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How Turing parasites expand the computational landscape of digital life
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Why are living systems complex? Why does the biosphere contain living beings with complexity features
beyond those of the simplest replicators? What kind of evolutionary pressures result in more complex life forms?
These are key questions that pervade the problem of how complexity arises in evolution. One particular way of
tackling this is grounded in an algorithmic description of life: living organisms can be seen as systems that
extract and process information from their surroundings to reduce uncertainty. Here we take this computational
approach using a simple bit string model of coevolving agents and their parasites. While agents try to predict
their worlds, parasites do the same with their hosts. The result of this process is that, to escape their parasites,
the host agents expand their computational complexity despite the cost of maintaining it. This, in turn, is
followed by increasingly complex parasitic counterparts. Such arms races display several qualitative phases, from

monotonous to punctuated evolution or even ecological collapse. Our minimal model illustrates the relevance
of parasites in providing an active mechanism for expanding living complexity beyond simple replicators,
suggesting that parasitic agents are likely to be a major evolutionary driver for biological complexity.
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I. INTRODUCTION

With the emergence of life on Earth, information pro-
cessing took on an unprecedented relevance [1-5]. Swiftly,
mechanisms for error correction [5], memory (hence path de-
pendency and contingency) [6,7], and the capacity to predict
the environment [8] rose up. These processes were tightly
linked to the arrival of autonomous agents [5,9], setting up
the stage for evolution of complexity through natural selection
[9-11]—an algorithmic process itself [11,12] deeply related
to information theory [13-15].

A crucial question here is whether this process can generate
open-ended novelty [16-21] and what kind of universal pat-
terns might be involved [22]. In this context, a key question is
what drives the rise of organismal complexity beyond simple
replicators. One view sustains that selection has no intrinsic
bias toward complex life forms [23]. According to this view,
bacteria constitute the peak performance dominating the evo-
lutionary landscape. Organisms much simpler would not be
viable, thus prevailing deviations from the peak fitness would,
in average, look like an increase in complexity even if no bias
favoring greater complexity exists. A naive rendering of this
hypothesis suggests a single-peaked distribution of abundance
across the spectrum of life’s complexity. Is that the case?

Along with cognition [24], parasites have been proposed as
causal agents that boost biological complexity, grounded in a
plethora of studies, particularly regarding viruses [25-27]. In
general, parasites of very different nature are known to have
a major impact on their host’s survival [28]. This has inspired
theoretical and computational efforts to explain how parasites
can affect the genetic structure of host populations. In sil-
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ico models [29-31] have helped explore a series of essential
questions concerning parasitic dynamics. These include the
emergence of sex as a mechanism of resistance against para-
sites [32], improving the efficiency of evolutionary algorithms
[33], or parasites as promoters of mutualism [34]. In silico
evolution models show how parasites can promote evolvabil-
ity and the complexity of their hosts, an effect notoriously
driven by the parasite’s memory [35]. These models share a
common strategy of using digital genomes and simplified case
studies to gain the highest insight. This logical description is
an essential part of biology, and a computational picture of
interaction can capture much more than we would initially
expect [36,37].

In this paper we use such a formal description, with par-
asites and their hosts treated as abstract machines [38]. Our
model is inspired by the Turing machine model of computa-
tion [39] where an abstract computing device is used as a way
to formalize computation in terms of a simple automaton that
reads a binary tape. Despite its simplicity, this kind of formal
approach has been used to explore the limits of information
processing in both physical and biological systems [40]. Un-
like that original framework, our “Turing parasites” deal with
stochastic environments that they need to predict. Under the
right conditions (which require sufficiently successful predic-
tive power) they can replicate themselves. Moreover, they can
contract or expand their computational capabilities if evolu-
tionary change is allowed. As shown below, parasites can
act as complexity enhancers in an open-ended manner. Our
formulation of environments, hosts, and parasites as strings
of bits with minimal rules brings our model very close to
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FIG. 1. A bit-guesser “machine” computing its environment. Bit guessers use a bit-string (I") to attempt to predict their environment. Here
I approximates the most likely pattern to be found in the environment £E—e.g., the first bit proposed (a) is just the most common bit in E. For
each guess attempt, a cost c is subtracted from guesser’s reward p. For each correct guess, a reward r is added. (b) After a guess, the guesser
moves forward along E. If the guess is correct, then the guesser keeps sampling I" in linear order. If the guess is wrong [(b, c), bits highlighted
in bold], then the agent resets to the beginning of I" for the next guess attempt. (d) The process goes on until as many bits have been visited as

the size of the guesser’s internal pattern I' (in this case, n = 9).

the language of computer science, information theory, and
statistical physics. Our adoption of prediction as a driving
principle shifts the focus to how a minimal (yet growingly
complex) computation projects memory about the past into
the potential future of an environment.

II. METHODS

A. Minimal bit-guesser model

Bit-guessers G are abstract machines that posses a model
I'¢ of an external environment E. An environment consists of
a finite tape with ones and zeros, to which guessers access
one bit at a time similarly to how Turing machines read
their inputs—only, our guessers advance always in the same
direction. Bit-guessers use their internal model I'¢ (akin to a
Turing machine’s internal state) to attempt to predict the next
environmental bits. Thus, the tape is obviously read but, dif-
ferently from Turing machines, in the current implementation
our guessers do not print upon it—i.e., they do not modify
their environments. In the following we introduce some nota-
tion about each of these elements. (See Ref. [38] for a more
thorough description.)

An m-environment (E = {e;; i = 1, ..., m}) consists of m
bits drawn randomly and uniformly. We evaluate an n-guesser
in a given m-environment (with n < m) by dropping it at
a random position, iy, and asking that it predicts the next
n consecutive bits (Fig. 1) with cyclic boundary conditions.
These constitute an n-sized word B(ip) C E. The guesser’s

internal generative model I'$ produces yet another n-sized
word, W€ (iy), based on the guesser’s memory and its past
interaction with the environment (i.e., its history of correct
and incorrect guesses as explained below). The fraction of bits
correctly guessed reads

1 n
P (io) = - ;awi, by). (1)

Here, we use Kronecker’s 6: §(w;, b;) =1 if w; = b; and
§(w;, b;) = 0 otherwise; and w; and b; are the ith bit within
Wf (ip) and B(ip), respectively. We might want to evaluate a
guesser several times in a same environment (for which we
drop it at different starting positions iy) or in an ensemble of
environments of fixed size m. For simplicity, we use p), to
name the average number of bits guessed by an n-guesser in
either m-environmental setup.

