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Motor-free contractility of active biopolymer networks
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Contractility in animal cells is often generated by molecular motors such as myosin, which require polar
substrates for their function. Motivated by recent experimental evidence of motor-independent contractility,
we propose a robust motor-free mechanism that can generate contraction in biopolymer networks without the
need for substrate polarity. We show that contractility is a natural consequence of active binding-unbinding
of crosslinkers that breaks the principle of detailed balance, together with the asymmetric force-extension
response of semiflexible biopolymers. We have extended our earlier work to discuss the motor-free contraction
of viscoelastic biopolymer networks. We calculate the resulting contractile velocity using a microscopic model
and show that it can be reduced to a simple coarse-grained model under certain limits. Our model may provide an
explanation of recent reports of motor-independent contractility in cells. Our results also suggest a mechanism
for generating contractile forces in synthetic active materials.
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I. INTRODUCTION

Living cells are known to be far from equilibrium. Pow-
ered by metabolic components such as adenosine triphosphate
(ATP), biophysical processes that cannot happen in equi-
librium systems take place in living cells, including cell
signaling [1], genetic transcription and replication [2], and
active force generation [3]. Most force generation in living
cells is due to molecular motors, for example myosin motors
in animal cells [4]. These motors perform directional motion
on the substrate they bind to, thus generating force in various
forms, from muscle contraction [5] to internal stress of the
cytoskeleton [6–8]. During cell division, motors are also be-
lieved to be responsible for the contractile stress generated by
the actomyosin ring [9–12].

Recent experimental evidence, however, suggests that con-
tractility may be generated in the absence of motors [13,14].
In Ref. [13] it was found that myosin-II motors become
immobilized shortly before cytokinesis in budding yeast. It
was also shown that the contractility of the actomyosin ring
in Drosophila embryo remains unaffected even when motor
activity is significantly inhibited [14]. Both experiments imply
the existence of an underlying contractile mechanism other
than molecular motors.

Microscopically, molecular motors work with a mech-
anism reminiscent of the Smoluchowski-Feynman thermal
ratchet [15–18]. By consuming and dissipating energy pro-
vided by metabolic components, motors undergo a directed
cycle of transitions among conformational states [19], while
actively binding-unbinding in a way that violates the principle
of detailed balance (DB) [18,20–24]. However, to generate
directional motion or force, an energy consuming reaction

itself is insufficient. It also requires a broken spatial symmetry
which gives rise to a specific direction for the motion. This
spatial asymmetry is usually due to the polarity of the sub-
strate such as actin or microtubules, with well-defined plus
and minus ends, to which a motor such as myosin or kinesin
couples. Theoretically, such asymmetry can be modeled as an
asymmetric binding potential [16–18].

Another spatial asymmetry present in living cells that has
been studied extensively is the nonlinear elasticity of the
semiflexible biopolymers [25–27]. The biopolymers that form
the cytoskeleton are usually much stiffer to bending than most
synthetic polymers, leading to a competition between the. en-
tropy and the bending energy. As a result, the force-extension
relation of the biopolymers exhibits a strong asymmetry:
When under stress, the polymer stiffness nonlinearly increases
up to 103 times [26–31], a phenomenon known as stress stiff-
ening. However, under compression a pN level force is enough
to buckle the polymer and make its stiffness vanish [32]. Such
asymmetric force-extension relation, which originates from
the thermal fluctuations of bending deformations, exists in
most biopolymers including both polar filaments (e.g., actin
and microtubule) and apolar filaments [e.g., intermediate fila-
ments (IF)]. This asymmetry in contraction vs expansion is a
potential source of broken spatial symmetry.

In Ref. [33], we have proposed a motor-independent con-
tractile mechanism based on two key elements: (i) active
binding-unbinding of nonmotor crosslinkers which breaks
DB and (ii) the asymmetric force-extension relation of
biopolymers that prefers contraction over expansion. We have
developed both a simple coarse-grained model and a detailed
microscopic model to demonstrate the mechanism for a vis-
cous or elastic substrate. In this paper, we extend our previous
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FIG. 1. (a) Illustration of the coarse-grained model. One polymer
segment from a disordered network undergoes binding-unbinding
process attaining a steady-state length distribution, Pon. The bound
and unbound states are denoted by dark and light blue, respectively.
(b) Illustration of a (inextensible) semiflexible polymer under ther-
mal fluctuations. The rest length �0 is shorter than the polymer
contour length by 〈��〉 because of transverse bending fluctuations.
(c) Schematic plot (blue line) of the equilibrium distribution of
a semiflexible polymer end-to-end length, Peq, and a sketch of a
possible Pon (purple dashed line). Activity usually broadens Pon as
compared to Peq. The width of Peq, δ�, is plotted. (d) Force-extension
relation for inextensible semiflexible polymer [Eq. (A2)] and the
two-spring PMF in Eq. (4) with K1 = 2τ0/3〈��〉 and K2 = 10K1.
Both PMFs show strong asymmetry, being potential sources of bro-
ken spatial symmetry.

work [33] to include viscoelastic substrates and discuss the in-
terplay between the binding-unbinding times and the substrate
relaxation time. Our proposed mechanism generates robust
contractility for any viscoelastic substrates and any asym-
metric force extension. This model may not only provide a
basis for understanding recent reports of myosin-independent
contractility in cells but also suggests a mechanism that can
be used for active force generation in synthetic materials.

