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Ultimately, the eventual extinction of any biological population is an inevitable outcome. While extensive
research has focused on the average time it takes for a population to go extinct under various circumstances,
there has been limited exploration of the distributions of extinction times and the likelihood of significant
fluctuations. Recently, Hathcock and Strogatz [D. Hathcock and S. H. Strogatz, Phys. Rev. Lett. 128, 218301
(2022)] identified Gumbel statistics as a universal asymptotic distribution for extinction-prone dynamics in a
stable environment. In this study we aim to provide a comprehensive survey of this problem by examining a
range of plausible scenarios, including extinction-prone, marginal (neutral), and stable dynamics. We consider
the influence of demographic stochasticity, which arises from the inherent randomness of the birth-death process,
as well as cases where stochasticity originates from the more pronounced effect of random environmental
variations. Our work proposes several generic criteria that can be used for the classification of experimental
and empirical systems, thereby enhancing our ability to discern the mechanisms governing extinction dynamics.
Employing these criteria can help clarify the underlying mechanisms driving extinction processes.
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I. INTRODUCTION

Biological populations are inevitably destined for extinc-
tion. Over 99% of all known species that have ever existed on
earth have already become extinct and the others are await-
ing their inevitable turn. The concern over the anthropogenic
acceleration of extinction rates has sparked heated debates
in the past decade regarding whether such acceleration is
indeed observed in local populations [1,2] and, if so, what
are the global implications of this change. Understanding
the likelihood of extinction under specific conditions and the
distribution of extinction times is crucial for predicting future
extinction events and assessing the threat to biodiversity. The
same questions also arise when the objective is to eliminate a
particular biological entity, such as in the case of pest control,
pathogen eradication, or combating genetic diseases.

The dynamics of biological populations is influenced by
deterministic and stochastic factors. At the deterministic level,
the dynamics can be classified into two main types: those
attracted to a manifold (such as a fixed point) with finite
population and those attracted to an extinction point. In the
latter case the population decays over time towards zero.
Populations of the first type would be expected to persist
indefinitely, while populations of the second type disappear. In
the common case of exponential decline, the extinction time
is logarithmic in the size of the original population.

Stochasticity makes this picture much more subtle. Since
the state of zero population is an absorbing state, the ultimate
fate of any stochastic dynamics is extinction. The sharp dis-
tinction between extinction-prone and stable populations thus
blurs, and the focus must switch to the characteristics of the
extinction process and in particular to the statistical properties
of extinction times.

Typically, stochasticity in biological systems is quite
strong, even under extremely stable experimental conditions

[3]. Stochastic fluctuations are usually classified into two
categories, demographic stochasticity (or genetic drift or inter-
nal noise) and temporal environmental stochasticity (extrinsic
noise) [4]. Demographic noise reflects the inherent random-
ness of the birth-death process caused by small-scale random
events that affect the reproductive success of individuals in an
uncorrelated manner. Temporal environmental stochasticity
(TES) is associated with large-scale events that affect entire
populations. Mathematically speaking, this implies that the
parameters of a given model (usually, the growth rates) vary
in time, where the amplitude and correlation times of the fluc-
tuations characterize the environment. Abundance variations
induced by TES are usually proportional to the population
size, whereas those induced by demographic stochasticity
scale with the square root of population size. Therefore, demo-
graphic stochasticity is typically negligible when population
size is large [5–10], but it becomes important at the brink of
extinction or during invasion [11–14].

This brings us to a third type of systems: those in which the
deterministic dynamics is weak or negligible and stochasticity
is the main, or only, driver of fluctuations. In this case, we are
talking about neutral dynamics, a topic of great importance
in population genetics and community ecology [9,15–17].
In sum, our classification consists of six types of systems:
persistent, extinction prone, and neutral, each of which can
be analyzed under pure demographic noise or under a combi-
nation of demographic and environmental stochasticity.

In recent works, Strogatz and Hathcock [18,19] analyzed
the distribution of extinction times for an extinction-prone
(negative growth rate, exponentially decaying) population
with pure demographic stochasticity. These authors found
a universal asymptotic behavior, i.e., that the fluctuations
around the expected extinction time obey a Gumbel distribu-
tion. Furthermore, the width of this distribution is extremely
narrow: While the deterministic mean time to extinction scales
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with the logarithm of the initial population size N0, the width
is N0 independent. Therefore, relative fluctuations around the
mean vanish as N → ∞.

Here we would like to extend the work of Hathcock and
Strogatz [19] and consider the statistics of extinction times in
all six typical scenarios mentioned above. Some of these cases
have already been discussed in the literature and we provide
the relevant details below. Still, we believe that there is great
benefit in presenting a complete picture, including both orig-
inal and former works, so that a researcher interested in this
topic can compare and contrast the different alternatives. In
what follows we devote a single section to each of the six
scenarios and in the last section we will discuss the results
and provide a general outlook.

II. EXTINCTION-PRONE DYNAMICS IN A FIXED
ENVIRONMENT

In this section we first revisit the class of systems consid-
ered by Hathcock and Strogatz [19], presenting in Sec. II A
an alternate derivation of the fact that the Gumbel distribution
is a universal limit. In Sec. II B we provide an example of a
non-Gumbel scenario and analyze some of its features, from
which a few aspects of the general picture emerge.

Special attention is directed to the relationship between
the average lifespan of a population and the width of the
distribution (variance-mean ratio, also known as the index of
dispersion or Fano factor). In the Gumbel cases the mean time
to extinction diverges (albeit logarithmically) at the large-N
limit, while the width of the distribution remains constant.
Therefore, fluctuations become negligible in large systems.
This characteristic reflects the negligible effect of demo-
graphic noise when the abundance is large.

In certain systems, as we will explore, the average time to
extinction is unaffected by the initial population size. In such
cases, even in the limit of large initial size, the mean-variance
ratio is O(1), indicating significant fluctuations. Specifically,
we examine a population-genetics model for diploids with
dominance and offer insights into the broader scenario.

A. Density-independent dynamics and Gumbel statistics

We begin with a simple example in which the general
answer is attainable and suggest an argument for the general
case.