Bit-guessers pay a cost ¢ for each bit that they attempt to
predict, and they rip off a reward r for each correct prediction
(Fig. 1). Evaluating a guesser in an environment reports a net
reward:

Ap = (pjr—c)n=(p), —a)rn, ()

with @ = ¢/r measuring how meager an environment is: the
larger o, the less reward per correct guess. If p/ < «, then
Ap < 0 and the given n-guesser could not survive in that
m-environment. In some of the numerical experiments that
follow, if a guesser’s accumulated reward p is large enough,
then it gets replicated.
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FIG. 2. Host-parasite systems modeled as bit-guesser machines. (a) A genotype parasite uses the host’s internal model (I';) as the
environment off of which it extracts information to live. Note the reading head (light red) of the parasite interacting directly with the host’s
internal model about the external environment. (b) Phenotype parasites live out of anticipating the host’s behavior—which is different from its
internal model of the world. Note the reading head (light blue now) of the parasite now reacting to the external behavior that the host produces,
while it does not interact with the host’s internal model directly. Both host-based environments (its internal model and its behavior) have the
same size, but phenotype parasites will usually encounter less complexity than genotype parasites. This is so due to the model’s dynamics: A
guesser’s behavior is produced from its genotype by resetting each time that a mistake is made, thus making behavior more redundant than the

model on which it is based.

Our guessers were designed to have their computational
complexity controlled by a single parameter—its size, n,
which also imposes a replication cost. This computational
complexity is implemented by the guesser’s generative model,
I'¢, which consists of an n-sized bit-string used sequentially
for predicting E. To elaborate I'$, we assume that the guesser
has had access to the whole environment, and that it has come
up with the best model possible constrained only by its size n
and a minimal correcting mechanism. The only information
unknown to the guesser is where it will be dropped as it
is evaluated later. Thus, I'S(1) is just the most frequent bit
in the environment, which is the most likely outcome if we
drop it in a random position. After a correct guess of this
first bit, moving onto the next position, the most likely guess
I'%(2) is the most frequent bit following every instance of
Fg(l) in the environment. We proceed building Fg(i) as the
most frequent bit following all (i — 1)-sized words matching
{Fg(l), e Fg(i — 1)} in the environment.

As we evaluate a guesser, it proposes consecutively the bits
in Fg as long as its predictions are correct [Fig. 1(a)]. If there
is a mistake [Figs. 1(b) and 1(c)], then the guesser resets to
Fg(l) for the next bit and proceeds onwards from there. More
formally, the word W,¥ (ip; k) produced by guesser G in the
environment E [Fig. 1(d)] when it is dropped in iy is W =
{W(k),W(k) = Fg(k — 1)} where k =1,...,n and [ is the
last k such that WEGGO; k) # B(ip — 1 + k). I = 0 if no wrong
guesses have occurred yet.

B. Genotype and phenotype parasites

Our model makes a distinction between the ideal best guess
I'¢ and the bits actually emitted as a guesser is evaluated
WS, We liken these to genotypes and phenotypes. I'$ stores
instructions for prediction and dictates the agent’s behavior

expressed by W¢. Parasites making a living off of another
organism can do so by predicting the host’s inner structure
or its behavior. In the real world, gene matching as well as
external trait recognition can be used by parasites to recognize
their targets. To consider these two scenarios, we study both
and label as genotype and phenotype parasites, respectively.
The former take the host’s Fg as their environment [Fig. 2(a)],
while the later dwell on the host’s external features (such as
behavior) ng [Fig. 2(b)]. Because bit-guessers distill corre-
lations from their environments, both I'S and W,¢ are more
predictable than completely random environments of the same
size. It is simpler to predict 'S and W&, but in turn they shall
provide less reward.

We now need to differentiate between (i) the complexity
of the external (or host’s) environment () and the host’s
complexity (n;, < my,); and (ii) the complexity of the parasite’s
environment, which is always the host’s size (m, = n;,), and
the parasite’s complexity (n, < m,). For clarity, we omit the
host and parasite subindexes (# and p), and just put a bar over
all variables referring to parasites. Thus, we name: m = my,
n = n;, (which equals m = m)), and 71 = n,,. Evaluating para-
sites as usual, we have

Ap = (P}, — a)Fi. 3)

Note & = ¢/7 controlling the reward per correct prediction
for parasites, with & # « in general. This parasite reward is
subtracted from the host, so Eq. (2) is modified into

Ap = (p’,z - a)rn — plFii. ()
We assume that all the reward taken away from the host

is efficiently transferred to the parasite. Variations allowing
leaks would not affect our results substantially.
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III. RESULTS

A. Bit-guesser size versus other measurements of complexity

Complexity is a thorny concept that eludes a clear-cut
definition—we can find as many as authors [41]. Many see
this as a drawback for complexity science; but a similar caveat
can be found regarding the definition of “life” and “living,”
and this has not prevented the advancement of biology—
including in borderline cases such as the study of viruses.
Besides having sensible measurements of complexity, we
need to know how they relate to each other, understand what
they are telling us mathematically, and assume that a same
work can be seen from different angles.

Our model takes the sizes of environments and guessers
as a measurement of their complexity. In the case of envi-
ronments, this seems straightforwardly correct because they
consists of periodically repeating strings of random bits. The
longer an environment, the more variety and diversity we may
encounter. In the case of guessers, we argue that their size is
a good measurement of complexity because each additional
bit confers them an expanded ability to find patterns within
the environment. We made a deliberate choice to place all the
guesser’s algorithmic capability in its memory, specifically to
have a single number comparable across guessers controlling
complexity. Alternative implementations of guessers will re-
sult in different ways of quantifying procedural complexity,
but similar results should follow as long as appropriate costs
are placed on the expanded computational capabilities. One
such example would be a guesser that, instead of one pattern
(as in ours), stores a decision tree that is navigated whenever
mistakes are made. In such a case, a measure of complexity
should include the number of bits (like ours) but also the
different branches and their depth, as well as placing costs
on each decision.

