsighted strategy still follow the alter-
nating pattern most of the time, but only break the pattern
occasionally. The alternating pattern still leads the microrobot
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FIG. 6. (a) Evolution of κ; (b) swimming trajectories, the black dot marks the starting point, the red stars mark the end points; (c) gains of
chemoattractant [�c = c(t ) − c(0)]. NT = 2.

back to its original position as shown in Fig. 8(b), whereas
DRL and the shortsighted strategy are able to guide the mi-
crorobot to swim toward higher concentration steadily. In this
case, The DRL tends to break the alternating pattern less
frequently than the shortsighted strategy, thus the centerline
is more curvy for the DRL trajectories [Fig. 8(b)]. But at this
time, the DRL has sacrificed the straightness of the centerline
to gain better angle alignment to the gradient direction. The
overall swimming speed towards the gradient direction is still
higher for the DRL. Therefore, the DRL has a better perfor-
mance for the gains of chemoattractant than the shortsighted
strategy as shown in Fig. 8(c). Furthermore, Fig. 9 shows the
centerlines of many test microrobots and their final gains. It
is apparent that microrobots guided by the DRL always have
better angle alignment and slightly higher final gains than that
guided by the shortsighted strategy.

FIG. 7. (a) Centerlines of some test swimming microrobots: solid
lines for the DRL; dash-dot lines for the shortsighted strategy; dashed
lines for the alternating pattern. (b) The final gains [�c = c(tlife ) −
c(0)] of 40 microrobots. The solid lines mark the average values,
respectively. NT = 2.

To better understand the two sets of results above, let us
further analyze how each strategy takes effect. We first note
that the alternating pattern always leads to an arc or a circle
for the centerline. The origin of this phenomenon is as follows.
The curvature of the trajectory and the swimming velocity
are alternating every NT �T/2, during which the tangential
of the trajectory does not turn exactly 360◦ after one period.
The angle deviation is constant every period. And every time
the curvature alternates, the center of the curvature deviates
in the direction of the normal of the swimmer’s trajectory.
Over long time of many alternating gaits, the centers of the
curvatures form its own trajectory, which is called centerline
here. The centerline of the trajectory turns out to be an arc,
or a full circle if given sufficient time. In light of this, a
microrobot may use the following strategy to gain net migra-
tion toward the gradient direction: following the alternating

FIG. 8. (a) Evolution of κ; (b) swimming trajectories, the red dot
marks the starting point, the black dots mark the end points; (c) gains
of chemoattractant [�c = c(t ) − c(0)]. NT = 4.
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FIG. 9. (a) Centerlines of some test swimming microrobots: solid
lines for the DRL; dash-dot lines for the shortsighted strategy; dashed
lines for the alternating pattern. (b) The final gains [�c = c(tlife ) −
c(0)] of 40 microrobots. The solid lines mark the average values,
respectively. NT = 4.

pattern most of the time but breaking the pattern occasionally.
Therefore, the centerline of the trajectory would be prevented
from becoming a full circle, but becoming a curvy line formed
by many broken arcs bending towards the gradient direction
upwards. This is exactly the strategy the DRL has discovered
with NT = 2 and NT = 4. We observe that the centerlines in
Figs. 7(a) and 9(a) are formed by connecting arcs.

B. 3D motion results

If the microrobot is swimming in bulk fluid, then its tra-
jectory is helical as shown in Fig. 2. In the 2D case studied
above, when no action is taken the microrobot will just swim
in circular trajectory. But in 3D, when no action is taken
the microrobot will still migrate toward the direction of the
helix vector. The target of the 3D problem is to control the
microrobot to bend its helical trajectory toward the gradient
direction (align the helix vector to the gradient direction). We
study three 3D cases with different torsion parameters as given
in Table II. The deep reinforcement learning processes of the
three cases are shown in Figs. 5(b)–5(d). As can be seen from
the figure, in cases II and IV the accumulative rewards are
increasing with the learning episode, indicating that the agent
has learned effective strategies to control the microrobot to
swim toward higher chemical concentration. But in case III
nothing is learned, the accumulative reward shows no sign
of increase and fluctuates dramatically. The difference on the
learning results in different cases is related to the ability of the
microrobot to change its helix vector. When the microrobot
switch its gait the helix vector also changes, that is how the
microrobot can bend its trajectory. But at different κ and τ

parameter regime, the ability of the microrobot to change the
helix vector is different. We can use the steering action step
size �A to characterize this ability:

�A = cos−1 [h(τ1/κ1) · h(τ2/κ2)]. (19)

Figure 10 presents the contour of the value of �A at dif-
ferent τ1/κ1 and τ2/κ2. Brighter colors indicate better steering
capability for the microrobot. When τ1 and τ2 has different
sign, the microrobot always has better steering capability,
since in this case the direction of the helix vector can be nearly
reversed by switching gait. Case II is exactly this case, with

FIG. 10. Steering action step size of the microrobot at different
τ1/κ1 and τ2/κ2.