Let us consider a system with no density-dependent effects.
In that case, for any single individual the birth and death rates,
per unit time, are fixed, i.e., are independent of the state of
other individuals. The death rate is taken to be μ and the birth
rate is λ. If the population is extinction prone, μ > λ.

The chance Pn(t ) of having n individuals at time t satisfies
the differential equation

dPn(t )

dt
= μ(n + 1)Pn+1 + λ(n − 1)Pn−1 − (μ + λ)nPn. (1)

We would like to solve this equation and find P0, the chance
of extinction, given that Pn(t = 0) = δn,N0 . To do that we

introduce the generating function

G(x, t ) =
∞∑

n=0

Pnxn, (2)

obeying

Ġ = μ
∑

n

xn(n + 1)Pn+1 + λ
∑

n

xn(n − 1)Pn−1

− (μ + λ)
∑

n

xnnPn. (3)

Redefinition of indices yields a first-order differential equa-
tion for G,

Ġ = μG′ + λx2G′ − (μ + λ)xG′ = [μ + λx2 − (μ + λ)x]G′

= Q̃(x)G′. (4)

Equation (4) is a first-order equation that may be solver us-
ing characteristics [20]. Every function of the form G(F (x) +
t ) will solve Eq. (4) if dF/dx = 1/Q̃(x). For Eq. (4) the
desired F is

F (x) =
ln

(
x−1

λx−μ

)
λ − μ

. (5)

What is left is to determine the functional form of
G[F (x) + t], and this has to do with the initial condition.
Suppose at t = 0 we have only one individual. In that case,
by definition G(x, t = 0) = x and

G−1(F (x)) = x. (6)

The solution for Eq. (6) is

G(F, t = 0) = μe(λ−μ)F − 1

λe(λ−μ)F − 1
. (7)

Therefore the generating function at any time t is

G(F, t ) = μe(λ−μ)(F+t ) − 1

λe(λ−μ)(F+t ) − 1
=

μe(λ−μ)t
(

x−1
λx−μ

) − 1

λe(λ−μ)t
(

x−1
λx−μ

) − 1
. (8)

Hence, the chance Q(t) that at time t the lineage of a given
individual has already gone extinct is

Q1→0(t ) = 1 − μ − λ

μet (μ−λ) − λ
. (9)

Since the dynamics of the lineages of all individuals are
statistically identical (no density-dependent effects), if the
population at t = 0 has N0 individuals,

QN0→0(t ) =
(

1 − μ − λ

μe(μ−λ)t − λ

)N0

. (10)

To see the connection between the distribution (10) and
the Gumbel distribution, let us measure time in units of μ

and define a decay parameter κ = 1 − λ/μ. When N0 → ∞,
the time t in which all individuals goes extinct is large and
therefore

QN0→0(t ) ≈ e−κN0e−κt
. (11)

The chance of extinction at t is P(t ) = dQ/dt .
Now let us define t = (s + ν)/κ , where ν = ln(βN0) is the

point at which the large-N0 distribution of extinction times,
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FIG. 1. (a) Distribution of extinction times P(t ) for extinction-prone populations when stochasticity is purely demographic. The dynamics
is logistic, with finite carrying capacity N0. In the presence of N individuals the total death rate is N and the total birth rate is 0.5N (1 − N/N0);
the initial population was taken to be N0. The Gumbel distribution parameters β = √

6 Var[t]/π 2 and μ = E[t] − γEβ (γE is Euler constant)
were extracted for each N0. (b) Plot of a histogram of the adjusted variable z = (t − μ)/β, showing that all data collapse and fit the Gumbel
distribution exp{−[z + exp(−z)]} (black solid line). Small deviations are observed for N0 = 10 and 100, but above these numbers there is
perfect agreement between the predicted and the observed distribution. The mean and the variance for each N0 are shown in the insets in
(b). While the mean grows linearly with ln N0 (top inset) the variance saturates (bottom inset) to its predicted value for κ = 1

2 , namely,
2π 2/3 ≈ 6.58.

P(t ), is peaked, so the second derivative of the cumulative
distribution Q(t ) vanishes. With that definition,

P(s) = e−(s+e−s ), (12)

which is the cumulative distribution function of the Gumbel
distribution whose scale parameter is β = 1/κ and its mode
is μ = ν/κ . The standard deviation of this distribution is
π/

√
6κ2, an O(1), N0-independent number.

The variance-mean ratio (VMR) is then

VMR = π2

6κ (ν + γE )
= π2

6κ (ln N0 + γE − ln κ )
, (13)

where γE is Euler’s number. Importantly, this ratio decays like
1/ ln N0 in the large-N0 limit. As explained in the Appendix,
the effect of demographic stochasticity is negligible out of
the extinction zone in which n < nc. In the region dominated
by demographic noise, the dynamics is more or less neutral
(discussed in Sec. IV) and hence the variance of extinction-
time distribution is proportional to nc. For extinction-prone
systems with no density dependence, nc is N0 independent (see
the Appendix). This feature may change in other scenarios, as
demonstrated in Sec. II B.

The general result of Hathcock and Strogatz [19] may
be interpreted as follows. Once the population is in decline,
the intraspecific interactions are usually negligible. The ques-
tion of extinction time of N0 individuals is thus governed by
the chance of the last lineage to go extinct. In the large-N0

limit this becomes the classical extreme-event problem, so
as long as the chance of a single lineage to persist decays
exponentially at long times, the limit distribution is Gumbel
[21]. The same answer holds for any other single-lineage
extinction-time distribution which is neither compact nor fat
tailed. The Gumbel statistics is demonstrated, in Fig. 1, for
logistic dynamics with negative growth rate.

B. Density-dependent dynamics: Non-Gumbel scenarios

As pointed out by Hathcock and Strogatz [19], the Gumbel
distribution is a universal asymptotic limit of many extinction-
time statistics provided the rates of demographic events
(transition rates) decrease linearly towards zero in the vicinity
of the extinction point. This property reflects the weakening of
the interactions between individuals in the extinction zone, so
the rate of events is linearly proportional to the number of in-
dividuals. When this condition is not fulfilled, the distribution
is not Gumbel. In this section we consider a specific example
and then we derive a few formulas that provide insights into
the more general cases.