Information theory offers ways to formalize these con-
cepts, but not a straightforward manner of assigning costs
to the different ingredients. Kolmogorov complexity [42] is
the length of the shortest program that can produce a given
binary string. This measure is maximal for truly random
strings, as the impossibility to predict the next bit from the
previous history implies that any program producing the string
must contain it in full. Completely regular strings (say, one
that repeats “01” ad infinitum) have minimal complexity. In
general, the Kolmogorov complexity of a string cannot be
computed. Different correlates are used to approximate it in
practical situations—for example, some notions of entropy
calculated over the probability of finding different patterns
within a string [22,43]. Compression methods attempt to find
minimal representations of a given string, thus they often
approximate Kolmogorov complexity as well. The lossless
Lempel-Ziv-Welch (LZW) algorithm [44,45] explicitly finds
repeated patterns of variable length within a longer string to
remove unnecessary redundancies.

Figure 3(a) shows the Kolmogorov complexity (as approx-
imated by the LZW algorithm) for environments of increasing
size. As expected, this grows monotonically with size—as
m grows, we encounter longer strings of random bits which
require more and longer unique patterns to reconstruct. Thus,
environment size, m, is a good correlate of its Kolmogorov
complexity. Figure 3(b) shows that guesser size, n, is also a
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FIG. 3. Comparing measurements of complexity. (a) Environ-
ment complexity as a function of its size, m. Average over 100
environments of each size, shading is standard deviation. (b) Same
for guesser output as a function of its size, m. One evaluation
in each environment with m = 50 (black) and 200 (red, dashed;
shading omitted). (c) Mutual information between environments and
guesses. Ten repeats of one evaluation of the guesser in each of 100
environments.

good correlate of its corresponding complexity. This complex-
ity seems to grow linearly with n, but it displays a much larger
variance than environments. This suggests that the relation-
ship between a guesser’s size and its Kolmogorov complexity
can be highly nonlinear and context dependent.

The crucial ability of a guesser to thrive comes from its
capacity to correlate its bits with those of the environment,
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FIG. 4. Host and parasite performances. (a) Host’s performance
(p},) as a function of its complexity and the environment’s size.
Curves are for 2-, 5-, 8-, and 10-guessers, with curves for bigger
guessers laying on top and shifted to the right with respect to those
for smaller guessers. (b) Parasite’s performance (77,) as a function
of both host’s complexity and external environment’s size. Shown
are least square fits of quadratic surfaces to data from numerical
experiments.

a property that we can capture with information theoretical
and statistical measurements such as mutual information. In
Ref. [38], we showed how this decreases, for guessers of a
fixed size, as environments grow larger; and how it grows,
for fixed environment sizes, as a guesser’s complexity in-
creases. Figure 3(c) shows an updated view of this relevant
information-theoretical measure.

B. Performance in environments of different sizes

Our simplest question is how many bits can hosts and par-
asites guess under specific circumstances. Expanding results
from Ref. [38], Fig. 4(a) shows p/, for hosts. These curves
delimit average survival conditions: n-guessers can survive in
(m, @) combinations under their corresponding curve. More
complex guessers (larger n) can survive in a wider range of
conditions. For parasites, we vary both external environment
(m) and host complexity (n = m). The volumes subtended by
the surfaces in Fig. 4(b) indicate combinations (m, n = m, &)
under which #i-parasites can survive. This volume is again
bigger for more complex (larger 77) parasites. Survival regions
decrease as host complexity grows (Fig. S1(a) [46]), hence
becoming more complex is a good strategy to diminish the
survival chances of parasites.

Survival surfaces associated to phenotype parasites sub-
tend much larger volumes than those of genotype parasites
in Fig. 4. Due to the reset mechanism in generating W, its
complexity is bounded by that of I'¢, thus making W,¢ more
predictable. Here our model differs from real organisms, in
which genotypes are seeds that generate much more complex
behavior. In any case, both W< and I'¢ are easier to predict
than external environments of the same size, which is the
crucial advantage of parasitism.

C. Escaping parasites by increasing behavioral complexity

A straightforward way to become more unpredictable is by
adding some randomness (hence, computational complexity,
as rigorously defined [42,47—49]) to a planned behavior. We
implemented hosts with their usual I'¢, but who flip each bit in
W with probability pr. Figure 5(a) shows how the net reward
changes for hosts (n = 10) and parasites (77 = 4) as pp varies.
The effect depends on the environment size (here m = 30) and
the parasite’s share of reward (7 = 0.5). In Fig. 5(a), when pg
is low, parasites survive, resulting in less reward for the host.
For large enough pp, the parasite is unable to predict its host
and dies. But the randomness introduced entails that the host
fails to predict some of the bits that it could, thus very large pg
has a toll eventually. A tradeoff emerges between the parasite
and environmental pressures resulting in an optimal level of
randomness [pr, Fig. 5(b)] for the host. The host’s reward at
this optimal value [p, Fig. 5(c)] can be diminished by either
factor.

For 0 < pr < pr the strategy partly thwarts the parasite’s
development. This would result in a slowed-down epidemi-
ological spread. At the level modeled here, arrested (yet
surviving) parasites have a smooth, parsimonious effect on
the host. This regime might extend to pr > pr values, as pg
marks the threshold at which further random behavior by the
host does not pay off, which is compatible with residually
surviving parasites.

If parasites take away very little reward (e.g., ¥ = 0.4,
Fig. S3(a) [46]), they cannot survive even in normally be-
having hosts; thus pp = 0. This regime persists for a range
7 < 7* [Fig. 5(b), shaded area]. If 7 is very large (e.g., 7 = 0.7,
Fig. S3(d) [46]), parasites survive even in fully unpredictable
hosts. Thus, flipping bits does not help the host against the
parasite and still results in worst prediction of the external
environment—hence pr = 0 again. Only pr > O for an in-
termediate range of 7 (Figs. S3(b) and S3(c) [46]). Even
if parasites are driven to extinction in this regime, the host
misses some of the potential reward due to its degraded ability
to predict [Fig. 5(c)].