�AII = 162.1◦ it can reverse its net migration direction (the
helix direction) by one simple gait switching. That is why in
Fig. 5 the fluctuation of reward is the lowest in case II com-
pared to cases III and IV. In contrast, on the line τ2/κ2 = τ1/κ1

the helix vector cannot be changed by gait switching, the
microrobot has zero steering capability. In case III we have
τ2/κ2 ≈ τ1/κ1 and �AIII = 0.27◦, so nothing is learned in this
case [Fig. 5(c)]. In case IV, �AIV = 17.2◦, the microrobot
cannot reverse the helix direction with one gait switching but
it still has some steering capability. In principle, it can use
many sequential gait switchings to bend the helical trajectory
toward the gradient direction. Therefore, even though the fluc-
tuation is high, effective strategy is still learned in Fig. 5(d).

We note that case IV has better final reward compared with
case II due to the larger helix pitch [pitch 2πh0 = 2πτ/(κ2 +
τ 2)]. The steering capability is just one aspect to determine
the final reward. The other aspect is the helix pitch. In case
II, the steering capability is better, but the pitch is very small
as a result of the small torsion, hence the microrobot cannot
migrate fast. In case IV, even though the steering capability
is worse, the pitch is very large. Once the microrobot suc-
cessfully aligns its helix vector with the gradient direction it
can migrate very fast toward that direction thus achieving very
high reward.

We further examine the learned strategies in cases II and
IV. In each case, we perform 80 tests (each 40 tests for NT = 2
and NT = 4) with random initial position and direction and
compare the results with the shortsighted strategy (Algorithm
1) results and the alternating pattern results. The compari-
son of the final gains [�c = c(tlife ) − c(0)] is first shown in
Fig. 11. We see that for case II, the strategies discovered by
DRL has better average performance than the shortsighted
strategy. In case IV, the DRL strategy is also better but the
final gain fluctuates significantly. In many tests, the final
gain is negative indicating that the microrobot is migrating
against the gradient direction, the strategies fails to guide
the microrobot to swim upward the chemoattractant concen-
tration. Therefore, our tests have shown that, the DRL can
discover strategies that are not worse than the shortsighted
one and can guide the microrobots to enhance chemotaxis
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FIG. 11. Tests of the learned strategies. �c = c(tlife ) − c(0). (a) Case II NT = 2; (b) Case II NT = 4; (c) Case IV NT = 2; (d) Case IV
NT = 4. The solid lines mark the mean values.

statistically. But the enhancement is actually quite weak, and
does not show significant improvement compared with the
simple shortsighted strategy. As a matter of fact, in case IV
at NT = 4 the DRL has discovered a strategy that is almost
the same as the shortsighted strategy, so most of the DRL
data points in Fig. 11(d) overlap with the shortsighted data
points. Both the shortsighted and the DRL strategy has high
probability to fail guiding the microrobot to steer toward the
gradient direction.

We examine the trajectories from the tests intensively. Fig-
ure 12 shows a typical test from case II. The evolutions of
κ (a), the swimming trajectories (b), the gains of chemoat-
tractant (c), and the angle between the helix vector and the
gradient direction θh (d) are all presented. For clarity, only the
first 10 s result is shown. For the DRL strategy, gait switching
only happens at the very beginning. After that no further
action is taken, the microrobot just swims in perfect helix and
swims in a direction different from the gradient direction. But
the angle difference θh is <90◦, thus the gain is increasing
anyway. The alternating pattern and the shortsighted strategy
guide the microrobot to swim in a complex curvilinear tra-
jectory. The trajectory can still produce net migration even
though in a slower way than the helical trajectory. Figure 13
shows a typical test from case IV. For the DRL strategy,
gait switching only happens at the beginning, the microrobot
adjusts the helix vector to make a crude alignment with the
gradient direction and stay unchanged for the remaining time.
The DRL strategy actually is the same as the shortsighted
strategy, therefore the DRL trajectory and the shortsighted

trajectory overlap with each other. For the alternating pattern,
the centerline of the trajectory is drawing another helix with
very small pitch, it fails to produce discernible net migration.