As a realistic example, let us consider a population-
genetics model for diploids with dominance [22–24]. This
model describes the dynamics of two alleles A and a in a
randomly mating diploid population. The allele A is always
dominant to a, so the phenotype of an aA heterozygote is
the same as the phenotype of AA. If the fraction of a al-
leles in the gamete pool is x and the fraction of A is 1 −
x, then, after random mating, the zygote genotypes follow
classic Hardy-Weinberg proportions, with AA:Aa:aa as (1 −
x)2:2x(1 − x):x2.

Setting the fitness of AA and Aa phenotypes to unity and
the fitness of aa to f < 1, one expects the a allele to disap-
pear from a well-mixed fixed-size population. This purifying
selection process is however very slow for small x, because
an individual will only suffer from low fitness when both of
its alleles are of type a. Since the number of a homozygotes
is proportional to x2, the process is always density dependent
and one expects a non-Gumbel skewed distribution.

Figure 2 shows results from a simulation of this process.
In each time step one individual is chosen to die, so with
probability x2 two a alleles are lost, with probability 2x(1 − x)
only one a is lost, and the chance of zero a loss is (1 − x)2.
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FIG. 2. Diploid with dominance: distribution of normalized ex-
tinction times P(z) vs z (using the adjusted variable z = (t − μ)/β,
where β = √

6 Var[t]/π 2 and μ = E[t] − γEβ), where t is the time
to extinction of the a allele whose fitness is f = 1

2 . Here N is the
a allele initial frequency, out of total population of 2N0 alleles (N0

diploid individuals). Results are shown for N0 = 200 and 400 (each
statistic reflects 105 numerical experiments). Both distributions are
almost identical and differ substantially from the Gumbel curve
(black line). The inset shows the mean (black circles) and the stan-
dard deviation (red squares) for the same system, plotted vs

√
N0 for

N0 = 100, 200, 400, 800, 1600. Both quantities scale linearly with√
N0, so the variance-mean ratio is finite even in the thermodynamic

limit.

Then a new individual is introduced, whose two alleles are
chosen at random from the gamete pool in which the fraction
of a is now

f x2 + x(1 − x)

f x2 + 2x(1 − x) + (1 − x)2
. (14)

Although the distribution of the standardized variables is
again narrow and appears to be N independent, it does not
satisfy Gumbel statistics, as demonstrated in Fig. 2. More
importantly, as demonstrated in the inset of Fig. 2, both the
mean and the standard deviation scale with the square root of
N0 and therefore the width of the distribution is proportional
to its mean even in the large-N0 limit.

These examples suggest a general insight as to the N0 scal-
ing of the width of the distribution and its mean. As explained
in the Appendix, the width reflects the effect of demographic
stochasticity, which is relatively weak and becomes prominent
only when the deterministic forces are tiny. A population
undergoing demographic stochasticity and decline can be de-
scribed by the Langevin equation

dn = −κnpdt − σd
√

ndW, (15)

where κ is the decay coefficient (related to κ and f in the
above examples), p is the power that characterizes the in-
teraction between individuals in the dilute limit (p = 1 for
exponential decay with no interactions and p = 2 for diploids
with dominance), and σd is the amplitude of demographic
variations. The last term in Eq. (15) becomes important only
below n < nc. In the Appendix we show that nc ∼ N (p−1)/p

as long as p > 1, and nc is O(1) for p � 1. For n < nc the
dynamics is neutral (discussed in Sec. V), so the contribution
of this extinction zone (both to the mean time to extinction
and to its standard deviation) is proportional to nc. The regime
n < nc is the only place in which demographic fluctuations are
important, so the variance of the extinction-time distribution
is n2

c .
The mean time to extinction, on the other hand, is the sum

of the deterministic timescale, i.e., the time required to decline
from N0 to nc, and the stochastic period that scales with nc.
The deterministic timescale for the dynamics described by
Eq. (15) is N p−1

0 for p < 1, log N0 for p = 1, and O(1) for
p > 1. Accordingly, the variance-mean ratio goes to zero if
p � 1 (assuming both N0 and N diverge together). For p > 1,
the mean and the standard deviation both have the same scal-
ing with nc ∼ N (p−1)/p, so the variance-mean ratio diverges as
N and N0 go to infinity.

III. EXTINCTION-PRONE DYNAMICS
IN A STOCHASTIC ENVIRONMENT

In this section we consider the scenario of an extinction-
prone population influenced by environmental stochasticity.
In that case, Lande and Orzack [25] and Dennis et al. [26]
suggested an inverse Gaussian statistics of extinction times.
Here we recapitulate their argument while detailing the differ-
ences between this system and the systems we surveyed in the
preceding section and clarifying when and how to use it.

In what follows, the term “environment” encompasses any
external factor that impacts the demographic rates of an en-
tire population, including factors such as competition and/or
predation pressure from other species. When the environment
undergoes stochastic variations, the birth and death rates of
the population also fluctuate. Consequently, the overall growth
rate (birth rate minus death rate) experiences corresponding
variations, leading the population to exhibit either growth or
decay. The population is prone to extinction if its mean growth
rate is negative [27,28].

Let us reemphasize the distinction between demographic
and environmental stochasticity. Stochasticity, in both of its
forms, can be attributed to fluctuations in the environment.
The distinction between these two forms of stochasticity has
to do with their range. When the mean demographic rates
remain constant over time and the fluctuations affect individ-
uals in an uncorrelated manner, it is considered demographic
noise. On the other hand, if an entire population is affected by
the stochasticity, it is classified as environmental stochastic-
ity. Demographic noise is commonly characterized as white
noise, where different birth or death events are uncorrelated
in time. In contrast, the correlation time becomes a significant
characteristic of environmental variations.

Specifically, let us consider a simple, purely environmen-
tal, two-state system (telegraphic noise). We assume that the
environment may be in either of two states, say, state 1 and
state 2. The environment remains in a particular state for a
certain duration (referred to as the dwell time, which is con-
sidered the unit time of the process) before switching to the
alternative state with a probability of 1

2 . In each of these states
of the environment, the population either grows exponentially
or decreases exponentially, so if the number of individuals
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is n, ln n increases or decreases linearly with time between
switches.