D. Increase of complexity in neutral ecosystem dynamics

We model neutral ecological interactions [Figs. 9(a)-9(c)]
with ecosystems that contain a number of spots. Each spot
can be occupied by an n-guesser (restrictedton =1, ..., 10
in the next example) or empty (a 0-guesser). An ecosystem
presents fixed environment size (m) and harshness (o). All
guessers are initially endowed with a reward p(t = 0) = npy,
representing a satisfied metabolic load that grows with the
guesser’s complexity.
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FIG. 5. Escaping parasites by increasing behavioral complexity.
(a) Host (n = 10, black solid curve) and parasite (7 = 4, red dashed
curve) average reward for pr € [0, 0.5] (m = 30, 7 = 0.5). For each
7, we evaluate 10° hosts and parasites. If the parasite survives,
then p.7ni is subtracted from its host’s reward. Optimal flip prob-
ability pr (b) and reward p (c) reveal three different regimes: (i)
Low 7 (shadowed area), parasites die naturally, no additional behav-
ioral complexity is needed (pr = 0, p = p™). (ii) Intermediate 7,
some additional behavioral complexity eliminates parasites (pr > 0,
which has a toll so that p < p™*). (iii) Large 7, parasites endure, ad-
ditional complexity does not help (pr = 0 again, p < p™* because
of the lasting parasite).

To simulate ecosystem evolution, at every time step a spot
is randomly chosen. The corresponding guesser is evaluated
on a newly generated m-environment [Fig. 9(a)]. As before,
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FIG. 6. Ecosystem dynamics. Average complexity of surviving
guessers in an ecosystem after 200 generations for a range of o €
[0.5, 0.65] for experiments without a parasite (black, solid line) and
for ecosystems with genotype (red, dot-dashed) and phenotype (blue,
dashed) parasites. Shaded areas mark ecosystem collapse as envi-
ronments become too challenging for all guessers present. Parasites
always have 7 = 1 in this example. The effect of such simple parasite
is huge. Note, however, that we are exploring precisely the region of
parameter o that separates persistence from extinction for the studied
guessers [as seen in Fig. 4(a) for m = 30].

evaluation starts after the guesser has elaborated the best inter-
nal model (I') given its capabilities (n); then it is dropped on a
random position of the environment and proceeds as in Fig. 1.
The balance from this evaluation is added to the guesser’s
accrued reward:

p(t + At) = p(t) + (p)), — a)rn. (5)

If p(t+ At) > 2npy, then the guesser gets replicated
[Fig. 9(b)] and an amount np, (as initial endowment for the
daughter) is subtracted:

p(t + At 4+ 8t) = p(t + At) — npy. (6)

The guesser keeps replicating until p(t + At + &t) < 2npp.
Daughters are allocated to random spots in the ecosystem,
which might be empty or not—in which case the older guesser
is replaced. If, after being evaluated, p(f + Atr) < 0, then
the selected guesser dies and a 0-guesser occupies its spot
[Fig. 9(c)].

We evolved ecosystems with 1000 spots, initially pop-
ulated by random, uniformly distributed guessers with n €
[1,...,10]. Figure 6 (black, solid line) shows the average
guesser complexity after 200 generations (each generation
consists in the sequential evaluation of 1000 spots chosen at
random, so in average every spot is evaluated once per genera-
tion) form = 30 and o € [0.5, 0.65]. In copious environments
(low «, large reward per correct guess) a few right predic-
tions report large benefits. Simpler guessers replicate faster
because of their lower replication threshold (proportional to
npo). If a cheap, sloppy strategy provides enough reward, then
investing in costly computations is unfavored. But in austere
environments (larger ) simple guessers cannot accrue reward
fast enough and a complex computational machinery pays off.
Very meager environments (¢ — 1) become prohibitive for
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all guessers—as indicated by the sudden fall of complexity in
Fig. 6.

To each guesser, we now add a parasite that does not die
nor replicate. It just sucks off reward according to Eq. (4)
whenever its host is evaluated. Even the simplest (7 = 1)
parasite, either at the genotype (Fig. 6, red dash-dotted line) or
phenotype (blue dashed line), suffices to achieve a remarkable
complexity boost. Simpler hosts are more predictable, hence
parasites extract more reward—favoring complex hosts. In
return, the point at which the ecosystem collapses happens
for lower «. Parasites are double-edged swords that drive
complexity but can precipitate their host’s extinction. This
collapse happens slightly earlier for phenotype parasites—
as expected, since, as discussed above, the complexity (and
hence predictability) of W is bounded by that of I'S.

E. Open-ended Red Queen dynamics

To study parasitic pressures in an ecoevolutionary setup we
add a shadow ecosystem where parasites of different com-
plexity dwell and undergo replication and death dynamics
(Fig. 10). Replicating hosts and parasites can now produce
simpler or more complex daughters through mutations.

All guessers replicate as explained above if

2npg < p(t + At) < 2n+ 1)pp. @)
Moreover, if the inequality
pt+ A1) = 2n+ 1)po 3

holds, then a mutation happens with probability p, = 0.5.
(This relatively high mutation rate was chosen to illustrate
model dynamics within a reasonable time and without using
too many computational resources. Similar results as follow
are obtained with smaller mutation rates, but the interesting
dynamics that we report below take longer—thus consuming
much more computing time.) This mutation goes in either
direction (n — n+ 1 or n — n — 1) with equal chance. The
corresponding initial endowment for the daughter is sub-
tracted from the mother. When a host gets replicated, its
parasite (if any) gets replicated alongside and occupies the
corresponding spot in the shadow ecosystem (replacing an
older parasite if necessary). The initial endowment of this
daughter parasite is subtracted from the daughter host. Note
that parasites also replicate through the usual route—i.e., their
reward overcoming a threshold

p(t + At) > 2iipyg. )]

When this happens, the daughter parasite substitutes the
guesser in a random spot of the shadow ecosystem. Parasites
might also die, leaving a spot of the shadow ecosystem un-
occupied. Thus, a host’s parasite might change over time or
disappear. The current model assumes 7 < m = n, thus if a
daughter parasite becomes too big (e.g., because it is allocated
to a spot with a small host or with no host at all), then she is
promoted to host into the main ecosystem.

Despite the simplicity of the model, it resulted in an unex-
pected range of behaviors—of which we only show the most
salient ones. For certain parameters, the host-parasite eco-
evolutionary interactions ignite Red Queen dynamics [50] in
which both counterparts engage in a race of growing complex-

ity, potentially without an end point, suggesting open-ended
evolution [Figs. 7(a)-7(c)]. All simulations were chosen such
that, in the absence of parasites, the host ecosystem would
be fully populated by 1-guessers. This is, the observed tra-
jectories are truly outstanding. Furthermore, 100 repeats of
each experiment have been carried out for a broad range
of model parameters, robustly finding that Red Queen dy-
namics ensue sooner or later for many parameter settings
(Fig. S4 [46] illustrates complexity evolution for the 100 ex-
periment repeats with different parameters settings).