Looking at Figs. 12(d) and 13(d) we can understand how
the DRL strategy works. The alternating pattern causes the θh

to fluctuates periodically in a quite wide range, therefore the
DRL first follows the alternating pattern and at the point with
a small θh it breaks the pattern and stops the gait switching,
a better alignment between the helix vector and the gradient
direction is thus obtained. However, the efficiency of this
strategy depends on the fluctuation range of θh. And this range
in turn depends on the initial condition. If when θh fluctuates
the smallest point is always larger than 90◦, then the DRL
will probably fail to guide the microrobot swim upward the
chemoattractant concentration.

Moreover, the strategy discovered by DRL suffers from the
problem of local optima. It adjusts the helix vector by gait
switching only at the beginning, once it finds a relatively small
θh it stops the attempt to make improvement, even though
a smaller θh can still be obtained if further exploration is
conducted. To overcome the local optima, we can include
some stochasticity to the swimming process.

C. Improvement utilizing stochasticity

We consider three different kinds of stochasticity: (1) ran-
domness in the decision; (2) noise at the sensing of the
chemoattractant concentration; (3) fluctuations of the curva-
ture and torsion.
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FIG. 12. (a) Evolutions of κ; (b) swimming trajectories, the black dot marks the starting point, the red stars mark the end points; (c) gains
of chemoattractant [�c = c(t ) − c(0)]; (d) the angle between the helix vector and the gradient direction θh. NT = 4. For clarity only the initial
10 s swimming result is shown.

To include randomness to the decision, we use the ε-greedy
method: with the probability ε the decision is made randomly,
with the other 1 − ε probability the decision is made
following the deterministic strategy (DRL or shortsighted). To
include noise at the sensing of chemoattractant concentration,
we assume that every time the microrobot senses the local
concentration it records a value c(t ) = ct (t ) + δc, where ct is
the true value and δc is a Gaussian distributed random number

with average 0 and standard deviation ξ [51]. To include noise
to the control of curvature and torsion, we assume κ and τ are
fluctuating: κ (t ) = κt (t ) + κσ (t ), τ (t ) = τt (t ) + τσ (t ), with
κt ∈ {κ1, κ2}, τt ∈ {τ1, τ2}, κσ (t ), and τσ (t ) obeys Gaussian
probability distribution: 〈κσ (t )κσ (t ′)〉 = δ(t − t ′)σ 2

κ ,
〈τσ (t )τσ (t ′)〉 = δ(t − t ′)σ 2

τ . We set σ ∗ = 2σκ/(κ1 + κ2)
= 2στ /(τ1 + τ2).

FIG. 13. (a) Evolutions of κ; (b) swimming trajectories, the black dot marks the starting point, the red stars mark the end points; (c) gains
of chemoattractant [�c = c(t ) − c(0)]; (d) the angle between the helix vector and the gradient direction θh. NT = 4. For clarity only the initial
10 s swimming result is shown.
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FIG. 14. The effects of stochasticity on the DRL and shortsighted strategy in case II. Each bar represents the average and standard error of
40 tests with the same simulation parameters but different initial conditions. �c = c(tlife ) − c(0). (a) Considering randomness in the decision
making process. (b) Considering noise at the sensing of chemoattractant concentration. (c) Considering fluctuation of curvature and torsion.
(d) Illustrative swimming trajectories in the presence of stochasticity (NT = 4, σ ∗ = 0.06). The black dots mark the endpoints.