When the number of individuals is large, demographic
stochasticity is negligible with respect to environmental
stochasticity [4]. Therefore, in many studies the effect of
demographic stochasticity is taken into account only by in-
troducing a threshold at a given density, below which the
population is considered extinct. Recent analyses suggest that
this threshold has to be taken to be the value of N at which the
strength of demographic stochasticity is equal to the strength
of environmental stochasticity [14,29].

Once demographic stochasticity is neglected, the dynamics
of n is simply n(t + τ ) = n(t ) exp(ζ τ ), where τ is the dwell
time and ζ is the (time-dependent) growth exponent (if the
environment admits two states, ζ is either ζ1 > 0 or ζ2 < 0).
Taking τ as the unit time, one arrives at

xt+1 = xt + ζt , (16)

where x = ln n. The random walk in x space is characterized
by the mean and the variance of ζ , namely, κ = ζ = (ζ1 +
ζ2)/2 and σ 2 = Var[ζ ], where κ , the decline rate, is assumed
to be negative.

When the initial population N0 is large, the problem is
mapped to the classical first-passage time for a biased random
walker. Accordingly, if x0 = ln N0 is the initial location of
the random walker and x1 = ln(Nth ) is the threshold density
below which the population is considered extinct, the prob-
ability distribution function for the time required to cross
the logarithmic-space distance �x = x0 − x1 = ln(N0/Nth ) is
given by the inverse Gaussian distribution [25,26]

P(t ) = �x

σ
√

2πt3
e−(�x−κt )2/2σ 2t . (17)

The mean of this distribution is E[t] = �x/κ and its variance
Var[t] = E[t]σ 2/κ2. Therefore, the variance-mean ratio in
that case is N0 independent, VMR = σ 2/κ2.

The chance of the system to survive until t (i.e., the cumu-
lative distribution function) is given by

Q(t ) = 1

2

[
1 − erf

(
κt − �x√

2tσ 2

)
− e2κ�x/σ 2

erfc

(
κt + �x√

2tσ 2

)]
.

(18)

In the case of exponential decay (p = 1) with pure de-
mographic noise considered in Sec. II, the mean time to
extinction is also logarithmic in the initial population size,
but the variance and the higher cumulants are O(1). Here
both the mean and variance are linear in ln N , so the dis-
tribution is much wider than the one that characterizes the
purely demographic case. When the noise is demographic,
its effect becomes non-negligible only when the number of
individuals n is O(1) (i.e., smaller than Nth), while for systems
with environmental stochasticity the noise affects the system
all the way down from N0 to extinction, no matter how large
N0 is.

The given example focuses on a specific example, namely,
telegraphic noise. However, at its core, the analysis considers
the dynamics of a random walker (in the logarithmic-
abundance space) with a bias. It can be shown (see, e.g.,
[28], Appendix) that, as long as the logarithmic-abundance

steps are not excessively large, the diffusion approximation is
applicable and the long-term characteristics of the dynamics
are solely influenced by the mean and the variance of the ζ (t )
process. Therefore, the results presented above remain valid.

IV. MARGINAL DYNAMICS WITH PURE DEMOGRAPHIC
STOCHASTICITY: THE NEUTRAL MODEL

In Secs. II and III we focused on the persistence time
statistics of populations prone to extinction. In the next two
sections our aim is to examine the same question but with a
focus on marginal populations. These populations are charac-
terized by deterministic dynamics that support a marginally
stable manifold, which includes the extinction state. A classic
example is the case of competition between two popula-
tions or two types that possess identical fitness. For instance,
consider two genotypes that differ only by a synonymous
mutation, resulting in the same phenotype. In that case, and
in general on a marginally stable manifold, stochasticity is the
only driver of abundance variations.

The famous neutral models proposed by Kimura [15,30]
in population genetics and Hubbell [16,17,31] in community
ecology address such systems, where the main driver of dy-
namics (up to relatively rare mutation or speciation events) is
demographic stochasticity. Under neutral dynamics, species
identity is irrelevant. One can consider a single species as
a focal species and pool over the effect of all other species
together as a single entity (an effective rival species). There-
fore, in what follows we derive the appropriate formulas for
a single species within a community of N individuals, whose
dynamics ends at one of the two absorbing states, i.e., the zero
abundance state (extinction) or at abundance N (fixation).

The systems considered in previous sections admit de-
terministic decline dynamics, so ultimately the overall pop-
ulation never grows beyond its initial value N0 and hence
extinction times and extinction statistics are governed by N0,
the initial abundance, and not by N , the maximum carrying
capacity. Under neutral dynamics, a population may either
decline to extinction or grow to fixation and therefore N sets
the relevant timescales. When N → ∞ (no fixation), the time
to extinction for N0 individuals is given by the limit μ → λ

of Eq. (10) above. For finite N the value of N0 affects the
statistics only through its relationship with N , as explained
below.

A. Case I: A macroscopic population

In a neutral model with pure demographic stochasticity,
one considers the dynamics of x = n/N , where n is the num-
ber of individuals of a given focal species and N is the total
number of individuals. In this section we assume that the
initial frequency N0/N is O(1). We would like to obtain the
statistics of absorption (either fixation or extinction) times
where the dynamics of P(x, t ) is given by

∂P(x, τ )

∂τ
= ∂2

∂x2
[x(1 − x)P(x, t )],

P(0, τ ) = P(1, τ ) = 0, P(x, τ = 0) = δ

(
x − 1

2

)
. (19)

Here τ is the dimensionless timescale t/N .