Figure 7(d) illustrates the mechanism behind the emer-
gence of these Red Queen dynamics. Simpler hosts are easy
to predict, while more complex ones escape their parasites.
However, more complex parasites promptly thrive, while sim-
pler ones fail to accrue reward and replicate. This results in
a pair of effective forces pushing hosts and parasites toward
ever-increasing complexity. We halted our simulations if n
became larger than m, but our experiments do not show signs
of slowing down. There is no principled reason why this
mechanism could not operate indefinitely.

Our simulations show other noteworthy, unexpected phe-
nomena. We observed long periods of stasis [Figs. 7(a)-7(c)],
suggesting relatively stable attractors which, anyway, are
eventually escaped. Genotype parasites [Figs. 7(a) and 7(b)]
present more diverse temporal trajectories. Some show
uninterrupted, relatively monotonous complexity buildup
[Fig. 7(a)]. Others show ecosystem-wide complexity collapses
[Fig. 7(b)] into an alternative, seemingly metastable attractor
with complex hosts and simple parasites. These states can per-
sist for hundreds of generations, but are eventually escaped.
The time trajectories of phenotype parasites [Fig. 7(c)] are
less diverse. In Fig. S5 [46] we show how a range of behaviors
can be achieved by varying just one parameter. Some of these
dynamics are outstanding—e.g., punctuated equilibrium for
very low py. These behaviors were never purposefully hand-
wired into our minimalist model.

The complexity gap between hosts and parasites grows
linearly during Red Queen dynamics [Fig. 7(f)]. Perhaps host
and parasite complexity must observe some algebraic relation-
ship to enable open-ended evolution—e.g., if hosts get too
complex, then they might kill off all parasites and halt the
open-ended dynamics.

Notice that fluctuations in complexity grow as all guessers
become more complex. This happens both as fluctuations of
the average population complexity [and most notably for phe-
notypic parasites, as Fig. 7(g) illustrates], and as spread within
the population at each time [Fig. 7(g)]. This panel shows the
standard deviation of guesser sizes within the ecosystem at
each time. We observe that this variance is larger for parasites
during the stale phase, but that it becomes larger for hosts
during the Red Queen dynamics. Both hosts and parasites
present: (i) large fluctuations in the variance of their complex-
ity and (ii) an overall trend of increasing standard deviation
of complexity. The fluctuations indicate large, sudden con-
tractions and expansions of the distribution of guesser sizes,
suggesting nontrivial ecoevolutionary interactions. The over-
all increasing standard deviation of the complexity, however,
indicates that not only are both hosts and parasites becoming
more complex over time, in average; but also both populations
themselves are becoming more heterogeneous over time. This
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FIG. 7. Red Queen dynamics in host-parasite coevolution. (a)—(c) Single run of a time evolution of average complexity of hosts (black, top
curve) and parasites (red, bottom curve) (ecosystems have 1000 spots, m = 50, « = 0.5, r =1, po =1, @ = 0.6, 7 = 0.35, pp = 0.005, and
pu = 0.5). Genotype parasites (a), (b) present a more varied temporal unfolding than phenotype parasites (c). (d), (¢) Abundance of guessers of
different complexity between hosts (black, right-most distributions) and parasites (red, left-most distributions) at two different times. Simpler
hosts are easier to predict by their parasites, more complex hosts get away. Simpler parasites fail to cope with their hosts, while more complex
parasites fare better. Effectively, simpler guessers are repressed and more complex ones are favored. (e) This results in a pair of effective forces
pushing both host and parasite communities toward ever-higher complexity. (f) Average complexity gap between hosts and parasites of the
simulation in panel (¢). (g) Standard deviation of complexity of host (black) and parasite (red) populations at each given time of the simulation
in panel (c)—not to confuse with the wide variation of the average population complexity over time.

suggests that, as the Red Queen dynamics proceed, more
combinations of host-parasite couples might become viable.

Finally, we could think that more complex parasites might
be lethal and result in emptied ecosystems (as it happens
without evolutionary dynamics for large «, Fig. 6). Figure S6
[46] shows, instead, that ecosystem occupation remains at
its maximum for hosts and increases lightly over time for
parasites.

IV. DISCUSSION

It has been conjectured that parasites act as a pressure for
more complex hosts. Here we sought the simplest mathemat-
ical description that captures this qualitative hypothesis. We
built upon the bit-guesser model [38] as a minimal frame-
work in which complexity (as grounded in information theory
and computer science) is parsimoniously connected to Dar-
winian selection by organisms that thrive and replicate if they
successfully predict their environment. These elements (repli-
cation, selection, and information processing), among others,
set biology apart from inert matter [1-5].

Our minimalist model shows that: (i) increased behavioral
complexity can be a valid strategy to scape parasites; (ii)
more complex organisms result easily from the introduction
of simple, immutable parasites in an ecosystem; and (iii)
ecoevolutionary dynamics can result in Red Queen dynamics
of hosts and parasites becoming more complex to scape each

other. These results join other explicit drivers of increased
biological complexity [38], as well as evidence from large
census of species [Fig. 8(c)] [51]. Together, they weaken more
neutralist views [23] which propose that there are not explicit
evolutionary pressures favoring higher complexity in biology.
It is reasonable to think that these forces (notably parasitism)
have been operating since very early in the history of life.
This offers reassuring arguments that complex life is expected
under an array of circumstances, increasing the likelihood that
organisms such as higher metazoans or advanced cognitive
systems did not arise by random drift.

The emergence of Red Queen dynamics is our most im-
portant finding. A wide set of conditions lead to a quick,
seemingly open-ended, surge of complexity. Our results imply
that powerful forces underlying common biological inter-
actions will drive life toward great complexity under the
adequate conditions. In our opinion, this robust mechanism
turns the original question (“Are there pressures toward com-
plex life in Darwinism?”) on its head. We should now wonder
what the consequences of this strong evolutionary dynamics
can be in the real world, or under what circumstances this
mechanism can be attenuated or harnessed. In this last regard,
we say nothing about the explicit implementation through
which this complexification can be achieved.