These three kinds of stochasticity are considered sepa-
rately. The parameters ε, ξ , and σ ∗ are varied to examine
the effects of stochasticity. We focus mainly on cases II and
IV, since for case I, the strategy discovered by DRL is very
efficient, inclusion of stochasticity will only impede its per-
formance. And as explained above, in case III the microrobot
cannot be steered. We show the results for case II in Fig. 14.
In most of the simulations, inclusion of some stochasticity
can increase the average final gain of the microrobot, and
decrease the standard error significantly. The DRL strategy
is almost always better than the shortsighted one. If the
stochasticity is included through randomness in decision (a) or
through curvature and torsion fluctuation (c), then NT = 4 is
always better than NT = 2. The best performance is achieved
with DRL at NT = 4. But if the stochasticity is included
through noise at the sensing of chemoattractant concentration
(b), the best performance is achieved with DRL at NT = 2.
Figure 14(d) shows some illustrative swimming trajectories
guided by DRL with σ ∗ = 0.06 and NT = 4. It can be seen
that, with the help of stochasticity, all the test microrobots
with random initial position and direction succeed in chang-
ing their net migration direction to roughly align with the
gradient direction. Figure 15 shows the results of case IV.
As explained above, in case IV, the steering capability of the
microrobot is low, the microrobot has to use many sequential
gait switchings to adjust its helix vector. When there is no
stochasticity, it is very often that the microrobot fails to adjust
itself to swim upward the chemoattractant concentration. This

leads to a very large standard error on the final gains. But
with the inclusion of stochasticity the average final gain can
increase significantly [Figs. 15(a)–15(c)]. The standard error
also decrease to be very small, especially at NT = 4. The
simulations with NT = 4 also have better final gains than
that with NT = 2. For the shortsighted strategy at NT = 2,
even with the help of stochasticity it still has some prob-
ability to fail to guide the microrobot to swim upward the
chemoattractant concentration. But with NT = 4 both the
DRL strategy and the shortsighted strategy can achieve very
good performance. When the stochasticity is included through
randomness in the decision (a), the best performance is
achieved by the shortsighted strategy. When the stochasticity
is included through noise at the sensing of chemoattractant
concentration or the fluctuations of curvature and torsion,
the best performance is achieved by the DRL strategy. Fig-
ure 15(d) shows some illustrative swimming trajectories
guided by DRL with ξ = 0.08 and NT = 4, we can clearly see
that all the test microrobots with random different initial and
direction succeed in swimming upward the chemoattractant
concentration.

The reason why noise is beneficial can be explained as
follows. During the the learning process, all the environmen-
tal information the agent has is the several chemoattractant
concentration on the swimming trajectory. This information
is not enough to characterize the environment. The agent can-
not learn to accurately infer its true state in the environment
with the limited information and make appropriate actions.
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FIG. 15. The effects of stochasticity on the DRL and shortsighted strategy in case IV. Each bar represents the average and standard error of
40 tests with the same simulation parameters but different initial conditions. �c = c(tlife ) − c(0). (a) Considering randomness in the decision
making process. (b) Considering noise at the sensing of chemoattractant concentration. (c) Considering fluctuation of curvature and torsion.
(d) Illustrative swimming trajectories guided by DRL in the presence of stochasticity (NT = 4, ξ ∗ = 0.08). The black dots mark the endpoints.

In such case, a stochastic policy will be better than a de-
terministic policy. By adding noise to the decision, sensing
or mobility, the decision-making process essentially becomes
stochastic, hence the performance is improved. Recent study
on the run-and-tumble process also suggests that weak noise
can be beneficial to the chemotactic motion [64]. In the
next section we will use reward function R2, which includes
the directional information between the helix vector and the
chemoattractant gradient. We will show that by including this
information the agent can learn to accurately infer its state in

the environment, hence very efficient deterministic policy can
be discovered.

V. RESULTS WITH REWARD FUNCTION R2

We change the reward function to R2 to investigate whether
DRL can also discover efficient strategy if additional heuristic
direction information is supplemented to evaluate the strategy
in learning process. The learning processes using reward func-
tion R2 are summarized in Fig. 16. Since R2 is only applicable

Case II: flipping torsion

Case IV: positive torsion

(a) (b)

FIG. 16. The accumulative rewards during the deep reinforcement learning processes. (a) Case II: flipping torsion; (b) Case IV: positive
torsion. Reward function: R2.
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(a) (b)

FIG. 17. The inference angle error Ierr of a neural network: (a) in case II; (b) in case IV.