044406-5



DAVID A. KESSLER AND NADAV M. SHNERB PHYSICAL REVIEW E 108, 044406 (2023)

Defining

W (x, τ ) = x(1 − x)P(x, τ ), (20)

W satisfies

∂W (x, τ )

∂τ
= x(1 − x)

∂2W (x, t )

∂t2
. (21)

Taking W (x, τ ) = Wm(x)eλmτ , the equation for the eigenfunc-
tions Wm(x) and the eigenvalues λm is

∂2Wm(x)

∂t2
− λm

Wm(x)

x(1 − x)
= 0. (22)

The general solution of (22) is a linear combination of
two independent functions. One is a Meijer G function that
diverges at the origin, so its contribution must vanish [since
P(x) vanishes at x = 0 and at x = 1, so does W ]. Thus the
solution, up to a constant, is given by the other solution, which
vanishes at x = 0,

Wm(x) = x 2F1
( 1

2 (1 −
√

1 − 4λm), 1
2 (1 +

√
1 − 4λm); 2; x

)
,

(23)

where 2F1 is the hypergeometric function.
The λm are determined by the condition W (x = 1) = 0,

which yields

Wm(x) = cos
(

1
2π

√
1 − 4λm

)
πλm

. (24)

Therefore,

λm = −m(m + 1). (25)

Since m is an integer, the corresponding eigenfunction simpli-
fies to

Wm(x) = x 2F1(−m, m + 1; 2; x) = xP(1,−1)
m

1 − 2x

m + 1
, (26)

where the P(α,β )
m (x) are Jacobi polynomials. Accordingly, the

general solution to Eq. (22) takes the form

W (x, τ ) =
∞∑

m=1

AmWm(x)e−m(m+1)τ . (27)

The m = 0 (time-independent) term yields a non-
normalizable probability function and therefore it has been
excluded.

The constants Am are determined by the initial condition.
The orthogonality relationships of the Jacobi polynomials,
when translated to functions of 1 − 2x, are∫ 1

0

x

1 − x
P(1,−1)

m (1 − 2x)P(1,−1)
n (1 − 2x) = δn,m

m + 1

m(2m + 1)
.

(28)

To find Am from W (x, 0) = x(1 − x)δ(x − 1
2 ) one multi-

plies both the left- and the right-hand side of this equation by
P(1,−1)

n (1 − 2x), integrates over x from zero to one, and ap-
plies the relationship (28). That yields

Am
1

m(2m + 1)
=

{
0 if m even
P(1,−1)

m (0)
m+1 = (−1)m1Cm1

2m if m odd,
(29)

where m = 2m1 + 1 and Cm1 = (2m1)!/m1!(m1 + 1)! are the
Catalan numbers.

The chance to survive until t , Q(t ), is given by the integral
of P(x) over x from zero to one. Using Eq. (27), the definition
(20), the relationships between Jacobi polynomials and W ,
and the integral∫ 1

0
dx

xP(1,−1)
m (1 − 2x)

x(1 − x)
= 2

m
, (30)

one finds

Q(t ) =
∫ 1

0
dx

∞∑
m=0

A2m+1
W2m+1(x)

x(1 − x)
e−(2m+1)(2m+2)τ

=
∞∑

m=0

(−1)m+1Cm

22m+1
(4m + 3)e−(2m+1)(2m+2)τ . (31)

Accordingly, the chance of extinction at τ , P (t ), is

P (t ) = −dQ(t )

dt
= 1

N

∞∑
m=0

(−1)mCm

22m+1
(2m + 1)(2m + 2)

× (4m + 3)e−(2m+1)(2m+2)t/N . (32)

Figure 3 shows the correspondence between the predicted and
the measured P (t ).

Following the calculation that leads to Eq. (49) below, one
obtains an expression for the asymptotic behavior of the nth
moment of the extinction-time distribution

t n = BnNnn! ln(2). (33)

The numbers Bn are given by a complicated set of hyper-
geometric functions; however, B1 = 1 and in general Bn ≈
exp[−0.68(n − 1)] provides an excellent approximation for
the first ten moments, as demonstrated in Fig. 3. The mean
and the variance are then

t = N ln 2, Var[t] = (2B2 − 1)(N ln 2)2, (34)

so the VMR scales like N .

B. Case II: A single neutral mutant

Let us now consider the case of other initial conditions
W (x, 0) = x(1 − x)δ(x − x0) and in particular the survival-
time distribution of a single mutant x0 = 1/N . Now the
general solution for W (x, τ ) takes the form

W (x, τ ) =
∞∑

m=1

m(2m + 1)

m + 1
x0P(1,−1)

m (1 − 2x0)xPm(1 − 2x)

× e−m(m+1)τ . (35)

Dividing by x(1 − x) and integrating over x,

Q(x, τ ) =
∞∑

m=1

(2m + 1)

m + 1
x0P(1,−1)

m (1 − 2x0)e−m(m+1)τ . (36)

If N is large, for the dynamics of a single mutant (x0 =
1/N) one may use the Mehler-Heine formula for the Jacobi
polynomials [32],

P(1,−1)
m (1 − 2/N ) ≈

√
NJ1

(
2m√

N

)
, (37)
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FIG. 3. (a) Extinction probability at t , P (t ), plotted against t for populations of N = 20, 50, and 100. The initial condition is n(t = 0) =
N/2, namely, x = 1

2 . The result of Eq. (32) (solid curves) are compared with the normalized distribution obtained numerically (open circles).
In the numerical experiment, the chance of the focal population to increase, or to decrease, by one unit in each elementary step is 1

2 , and in
each elementary step time is incremented by 1/2x(1 − x). (b) Theoretical prediction for the moments [Eq. (33), dashed lines] compared with
the moments of these distributions (closed markers).

where J1 is the first Bessel function. Accordingly,

Q(x, τ ) ≈ 1

N

∞∑
m=1

(2m + 1)

m + 1
J1

(
2m√

N

)
e−m(m+1)τ . (38)

Since J1 vanishes at zero, the small-m behavior yields a
negligible contribution to the sum. This facilitates the approx-
imation

Q(x, τ ) ≈ 2

N

∫ ∞

x=1
J1

(
2x√

N

)
e−x2t/N = 1 − e−1/t − 1 − e−t/N

t
,

(39)
so the chance of the lineage of a single mutant to reach
extinction at t is

P (t ) = −dQ(t )

dt
= e−1/t

t2
− 1 − e−t/N (1 + t/N )

t2
. (40)