Our model is limited by finite size constraints, but the
complexity increase did not show a tendency to stop or sat-
urate. There is no reason why the principles operating at
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FIG. 8. Different models of organismal complexity across scales.
(a) A proposal by Gould [23] that more complex life arises through
sheer random drift leads to a unimodal distribution of life complex-
ity peaked around the most successful class of organisms (bacteria,
according to Ref. [23]). This is a cartoon distribution modified from
Refs. [23,51]. If evolutionary pressures for the emergence of com-
plex life exist, then it becomes more likely that steps of organismal
complexity occupy their niches and present multipeaked distribu-
tions across scales. Some such evolutionary drivers were numerically
characterized in Ref. [38] and produce multipeaked distributions
((b), where abundances show percentage of ecosystem occupation
as in Fig. S6 [46]). Multipeaked distributions are also derived from
exhaustive data bases [51] (c).

the studied scales should not work indefinitely, suggesting
that host-parasite dynamics might drive open-ended evolution.
This feature can be suggested from our model, that shows
much longer and more sustained increases in complexity than
other models [35,52] and it occurs at seemingly constant rates.
This suggests that complexity does not affect much the rate of
evolution. Even within the limited range studied, a very rich
array of behaviors emerge. Noteworthy are the observed col-
lapses of complexity [Fig. 7(b)], which suggests that forward
complexity evolution requires hosts and parasites progressing
apace; and the punctuated equilibrium observed for very small
parasite replication threshold (py, Figs. S5(e) and S5(f) [46]).
These features were not anticipated. The minimalism of our

model suggests that such phenomena might be general within
host-parasite coevolution. The fact that the collapses do not
always happen [Fig. 7(a)] and that they can be overcome
[Fig. 7(b)] shows that they are not an upper limit of complex-
ity (which does not prevent it from existing anyway).

Multiple biological examples of host-parasite coevolution
[53-81] (notably those involving genomes) present elements
very reminiscent of computer science and information theory
(e.g., operations based on pattern matching, copying, etc.).
Thus, despite the abstraction of our model and results, it is not
unreasonable to try comparing them to empirical data. This
paper is a first step in that direction. We derived quantitative
bounds to computational aspects of host-parasite interactions,
similar, e.g., to thermodynamic bounds for computation that
apply in physical and biological systems [82]. Such bounds
are better embodied by the p7. surfaces in Fig. 4(b). Fur-
ther qualitative observations relevant for potential empirical
studies are the gaps observed between host and parasite
complexities. Might this gap also grow linearly in real host-
parasite systems? To asses this we need to tackle complexity
in real biological systems—a difficult issue [83]. Genome
size is a first proxy, but examples of simple organisms with
large genomes abound. The Kolmogorov complexity [42] of
a genome might remove redundancies and get us closer to the
amount of useful information encoded. Beyond this, protein,
functional, and behavioral repertoires might be our next ap-
proximations to capture the complexity of living beings.

Here we focused on a specific, biologically inspired view
of parasitism. However, our mathematics demand only two
populations of coevolving agents with one of them making a
living out of predicting the other, upon which a small damage
is inflicted. The phenomenology that we uncover should be
relevant for any situation fulfilling these conditions. Within
biology, certain aspects of male-female interactions have been
framed as host-parasitic relationships, with males of some
species (notably among fish) openly described as parasitic.
Our results would imply that the split in two sexes could, in
certain cases, be yet another powerful engine for fast biologi-
cal complexification. However, additional aspects should be
taken into account (e.g., shared descent between hosts and
parasites) which might modify the dynamics.

An important feat in the early evolution of life is the
transition to a code capable of Darwinian evolution (and
the computational processes that this demands) [84,85]. This
acquires a greater importance in metabolism-first models of
the emergence of life. Before an actual code exists, such
models often rely on autocatalytic cycles as a self-replicating
structure with Darwinian dynamics, without a centralized en-
coding of the information. What might have prompted the
computational complexification of these structures in the first
place? It turns out that autocatalytic cycles are affected by
their own parasites as well [86—88]. These are molecules or
metabolic pathways that benefit from the catalytic activity
without implementing any step of the cycle (i.e., they are
metabolic drains). Under the light of our results, such models
would be equipped with a ready-made evolutionary pressure
for increasing computational complexity from the very begin-
ning. The emergence of new parasites would be dictated by the
exploration of new metabolic pathways by the autocatalytic
set itself. Phenomena such as the periods of stasis that we
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observe would provide ratcheting platforms that would pre-
vent mounting complexity from fading away.

The essence of our framework might capture nonstandard
parasites in social, technological, or economic systems (e.g.,
as businesses profit from each other’s intellectual efforts, as
hackers exploit the computational power of unaware remote
servers [89], or as traders anticipate each other’s moves [90]).
Parasites might also have shaped the evolution of neural struc-
tures [91], thus extending our questions to machine learning
and cognition in general. The recent, outstanding success of
generative adversarial networks [92,93] relies on two systems
(while of fixed complexity) establishing antagonistic dynam-
ics similar to ours: a network gains fitness by fooling the other
with artificial data, and the other becomes fitter by learning
to discern fabricated examples. Our results offer a window to
study the emergence of increasingly complex representations
in digital ecosystems, as well as serious hypotheses about
drivers of advanced cognition in the real world.
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APPENDIX A: THE BIT-GUESSER MODEL, STEP BY STEP

Our current work builds upon the bit-guesser model intro-
duced in Ref. [38]. This model seeks a minimal representation
of self-replicating agents that must predict their environment
to survive. In searching for minimalism, some conceptual
licences are taken and the model turns rather abstract. This
section contains an informal, yet more detailed discussion of
the model in the hope that it will facilitate the understanding
of its different elements.

1. The environment

Environments in the bit-guesser model consist of a finite
tape of size m containing zeros and ones. This is inspired by
Turing’s original model of computing machines. Within our
model we are usually interested in knowing the performance
of a bit-guesser in sets of environments that constitute ensem-
bles in a same class of equivalence. For example, we often
want to know the average performance of a guesser in the
ensemble E™ consisting of all environments with size m. This
becomes unrealistic for large enough m, so we are content to
sample a subset E” C E™. Note that two m-environments are
usually different: one might have all Os and another one a bal-
anced mixture of 1s and Os. Environments in such an ensemble

are usually generated on the spot as needed, and stochasti-
cally; thus at least some average properties are equivalent,
especially when we evaluate a guesser over many replicas.