to 3D cases, and in case III the swimmer has very low steering
capability, only cases II and IV are examined. In case II,
the accumulative reward increases slightly with the learning
episode at both NT = 2 and NT = 4, but the fluctuation is
very large. We can conclude that the learning fails. In case IV,
only at NT = 4 is the accumulative reward increasing steadily.
At NT = 2, nothing is learned. Judging from the high accu-
mulative reward and very small standard error, the DRL has
obtained a very efficient strategy at NT = 4. The difference of
the learning result in different cases presented in Fig. 16 is not
just related to the steering ability as in the R1 case, but also
to the ability of the microrobot to infer the relation between
the current helix direction and the gradient direction using the
neural network. With R2 as reward function, the agent needs
to first infer the angle between the helix direction and the
gradient direction θh and take appropriate action that can im-
prove the alignment (decrease θh). The inference is conducted
through the neural network, but the neural network may not
be able infer the accurate direction relation using the limited
state information. We perform additional supervised learnings
(regression) to evaluate the ability of a neural network to
infer θh using the state information [Eq. (9)]. The network
structure is the same as Fig. 4 except that we change the output
node to output normalized θh (with tanh activation function).
Data gathered from microrobots swimming with completely

random action strategy is used to train the network. We show
the test error between the predicted θh by the network and the
true θh in Fig. 17. In case II (a), at NT = 2, the error is about
33.8◦, at N4 = 4 the error is about 13.3◦. In case IV (b), at
NT = 2, the error is about 18.9◦, at NT = 4 the error decreases
to about 3.5◦. A necessary condition for an effective strategy
to be learned is that the inference angle error Ierr is smaller
than the steering angle step size �A [Eq. (19)]. The steering
angle step size in case II and IV are plotted as dashed lines
in Figs. 17(a) and 17(b), respectively. In case II, the steering
angle step size is very large, the swimmer cannot perform
sophisticated steering action, even though Ierr is smaller than
�AII, the agent fails to learn effective strategy to improve
the vector alignment. In case IV, �AIV is smaller than Ierr

at NT = 2, we can say that the observation error is larger
than the change caused by an action, the agent cannot learn
an effective strategy to guide the microrobot to improve the
vector alignment. But at NT = 4, �AIV is larger than Ierr, an
effective strategy can be learned. Moreover, since both �AIV

and the Ierr are relatively small, the microrobot can conduct
precise action to make improvement. Therefore, we have very
high reward and small standard error at NT = 4 in case IV
[Fig. 16(b)].

We test the learned strategy at NT = 4 in case IV. We
perform 40 tests with random initial position and direction and

FIG. 18. Tests of the learned strategy at NT = 4 in case IV. (a) Final gains of the chemoattractant [�c = c(tlife ) − c(0)]. The solid lines
mark the mean values. (b) Evolution of θh of 10 test microrobots guided by DRL strategy.
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FIG. 19. (a) Evolutions of κ; (b) swimming trajectories, the black dot marks the starting point, the red stars mark the end points; (c) gains
of chemoattractant [�c = c(t ) − c(0)]; (d) the angle between the helix vector and the gradient direction θh. NT = 4. For clarity only the initial
10 s swimming result is shown.

compare the DRL strategy results with the shortsighted strat-
egy results and the alternating pattern results. The comparison
are shown in Fig. 18(a). It can be seen that, the DRL strategy
is much better than the other strategies, it produces very high
average final gains, all the test microrobots succeed in swim-
ming upward the chemoattractant concentration. Figure 18(b)
shows the evolution of θh for 10 test microrobots guided by
DRL. In all cases, θh decreases dramatically to below the
steering angle step size �AIV, suggesting that the microrobots
achieve the best alignment between the helix vector and the
gradient direction very fast. Figure 19 shows the gait switch-
ings (a), the swimming trajectories (b), the evolutions of the
gain (c), and the evolutions of θh from a test microrobot. When
the microrobot is guided by the DRL strategy it conducts gait
switching only at the beginning, in 2 s it successfully adjusts
its helix vector to be almost the same as the gradient direction

and migrates toward this direction very fast. Therefore, a very
efficient strategy has been found by DRL.

To clarify the requirements for a swimmer that an effective
strategy can be learned, we perform more simulations with
τ0 = (τ1 + τ2)/2 varying from −6.7 to 6.7, and τ1 − τ2 fixed
at 2. The learning results are shown in Fig. 20. If NT = 2, then
all the learnings fail. If NT = 4, then only the case τ0 = −6.7
completely fails. But when τ0 = ±0.7 the accumulative re-
wards only slightly increase with large relative fluctuations.
These results can be explained using Fig. 21. In this fig-
ure both the inference angle error Ierr of the neural network,
and the steering angle step size �A are presented at different
τ0. Note that �A suddenly increases to very large with τ0

near zero, since the torsion can change sign here. This very
large �A means that the swimmer cannot make sophisticated
steering action to enhance the alignment between helix vector

FIG. 20. The accumulative rewards during the deep reinforcement learning processes. (a) NT = 2. (b) NT = 4. The torsion parameter
τ0 = (τ1 + τ2)/2, τ1 − τ2 = 2, the total learning episodes is 400, ε decaying rate is 0.992, update frequency of the target network is 15.