The first moment may be obtained from this expression, and
one gets t = ln N + 1 − 2γE , where γE is Euler’s gamma.
To get the higher moments we implement the procedure de-
scribed above, t n = − ∫

t n(dQ/dt )dt ,

t n = n!Nn−1
∞∑

m=1

2m + 1

mn(m + 1)n+1
P(1,−1)

m (1 − 2/N ). (41)

Since the main contribution comes from the small-m region,
we can approximate P(1,−1)

m (1 − 2/N ) ≈ (m + 1) and there-
fore

t n = n!Nn−1
∞∑

m=1

2m + 1

mn(m + 1)n
. (42)

Figure 4 demonstrates the validity of these results.
Note that the time required for a single mutant to be

absorbed follows a logarithmic scaling of ln N , whereas the
time for a macroscopic population scales linearly with N .
Additionally, the variance of extinction times for a single
mutant is O(N ), while for a macroscopic population, it scales
with N2. In general, the ratio between the moments described

in Eq. (42) and the corresponding moments in Eq. (33) is
the factor N . This characteristic highlights the fact that an
individual either goes extinct within a timescale of O(1) or,
with a probability that scales like 1/N , avoids extinction and
achieves macroscopic population sizes.

V. MARGINAL DYNAMICS WITH ENVIRONMENTAL
STOCHASTICITY: THE TIME-AVERAGED

NEUTRAL MODEL

The neutral model, for which we provided the extinction
analysis in the preceding section, was initially introduced
by Kimura as a model describing competition between two
alleles with equal fitness and later (with certain modifications)
was implemented by Hubbell to describe the dynamics of an
ecological community in which all species have equal fitness.
Both variations of the model gained immense popularity. In
particular, its community ecology version successfully ex-
plained the distribution of species abundance in high-diversity
assemblages using a small number of parameters [15–17,31].

However, it seems that the neutral model fails to capture the
dynamics of ecological communities. According to the neutral
model, which contains only demographic stochasticity and
so generates binomial noise, one expects the per-generation
changes in abundance to be proportional to the square root of
population size. In practice, changes in abundance are usu-
ally much larger [33] and usually scale with population size
as expected in systems where stochasticity is environmental
[5,6], not demographic. Similarly, the times to the most recent
common ancestor proposed by the neutral model are way too
long [34,35], also reflecting the unrealistic slowness of the
demographically driven neutral dynamics.

To address these issues, the time-averaged neutral model
of biodiversity was proposed [9,36,37]. This is essentially a
neutral model with temporal environmental stochasticity. Like
the original neutral model, the dynamics is purely stochas-
tic, but in this model, the stochasticity has two sources,
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FIG. 4. (a) Extinction probability of a single mutant [n(t = 0) = 1] at t , P (t ), plotted against t for a population of N = 100 000. The result
of Eq. (40) (solid curve) is compared with the normalized distribution obtained numerically (open circles). (b) Theoretical prediction for the
moments [Eq. (42), dashed lines] compared with the moments of these distributions (closed markers).

both demographic and environmental. All species have the
same time-averaged fitness, but at any given moment, there
are lower-fitness and higher-fitness species. This immediately
leads to abundance variations that scale with population size,
as expected, and the theory accounts for both static and dy-
namic patterns of community assembly [9].

In the following treatment, we consider a focal species
representing a fraction x of the community, competing with
all other species representing a fraction 1 − x of the same
community. Once again, we address the question of the distri-
bution of times until the focal species reaches either extinction
or fixation, this time under environmental noise. If we allow
ourselves to neglect the demographic noise, by replacing it
with an absorbing boundary condition for populations below
a certain threshold, what we obtain is an unbiased random
walk in logit (z = ln[x/(1 − x)]) space. Therefore, the prob-
lem reduces to the distribution of times for a one-dimensional
simple random walk with absorbing boundary conditions.
This problem was solved using a Laplace transform (see, e.g.,
[38] and references therein). Here we provide an alternative
eigenfunction-based solution.

Mathematically speaking, we consider the dynamics of a
population whose fraction x = n/N satisfies ẋ = ζ (t )x(1 −
x), where ζ (t ) is a zero-mean stochastic process whose
variance is σ 2. Therefore, the logit variable z ≡ ln[x/(1 −
x)] is an unbiased random walk z(t ) = z0

∫ t
ζ (t ′)dt ′. If the

threshold fraction xth = Nth/N 	 1, the boundary conditions
are, to the left, zth,L ≈ ln Nth/N and, to the right, zth,R ≈
ln N/Nth. Since there is no bias, the specific values is not
important and so we focus on the corresponding diffusion
equation

∂P(z, t )

∂t
= D

∂2P(z, t )

∂t2
,

P(0, t ) = P(L, t ) = 0, P(x, 0) = δ(z − L/2), (43)

where L = zth,R − zth,L.

The problem is thus equivalent to the heat equation in a
one-dimensional slab. The general form of the solution is

P(z, t ) =
∞∑

m=1

Am sin
(mπz

L

)
e−λmt , (44)

where

λm = Dm2π2

L2
. (45)

Thus, the solution that satisfies both the boundary and initial
conditions is

P(z, t ) =
√

2

L

∑
m

(−1)m sin

(
(2m + 1)πz

L

)
e−(2m+1)2τ ,

(46)
where τ ≡ π2Dt/L2.

The chance of the random walker to survive to time t ,
Q(t ), is

Q(t ) =
∫ L

0
P(z, t )dx = 4

π

∑
m

(−1)m

2m + 1
e−(2m+1)2τ . (47)

The chance of extinction at a given time t is −dQ/dt and
therefore the nth moment of t is given by

t n = −
∫ ∞

0
dt tn dQ

dt
= n

∫ ∞

0
dt tn−1Q(t )

= n

(
L2

π2D

)n ∫ ∞

0
dτ τ n−1Q(τ ). (48)

Evaluating the integral, one finds

t n = n!