Environments have periodic boundary conditions, such that
if we move along them, their last bit loops back to the first
one. Both this periodicity and the finiteness of our binary
tapes are choices to study how much useful information can
be extracted from them. Instead of m-environments, we could
have modeled an infinite tape with a random distribution
of bits; and have this distribution modulated by a parame-
ter that would introduce correlations between positions on
the tape. This would result in an unbalance of words of
different sizes, which would make certain patterns more pre-
dictable than others. The finiteness of our m-environments has
an effect similar to such correlations. The mechanism is at
follows:

(i) In a short environment, we expect to find more devi-
ations from an ergodic sampling of all possible distributions
of Is and Os than in a larger environment. As m grows, the
chance that we generate a random environment with an excess
of, say, Os becomes much smaller. Thus, for larger enough m,
the most likely is that both Os and 1s are equally represented,
thus knowing the likelihood of the most frequent bit will be
each time less useful to predict any bit in the environment.

(i) The same would happen if we would look at the distri-
butions of 2-words. This is: in short environments it is more
likely that we find an unbalance of 00, 01, 10, or 11. The bal-
ance is recovered as m grows. However, since the distribution
of 2-words needs more information to be fully specified, an
ergodic sampling is reached for higher values of m than for
1-words. This implies that 2-words remain useful over a wider
range of m-environments.

(iii) The same happens for distributions of longer words.
On top of that, computational mechanisms (such as our bit-
guessers) that can exploit the information of words of a given
length can usually exploit information of shorter words—thus
the benefits accumulate.

There are other ways in which we could have introduced
how “meaningful” (and hence worth learning) patters of dif-
ferent sizes are. The finite tapes chosen offer an elegant way
that parameterizes environment complexity with just an intu-
itive number, m.

2. The guessers

Similarly to environments, there are several ways in which
we could have modeled self-replicating agents with com-
putational capabilities. We could have opted for recurrent
neural networks, epsilon machines, Bayesian or Boltzmann
networks, etc. But these options go against our search for
minimalism. In conceiving bit-guessers, we were hoping to
capture just the essential elements and, hopefully, to summa-
rize a guesser’s computational costs and capacities with as few
parameters as possible.

We converged to a model that also consists of a tape of bits,
plus a minimal “if” to allow for the simplest error correction
possible. The internal model of an n-guesser (I') consists
of n sorted bits, now without boundary conditions. We can
conceive an evolutionary dynamics of n-guesser candidates
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over a given, fixed m-environment: First, let us produce a lot
of n-guessers, each with its own model (I";) of the environ-
ment generated randomly. Then, let us evaluate each of these
guesser candidates (as specified below) in the given, fixed
m-environment. Next, let us select the best-performing I'; and,
from them, produce new guesser candidates through mutation
and cross-over of their internal models. As we iterate these
steps, we would expect our population to converge to the best
guessers possible given their n bits of computational capabil-
ity. These evolutionary dynamics might be very interesting on
their own, but in our research we cared more about the limits
to performance that m-environments allow given their own
complexity. Therefore, we generated our bit-guessers with
arguably the best guess that they could come up bit, given
their computational capacity.

Once an n-guesser has been initialized with the best guess
possible, it is evaluated by being dropped onto a random
position of its m-environment, then requesting that it pre-
dicts the bit in that and each of n — 1 consecutive positions.
Hence, the first best guess possible given the m-environment
is the most frequent bit in it. This constitutes the first bit
(I'y) in T, If the guesser is dropped in a position whose bit
matches I'j, then the best guess for the next position is the
bit that most frequently appears after each instance of '} in
the environment. If, from the position where the guesser was
dropped, the second bit also matches its model (I, now),
then the best guess for the third position is the bit that most
frequently appears after each instance of the 2-word {I'|, I'>}.
This goes on, thus these assorted collection of bits (up to the
nth iteration) constitutes the best guess with which n-guessers
are equipped.

In evaluating a guesser, it produces a behavior (W) that
consists of all the bits that it comes up as a guess after it
is dropped in a random position of the environment E and
advances forward over it. Thus, the first bit in W will in-
variably be the first bit in I" as well. If this guess is correct,
then the next bit in W will be the next bit in I' as well, and
so on. If one of the guesses is incorrect, then the n-guesser
has not got a heuristic to infer where it is located within the
environment—it got lost. The best it can do is to go back to
the starting point, and guess that the next bit will be the most
frequent one in the environment—hence the next bit in W is
the first bit in I again, from which the guesser proceeds as
before as long as it keeps proposing correct guesses. The reset
mechanism when a guess is mistaken is an ‘if” command—the
only one allowed to bit-guessers.

Two important aspects are worth considering: First, instead
of this hard reset, we could have modeled inference machines
that navigate a tree. If we would do this, then additional
complexity is introduced, as we now need to parametrize
the width and depth allowed in the tree. This counters our
search for minimalism. It would also not be obvious how to
weight the cost of successive “if” statements with respect to
memory. Second, when looking at bit-guessers behaving (it
helps to write down a few examples), it might occur that the
guesser appears “too dumb” not to find an obvious pattern. For
example, a 2-guesser could never detect the repeating pattern
in the string 110110110110110110. This is, precisely, what
it means that the computational capacity of this guesser is
limited by n = 2.
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FIG. 9. Ecological dynamics in a simple setup. (a) From ecosys-
tems with a finite number of slots, guessers are randomly picked
up for evaluation against environments of a fixed size. (b) Good
performance (i.e., good prediction of the environments) can get a
guesser replicated. (c) Failing to anticipate the environment can get
a guesser killed.

3. Numerical experiments with bit guessers

In Ref. [38] and in this manuscript we describe a series
of experiments that involve guessers coexisting or competing
in a modeled ecosystem. Our ecosystems consist of a set
of N spots, each of which can be occupied, or not, by a
guesser. In all our examples N = 1000. Ecosystems evolve in
generations, with one generation consisting on the evaluation
(and implementation of death and replication dynamics if
necessary) of the guessers in N spots. In all our experiments,
ecosystems are identified by environments of a fixed value, m.