044408-17



CHAOJIE MO, QINGFEI FU, AND XIN BIAN PHYSICAL REVIEW E 108, 044408 (2023)

FIG. 21. Relationship between the inference angle error Ierr and
the steering angle step size �A at different τ0 = (τ1 + τ2)/2.

and the gradient direction. Besides, when τ0 is near zero the
helix pitch is small, the migration ability of the swimmer is
low. Therefore, the cases τ0 = ±0.7 all perform poorly in
Fig. 20. For all other cases at NT = 2 we have �A < Ierr,
this means the inference angle error of the neural network
is larger than the steering angle step size. The observation
error of the agent is larger than the change caused by an
action, the agent cannot learn an effective strategy to guide
the microrobot to improve the vector alignment. Therefore, all
cases at NT = 2 fails. And at NT = 4, we have �A > Ierr for
τ0 = −4.7, −2.7, 2.7, 4.7, 6.7, all the corresponding cases
shown in Fig. 20 succeed.

Based on these observation, we have summarized the
following requirements for a swimmer to be able to learn
efficient strategy: (1) The number of historical information
provided for the microrobot should be enough for the micro-
robot to accurately infer the angle θh between the helix vector
and the gradient direction (this requires NT � 4 in our simu-
lation); (2) The steering angle step size �A should be larger
than the inference error of θh. Otherwise, the microrobot do
not have enough observation accuracy to evaluate the actions.
(3) The steering angle step size �A should also be moder-
ate and appropriate. If �A is too large, then the microrobot
cannot perform precise steering. If �A is too small, then the
microrobot has very low steering capability hence cannot steer
efficiently.

VI. SUMMARY AND CONCLUSIONS

A primary research on a three beads swimmer has already
demonstrated that its chemotactic motion in 1D space can be
learned by the swimmer through a DRL algorithm [51]. In
this work, a specific but more realistic microswimmer in 2D
or 3D space is considered. We design an elastic flagellated
microrobot that swims in helical trajectory similar to a sea
urchin sperm cell. This microrobot can utilize the coupling
between flagellum elasticity and resistive force to change the
curvature and torsion of the swimming trajectory. The qualita-
tive relation between the beating frequency and the trajectory
curvature and torsion is first investigated using SDPD simula-
tions. Then we envisage a microrobot that can switch between
two gaits with different curvature, torsion and velocity. We

investigate the chemotactic motion of this microrobot in four
cases: planar motion (zero torsion), flipping torsion, negative
torsion and positive torsion.

In reality, the chemotactic motion of a sperm cell is imple-
mented through a very complex signaling network inside the
cell. In this work we replace this biological signaling network
with an artificial neural network to acts as a decision-making
agent. We allow the agent to record the local chemoattrac-
tant concentrations and curvatures as states on the swimming
trajectory, and further define the increment of average
concentration as reward (R1). The agent is trained via the
DRL algorithm. It is found that the microrobot can self-learn
to implement chemotactic motion in a planar motion case,
a flipping torsion case, and a positive torsion case. In the
negative torsion case, due to the specific parameter choice we
have τ1/κ1 ≈ τ2/κ2, the microrobot has very low steering ca-
pability hence fails to learn any useful maneuvering strategy.
Indeed, very little information is needed to accomplish the
chemotactic motion. At minimum, two or four signal records
are enough. And the learned strategy is always statistically
better than the human-designed shortsighted strategy. How-
ever, the learned strategy do not guarantee accurate alignment
between the net migration direction and the chemoattractant
gradient direction. In the case of 3D motion, there is also
some probability for the strategy to fail. Nevertheless, some
stochasticity, which is ubiquitous in realistic environment, can
significantly improve the performance of the learned strategy
and ensure the microrobot to swim upward the chemoattrac-
tant concentration.