42nπ

(
L2

π2D

)n[
ζ

(
2n + 1,

1

4

)
− ζ

(
2n + 1,

3

4

)]
,

(49)

where ζ is the Riemann zeta function. The agreement between
these theoretical predictions and the outcomes of a standard
Monte Carlo simulation is demonstrated in Fig. 5.
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FIG. 5. The nth moment of the extinction time, for a random
walker that started at z = L/2. In each step the random walker jumps
to the left or to the right with probability 1

2 , and time is incremented
by one unit. Moments were calculated for extinction times evalu-
ated in 105 numerical experiments for L = 200 (circles) and L = 20
(diamonds). Dashed lines are the corresponding predictions from
Eq. (49) with D = 1

2 .

Here the general scaling of the nth cumulant is L2n, so the
mean time to absorption scales like ln2 N and the variance
like ln4 N . As in the case of neutral dynamics with pure
demographic stochasticity, the VMR diverges as N → ∞.

For generic initial conditions P(z, 0) = δ(z − z0), Eq. (47)
is replaced by

Q(t ) =
∫ L

0
P(z, t )dz = 4

π

∞∑
m=0

sin[(2m + 1)πz0/L

2m + 1
e−(2m+1)2τ ,

(50)

so

t n = n!

42nπ

(
L2

π2D

)n ∞∑
m=0

sin[(2m + 1)πz0/L]

(2m + 1)2n+1
. (51)

The main contribution to this sum, even for n = 1, comes from
the small-m regime (see Fig. 6). When z0 → 0 (close to the
absorbing boundaries) the argument of the sine function is
negligibly small. Therefore, when z0 = ε the moments are

t n ≈ 4n!ε

L

(
L2

π2D

)n

(1 − 4−n)ζ (2n). (52)

Again there is a factor of 1/L between the single-mutant case
and the macroscopic population case, because the chance of a
single mutant to avoid extinctions on timescales that are O(1)
and reach macroscopic abundances is proportional to 1/L.

VI. STABLE POPULATIONS

Now let us discuss systems that exhibit deterministic dy-
namics with an attractive fixed point capable of supporting
large population. One example is the logistic system described
by the equation dn/dt = rn(1 − n/K ), where r > 0 (through-
out this section we refer to K as the number of individuals

FIG. 6. The nth moment of the extinction time, for a random
walker that started at z0 = 1. In each step the random walker jumps
to the left or to the right with probability 1

2 , and time is incremented
by one unit. Moments were calculated for extinction times evaluated
in 105 numerical experiments for L = 100 (circles) and L = 1000
(diamonds). Dashed lines are the corresponding predictions from
Eq. (51) with D = 1

2 .

in the equilibrium state). In such cases, the occurrence of
extinctions, even in the presence of stochastic fluctuations,
is relatively rare. We can think of the stochastic process as
a random walk biased towards the equilibrium state. For ex-
tinction (or approaching the zero-population point) to happen,
the random walker would need to take numerous steps against
the current, an event with an extremely low probability.

The stochastic dynamics of a stable system is some sort of
a random walk biased away from the extinction point. Given
that, the path to extinction consists of a series of implausible
steps, where any plausible step leads to an increase in the
population size. Therefore, the most probable decay path is
composed of a consecutive sequence of these implausible
steps. Under pure demographic stochasticity, this series re-
quires K consecutive death events without any birth event, and
the likelihood of this decreases exponentially as exp(−c1K ),
where c1 is some coefficient. In cases where environmental
variations allow for periods of negative growth rate, the most
probable path to extinction involves a long period T of adverse
conditions. The duration T scales logarithmically with K , re-
sulting in the frequency of extinctions, which is exponentially
rare in T , decaying as a power-law function of K . These
arguments were extensively discussed and presented in detail
in [27,28].

However, beyond the differences in the scaling of the
average extinction time with K , stable systems have a com-
mon characteristic that determines the distribution around that
mean. As mentioned, the extinction event is a rare fluctu-
ation and the typical timescale associated with the decline,
Td ∼ ln K , is much shorter than the persistence time of a
system in the asymptotic limit of large K . This separation
of timescales, between the decline time and the persistence
time, allows us to treat this stochastic process as a binomial
process in which, during each increment Td , an extinction
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TABLE I. Summary of the main results.

Scenario Mean Variance Distribution

extinction prone, demographic, density independent (p = 1) ln N0 O(1) Gumbel [Eq. (12)]
extinction prone, demographic, p > 1 N (p−1)/p N2(p−1)/p skewed (Fig. 2)
extinction prone, environmental ln N0 ln N0 inverse Gaussian [Eq. (17)]
neutral, demographic, macroscopic population N N2 Eq. (32)
neutral, demographic, single mutant ln N N Eq. (40)
neutral and environmental stochasticity, macroscopic population ln2 N ln4 N Eq. (46)
neutral and environmental stochasticity, single mutant ln N ln3 N Eq. (51)
stable population, demographic stochasticity exp(K ) exp(2K ) exponentiala

stable population, environmental stochasticity Kα (power law) K2α exponentialb

aFrom Refs. [39–41].
bFrom Refs. [27,28].

event occurs with a tiny probability. If extinction does not
happen, even if it almost happens (the population declines
to small abundance), the system recovers and returns to its
equilibrium state. Therefore, the lifetime distribution of stable
systems is simply an exponential distribution with an average
equal to the average persistence time, as shown in [28].

Mathematically, extensive efforts have been made to calcu-
late the mean time to extinction and determine its numerical
value, including the coefficient c1 mentioned earlier or the
prefactor of the exponential term [39–42]. These studies have
revealed that the spectrum of the Markov matrix governing
such a stochastic process exhibits several interesting proper-
ties. First, it supports an extinction state whose decay rate
(logarithm of its eigenvalue) is zero, indicating the absorbing
nature of the extinction state. Second, there exists a single
quasistationary state whose decay rate decreases to zero as
K increases. Finally, the decay rates of all other eigenstates
are O(1), independent of K . These results are in agreement
with the qualitative picture illustrated above: starting from an
arbitrary initial state, which is a linear combination of many
eigenstates of the corresponding Markov matrix, the system
converges to the quasistationary state on timescales that are
O(1) and then the survival probability decays exponentially.