The simplest experiment with ecosystems is described
in Fig. 9, and corresponds to experiments implemented in
Ref. [38]. In this experiment, the ecosystem is initialized
by filling in the spots with random guessers that have n €
[1,...,n™*], were n™* delimits a range of explored guesser
complexity.! Once initialized, generations start running. A
spot is randomly chosen for evaluation of the guesser that it
contains. The likelihood of picking up a 1-guesser is twice the
likelihood of picking up a 2-guesser, three times the likelihood

'Here, n™* marks a range of guesser complexity. Guessers with
higher complexity are not allowed by design. This was used in
Ref. [38], but it becomes irrelevant in the experiments of the current
manuscript, as we will see.
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of picking up a 3-guesser, and so on. In this way, in average,
guessers are offered a chance to guess a same number of
bits.

The guesser picked up for evaluation (a 5-guesser in Fig. 9)
is presented with a newly generated m-environment. This
environment is created randomly and on the spot, such that
the ecosystem as a whole is evaluated over a subset of the m-
environment ensemble (E™ C E™, as described above). The
selected guesser first comes up with the best guess given the
specific m-environment that has been generated. This implies
two important things: (i) We are again looking at limitations
set up by the guesser complexity, as we decide to evaluate the
best inference possible given the size, n, of the guesser (which
determines its computational capabilities). (ii) All n-guessers
are equivalent to each other given the environment. This is
so because we wish to find differences, hopefully, that are
only due to the computational specifications of guessers and
environments. Note, however, that two different n-guessers
with a same n evaluated at different times will be confronted
with different m-environments—thus their best guesses would
differ (because they are determined by the environment). Note
also that if we would evaluate a same guesser twice on a
same specific m-environment, while it would end up with
a same internal model I', this might generate two different
behaviors (W) because the later also depend on the position
of the environment onto which the guesser is dropped. Note
that 2-guessers in Fig. 9(a) show different W.

Guessers accumulate reward over time (o(¢)) as described
in the main text. If this reward is kept positive, then the
guesser survives. If this reward doubles a “metabolic load”
(p > 2npp), then the guesser gets replicated [Fig. 9(b)] and
produces a new guesser with the same n. This new guesser
occupies a random position of the ecosystem. This random
position might be empty or occupied by another guesser. In
this case, the older guesser is substituted by the new one.
If p(t) < 0, then the guesser dies [Fig. 9(c)]. Its spot in the
ecosystem is occupied by a 0-guesser (i.e., an empty space).
When computing the average complexity of an environment
(i.e., the average n of the guessers contained), empty spaces
are scored as a 0-guesser. This is how ecosystem complexity
in Fig. 6 of the main text drops to 0.

Besides m, experiments with simple ecosystems have fixed
values of other model parameters such as « and py. Together,
they determine what guesser complexity survives and which
dies off. For example, very stringent environments have large
o and they offer very little reward per guessed bit (as com-
pared to the cost of attempting a guess). In these cases, more
complex guessers (which make more correct guesses per at-
tempt) might be favored. Furthermore, in the current paper
we have introduced a static parasite to such environments
(Sec. III C of the main text). This also affects what guessers
survive, as shown in Fig. 6.

More interesting experiments are introduced by the coevo-
lution of hosts and parasites—and they bring about the most
alluring results in the paper concerning Red Queen dynamics.
To implement these experiments we introduce what we called
a shadow ecosystem, which is nothing but the possibility
that each guesser in a main ecosystem (which we refer as
hosts) might be infected each by a single parasite. Shadow
ecosystems are depicted as a box behind the main ecosystem
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FIG. 10. Ecoevolutionary dynamics. Host-parasite dynamics in
ecosystems are implemented through a shadow ecosystem such that
parasites are picked for evaluation along with their hosts.

in Fig. 10. In this version of the experiments, host guessers are
picked up for evaluation just as before (in Fig. 10, a 9-guesser
is selected). If there is a guesser in the same position of the
shadow ecosystem, then it is selected for evaluation as well.
(In the same figure, there is a 3-guesser parasite.) Evaluation
of the host proceeds as usual. Evaluation of the guesser pro-
ceeds as explained in the Methods section of the main text,
depending on whether we are dealing with a genotype or
phenotype parasite. The parasites in Fig. 10 affect genotypes.
The reward acquired by the parasite is subtracted from the
host’s accumulated reward.

If the host’s reward becomes negative (p(¢) < 0), then
it dies and it is removed from the experiment, leaving an
empty spot (0-guesser) behind. If the host was infected by
some parasite (i.e., if there was a parasite in the same posi-
tion of the shadow ecosystem), then it dies as well (again,
leaving a 0-guesser behind in the shadow ecosystem). If the
host doubles its replication threshold (p(f) > 2npg), then it
gets replicated. In doing so, it might displace an earlier host
guesser as explained above. If the host carries a parasite,
then it gets replicated as well. The minimal reward needed
to establish the daughter parasite (71p) is subtracted from the
daughter host. It might seem that hosts are attached to their
parasites forever, but a parasite might die because its reward
becomes negative after an unsuccessful evaluation (p(t) < 0).
Also, parasites might replicate independently of their host if
they accrue a reward:

p(t) > 2npo. (AD)
In this case, the daughter parasite will occupy a new, random
spot in the shadow ecosystem. By doing so, it might displace
an earlier parasite—thus changing the parasite that previously
infected some other host. Parasite replication is resolved be-
fore host death, so that the daughter of the parasite of a dying
host (as in Fig. 10) lives on.

The model is limited in that guessers must be smaller than
their environment. To ensure this, if a daughter parasite was
relocated to a spot in which a host is less complex than the
incoming parasite, then the host is removed from the exper-
iment altogether and the parasite is promoted to the main
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ecosystem. We understand that this is what happens if a para-
site is relocated to an empty spot, where a 0-guesser dwelt.
Our experiments indicate that this mechanism is seldom
used, since hosts and parasites sustain a gap of complexity
that prevents parasites from becoming more complex than
hosts.

The final element of this experiment is the evolutionary
dynamics. Besides the mode of replication just described, both
hosts and parasites might mutate. Mutation is enabled only if
a guesser accrues enough reward to satisfy the metabolic load
of a guesser with just a unit longer [i.e., (n 4+ 1)pq for hosts,

(7 + 1)py for parasites]. That is, mutation is possible if
p) > (2n+ 1D)po

for hosts and if
p@t) > (2n+ 1)po

for parasites. If this happens, then mutation ensues with prob-
ability p,. If a mutation takes place, then it results in a
guesser of less complexity (n — n — 1 for hosts, i1 — 71 — 1
for parasites) or in a guesser of more complexity (n — n — 1
for hosts, i — i — 1 for parasites) with equal chance.
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