If we do not restrict the microrobot to learn autonomously
(using only the current and historical concentration informa-
tion to evaluate the strategy) but supplement the accurate
heuristic direction information (the helix direction and the
gradient direction) to evaluate the strategy, then very efficient
strategy can be learned. The microrobot can learn to quickly
align the helix vector to the gradient direction using just
several smart sequential gait switchings. The learned strat-
egy is much better than the human-devised strategy and can
guarantee a very good alignment between the net migration
direction and the gradient direction. However, the success
of the DRL also depends on the value of the steering angle
step size and the inference angle error of the neural network.
Three conditions should be satisfied: (1) Enough number of
historical information should be fed to the neural network to
accurately infer the angle θh between the helix vector and
the gradient direction; (2) The steering angle step size �A,
which is the angle change of the helix vector when the gait is
switched, should be larger than the inference error of θh, so
that the microrobot can have enough observation accuracy to
evaluate its actions and learn to improve its strategy. (3) The
steering angle step size �A should also be moderate, neither
too large nor too small. If �A is too large, then the microrobot
cannot perform precise steering. If �A is too small, then the
microrobot has very low steering capability. These results
provide useful guidance for the design of the microrobot.

To summarize, our results show that chemotactic behavior
can be learned autonomously by microrobots through DRL,
and the DRL approach can help the microrobot discover very
efficient controlling strategy. It is possible to use the DRL ap-
proach to design smart synthetic flagellated microswimmers
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that can self-learn to adjust itself to complex environments
and develop “intelligent” behaviors.

From the perspective of a realistic microrobot, our study
also reveals a feasible scheme to design and control a mi-
crorobot: As long as a microrobot can switch among several
finite gaits with different characteristics along the swimming
trajectory, we can rely on DRL to discover efficient and robust
strategy to control the microrobot. It is difficult to fabri-
cate microrobots with a sophisticated controlling mechanism,
but in appropriate conditions simple controlling mechanism
combined with DRL can still produce efficient maneuvering
behaviors to navigate a complex environment.

The code necessary to reproduce the findings of this study
can be accessed at [65].
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APPENDIX: SDPD SIMULATION OF A SWIMMING
MICROROBOT

The smoothed dissipative particle dynamics (SDPD)
method [66–68] is employed to resolve the fluid-structure
interaction problem. It is a particle-based numerical approach
that discretizes the Navier-Stokes equations in the Lagrangian
framework and includes thermal fluctuations consistently. A
version of SDPD conserving the angular momentum [69]
is adopted, which is important for fluid-particle models to
produce physically accurate results [69,70]. In SDPD, each
particle can be considered as a small fluid volume (or La-
grangian discretization point) characterised by a position ri,
velocity vi, and mass mi. In addition, each particle possesses a
spin velocity ψi and moment of inertia Ii for the enforcement
of angular momentum conservation [69].

Every two SDPD particles (indexed by i and j) inter-
act through four pairwise forces, including conservative FC

i j ,
dissipative forces FD

i j caused by translational velocity, dissi-
pative forces FR

i j caused by rotational velocity, and random
forces F̃ i j . They are given by

FC
i j =

(
Pi

d2
i

+ Pj

d2
j

)
Fi jri j,

FD
i j = −γi j[vi j + (ei j · vi j )ei j],

FR
i j = −γi j

ri j

2
× (ψi + ψ j ),

F̃ i j = σi j

(
dW s

i j + 1

3
tr[dW i j]1

)
· ei j

�t
,

(A1)

where ri j = ri − r j , vi j = vi − v j , and ei j = ri j/ri j . Particle
number density di is computed as di = ∑

j Wi j , where the
smoothing kernel function Wi j = W (ri j ) vanishes beyond a
cutoff radius rc. It also defines a nonnegative function Fi j

through the equation ∇iWi j = −ri jFi j . Particle mass density
is given by ρi = midi. The pressure Pi is determined by an
equation of state Pi = P0(di/d0)ν − Pb, where d0 is the aver-
age number density, P0 and ν are parameters controlling the
sound speed c = √

P0ν/d0, and Pb relates to the background
pressure. dW i j is a matrix of independent Wiener increments,
dW s

i j is its traceless symmetric part, and �t is the time step.
The dissipative and random coefficients γi j and σi j are given
by

γi j = 20η

7

Fi j

did j
, σi j = 2

√
kBT γi j, (A2)

where η is the dynamic viscosity, T is temperature, and kB is
the Boltzmann constant.