VII. SUMMARY AND DISCUSSION

In this paper we have discussed the extinction-time statis-
tics in various generic scenarios. The main results we derived
or quoted are summarized in Table I. In the mean and in
the variance columns of this table we provided only the de-
pendences of the times on the relevant large parameter, be it
the initial population size N0, the total population N , or the
population at the attractive fixed point K .

It is worth dwelling on this point: the determining factor,
be it K , N0, or N . In a stable system, this factor is K , the
number of focal species individuals in the stable state. It is
independent of the initial population size N0, because the
system usually flows towards the stable state. Similarly, it
has nothing to do with the total carrying capacity N (how
many total individuals, regardless of species, are allowed in
the system).

In marginal and neutral systems there is no specific abun-
dance for a particular species. Accordingly, the determining

factor is the total carrying capacity of the system, N , because
every species has a non-negligible chance of reaching it re-
gardless of its initial size. In contrast, in an exponentially
decaying system, the initial condition N0 is the only important
factor since the population does not generally increase in
size.

An exceptional case is when a population undergoes
density-dependent extinction dynamics, as demonstrated in
the diploid with dominance dynamics. In this case, the deter-
ministic extinction time depends only weakly on the initial
population size. Therefore, the factor that governs extinc-
tion times is the width of the fluctuation-dominated region,
where the system exhibits neutral behavior. Consequently,
in these cases (p > 1) the important quantity is again N ,
since it determines the width of the stochastically dominated
zone.

The width of the distribution and the variance-mean ratio
are governed by the stochastic part of the dynamics. When the
origin of these fluctuations is demographic and the determin-
istic forces take the system to extinction, these fluctuations are
important only in a narrow region around zero (n < nc). In the
Gumbel case, or by and large when p � 1, this implies that
the variance-mean ratio goes to zero in the thermodynamic
limit. When p > 1 two things happen. First, nc is proportional
to N , and second, the time required to reach nc, starting
from N0, is O(1). Therefore, the properties of the distribution
of extinction times when p < 1 are more or less identical
to the corresponding properties of a neutral system with
N ∼ nc.

A significant number of experimental [43–45] and empir-
ical [46–49] studies have been dedicated to investigating the
distribution of extinction times. However, in order to interpret
these results in the context of the archetypal models discussed
in this paper, further analysis is required. Nevertheless, we
believe that this article can serve as a point of reference
for future analyses of extinction statistics. The key charac-
teristics observed in each study of extinction times, such as
their dependence on initial conditions or carrying capacity,
first moments, and variance-mean ratio, can provide valuable
insights for classifying the basic dynamics of the system. This
classification can then facilitate more detailed examinations,
revealing other, system-specific features. Together, these valu-
able insights possess the potential to significantly enhance
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our comprehension of the underlying mechanisms that drive
extinctions. Such knowledge can play a pivotal role in bol-
stering conservation efforts and guiding strategic approaches
aimed at safeguarding biodiversity and promoting ecosystem
stability.
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APPENDIX: WIDTH OF THE EXTINCTION ZONE

In Sec. II we considered the distribution of extinc-
tion times for extinction-prone population with demographic
stochasticity. In this Appendix we present a general ar-
gument that allows us to estimate the variance of this
distribution.

During the process of extinction, the population is influ-
enced by deterministic forces that drive it towards zero, as
well as demographic stochasticity. We can define a critical
population size, denoted by nc, above which the deterministic
forces dominate, rendering stochasticity negligible. Below nc

the population dynamics is essentially neutral, but the popula-
tion cannot escape to n > nc due to the dominant deterministic
forces.

In the stochastic regime, once the system reaches nc, both
the time to extinction (measured in generations) and its vari-
ance scale with nc. Consequently, the time to extinction can be
divided into two components: the deterministic time required
for the population to transition from its initial state to nc,
which produces little to no variance, and the stochastic time
with a mean and variance proportional to nc.

Therefore, the crucial step in getting semiquantitative
insight regarding the gross features of the extinction-time
distribution is to estimate nc. This may be done in several
ways. Here we implement a dominant balance approach to the
backward Kolmogorov equation (BKE).

Let us begin with the simplest case of an exponen-
tially decaying population. The BKE, as derived in [50], for

example, is

T ′′(x) − κNT ′ = −N

x
. (A1)

This equation was derived for a two-species competition in a
community of N individuals, when x 	 1 is the fraction of
focal species and T is the mean time to extinction. Here κ

is the selection parameter, and when κ < 0 the focal species
population declines exponentially.

Clearly, the T ′ term corresponds to the deterministic de-
cline and the T ′′ term represents stochasticity. If we neglect
the stochastic term, T ′ = 1/κx and therefore T ′′ = −1/κx2.
The stochastic term thus dominates when

1

κx2
> κNT ′ = N

x
, (A2)

i.e., the stochastic regime is below xc = nc/N = 1/κN , or
nc = 1/κ . Therefore, for large N0 the mean time to extinc-
tion scales like ln N0/κ (this is the timescale required for a
population that satisfies Ṅ = −κN to decline below a certain
small value) plus an extinction time that scales like 1/κ and
therefore is negligible when N0 is large. On the other hand, the
contribution for the variance comes only from the stochastic
regime and, following Sec. V, must scale like 1/κ . These two
predictions yield the correct scaling for the parameters ν and
β in Sec. II A.

For the diploid with dominance problem of Sec. II B the
relevant BKE is

T ′′(x) − κNxT ′ = − N

2x
. (A3)

Now T ′ ∼ 1/κx2 and therefore T ′′ ∼ 1/κx3. The first term
thus becomes equal to the second term at xc = 1/

√
κN , so

nc = √
N/κ .

Note that the deterministic time in that case is O(1) (N0

independent) and therefore both the mean and the variance
scale, in the thermodynamic limit, like

√
N . Extending this ar-

gument, one finds that for deterministic dynamics that satisfies
ẋ = −κxp, the variance scales like N (p−1)/p. The deterministic
timescale is O(1) if p > 1 and scales like N p−1

0 for p < 1.
Note that at p → ∞ the stochastic timescale approaches N ,
since the dynamics becomes neutral.
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