The evolution of particle positions, translational and an-
gular velocities is obtained by integration of the following
equations of motion:

ṙi = vi,

miv̇i =
∑

j

F i j =
∑

j

(
FC

i j + FD
i j + FR

i j

) + F̃ i j,

ψ̇i = 1

2Ii

∑
j

ri j × F i j,

(A3)

using the velocity-Verlet algorithm [71].
In this work, the smoothing kernel is represented by the

quintic spline function [72]

W (q) = w0

⎧⎪⎪⎨
⎪⎪⎩

(3 − q)5 − 6(2 − q)5 + 15(1 − q)5, 0 � q < 1,

(3 − q)5 − 6(2 − q)5, 1 � q < 2,

(3 − q)5, 2 � q < 3,

0, q � 3,

(A4)

where q = r/h and w0 = 1/(120πh3) in three dimensions
(3D), w0 = 7/(478πh2) in two dimensions (2D), and h is the
smoothing length h = rc/3.

The fluid, the microrobot, and the wall (if present) are
all discretized using SDPD particles (Fig. 1). In simulations,
the position of the wall particles are fixed, while the micro-
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TABLE IV. Basic parameters for the SDPD simulations.

Parameters Values

Cutoff radius rc 1.0
Mass density ρ 12.0
Dynamic viscosity η 100
Average number density d0 30
SPH particle mass m 1
Moment of inertial of SPH particles I 1
P0 in the EoS 6400
Hydrostatic pressure P0 − Pb 200
Exponent in the EoS ν 7
Boltzmann energy kBT 1e − 6
Time step �t 0.002
Total number of time steps Ntot 800 000
Spring coefficient kl 16 000
Normal spring length lb 0.437
Actuation amplitude A 0.16
Intrinsic curvature parameter b1 0.05
Intrinsic curvature parameter b2 0.015
Wave number k 0.942
Flagellum length L 10
Radius of the head Rh 1.2
Beating frequency ω 0.6, 0.8, 1.0, 1.2
Initial distance to the wall (if present) Lw 2.4
Size of the simulation box Lx × Ly × Lz 25 × 25 × 20
Relaxation time τr 10

robot particles are further connected by springs as depicted by
Fig. 1(b) in the main text.

The basic parameters for our SDPD simulations are sum-
marized in Table IV. Note that we have set the Boltzmann
energy kBT to be very small to exclude the effect of thermal
fluctuations. The simulation box is with periodic boundaries.
At the beginning, the microrobot is straight and is positioned
at the center of the xy plane. The head is pointing to the −x
direction. The first and the third filament of the flagellum
are in the xy plane, while the second and the fourth filament
are in the xz plane. After the simulation starts, the beating

amplitude of the flagellum (A) and the curvature parameters
(b1 and b2) increase from 0 to their specified values following
the rule: C(t ) = C[1 − exp(−t/τr )], where τr is a relaxation
time. During a simulation the center of mass of the microrobot
is recorded to generate the swimming trajectory for further
usage.

If the length of the flagellum L and the swimming velocity
V is used to estimate the the Reynolds number Re = ρLV/η,
then we have 0.02 < Re < 0.05 in our simulations. Therefore,
the low Reynolds number condition is satisfied.

We perform a beam deflection simulation to measure the
bending stiffness of the flagellum κ f . In this simulation, the
head of the microrobot is fixed, and no actuation, nor intrin-
sic curvature, is imposed to the flagellum. The flagellum is
straight and pointing to the x direction. Then a force f ez is
applied to all the flagellum particles. The uniform load is q =
Nf f /L, where Nf is the total number of particles constituting
the flagellum. The flagellum is deflected under the uniform
load. The deflection distance is given by the deflection for-
mula:

δz = qx′2

24κ f
(6L2 − 4Lx′ + x′2), x′ = x − xh + Rh, (A5)

where xh is the position of the center of the head, Rh is the
radius of the head. The bending stiffness of the flagellum κ f

can be obtained by fitting the above formula to the deflection
curve obtained from simulation. Using the parameters in Ta-
ble IV, and set q = 0.1, the bending stiffness is measured to
be κ f = 7938.6.

The normal resistive force coefficient ξ⊥ of the flagellum
can be measured by simulating a straight flagellum moving
in bulk fluid in the direction normal to the flagellum. If the
velocity is v and the total resistive force is Fr , then the resistive
force coefficient is Fr/Lv. We set Fr = 1840 in our simulation,
then the resultant moving velocity is v = 0.366. The resistive
force coefficient is ξ⊥ = 502.7. Therefore, the sperm number
Sp = L(ξ⊥ω/κ f )1/4 is Sp ∈ [4.41, 5.25] in our simulations.
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