II. OVERVIEW

In this work, we consider an unpolarized, disordered net-
work formed by crosslinked semiflexible polymers [Fig. 1(a)]
in which molecular motors cannot create contraction using
their power stroke [18]. In this network, polymers (depicted
by lines) are connected by pointlike crosslinkers (depicted
by circles) that dynamically binds (unbinds) to (from) the
polymers. For simplicity, we focus on one particular polymer
segment between two crosslinkers and treat the rest of the
network as a continuum viscoelastic substrate. This particular
polymer segment dynamically binds (unbinds) to (from) the
substrate via the two transient crosslinkers on its two ends,
and the same binding-unbinding dynamics is assumed for all
polymer segments in the network. In the unbound state, there
is no interaction between the polymer and the substrate, while
in the bound state, the polymer exerts tension on the substrate,

τ (�) = dUe(�)/d�, resulting in an average contractile force,

〈Fs〉� =
∫

Pon(�)τ (�) d�. (1)

Here � is the polymer end-to-end length, Ue is the poten-
tial of mean-force (PMF) of the polymer, and Pon(�) is the
probability for the polymer to have a given end-to-end dis-
tance � in the bound state. If the binding and unbinding
processes are in equilibrium, then DB is satisfied and Pon(�)
is a Boltzmann distribution governed by Ue, leading to van-
ishing contractile force. However, when the binding and/or
unbinding process are out of equilibrium, e.g., driven by
consumption or catalysis of a metabolic component such as
ATP, Pon can be non-Boltzmann. This is because the con-
sumed chemical energy can alter the polymer length during
the binding-unbinding process, such that Ue cannot solely
determine Pon. For a viscous substrate with drag coefficient
γ , the contractile force 〈Fs〉� creates an average contractile
velocity,

v = 〈Fs〉�/γ . (2)

As discussed in the Introduction, in order to have directed
motion both time-reversal symmetry and spatial symmetry
have to be broken [15,16,34]. To see the manifestation of
this principle within our model it is instructive to view the
active process as an additional nonthermal noise on timescales
longer than the binding-unbinding time [35–37], which causes
random expansion or contraction of the polymer segment and
breaks time-reversal symmetry. Such an athermal noise usu-
ally tends to broaden the width of the distribution Pon(�) [38]
[see, e.g., Fig. 1(c)] compared to the equilibrium width δ�.
For an intuitive understanding one may consider the zero-
temperature limit, in which the equilibrium Pon is a Dirac-δ
function and δ� = 0. The nonequilibrium Pon, on the other
hand, can have a finite δ�, as the chemical energy provided
by the active metabolic process allows the polymer to be
stretched or compressed. Notably, the active noise, which
breaks time-reversal symmetry, cannot induce contraction or
any directed motion without having some spatial symmetry
broken [15]. This can be seen from Eq. (1), where symmetric
τ together with symmetric Pon (from symmetry arguments all
directions are the same) must lead to vanishing force. If τ

(and also the PMF, since τ is its derivative) is asymmetric,
and specifically soft to compression and hard to extension,
then a symmetric or nearly symmetric Pon naturally leads
to a positive contractile force. This can be understood in-
tuitively: The polymer has equal chances to be extended or
compressed by the active process. It exerts a large contractile
force on the substrate when extended, while exerting a small
expanding force when compressed, which on average leads to
contractility.

The PMF of semiflexible polymers has exactly these re-
quired properties, i.e., a nonlinear relation between the tension
τ and the end-to-end length �, see Figs. 1(b) and 1(d).
This so-called nonlinear elasticity originates from the ther-
mal fluctuations of the transverse deformation of the polymer
(bending fluctuations) [32]. These transverse fluctuations are
inhibited by extension and are strengthened by compression,
resulting in stiffening under extension and softening under
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FIG. 2. (a) Illustration of the microscopic model. Two ends of a polymer segment actively bind to and unbind from two regions of a
Maxwell substrate. Each of the substrate regions is connected to the rest of the network via a viscous damper and an elastic spring. The
polymer ends bind to the substrate regions with a triangular binding potential (upper right). (b) Profile of the modified binding potential
U v

b for various rescaled substrate spring constants, K̃ = Kd2/�E . The height of U v
b increases with K̃ and reaches Ub when K̃ → ∞. The

PMF parameters are chosen as follows: μ = 4.37 × 10−8 N, τ0 = 0.68 pN, �0 = 1 μm, and δ� = 6.2 nm [42]. Such choices of parameters
correspond to a 1-μm-long actin filament with �p ∼ 17 μm [43].

compression of the polymer. The complete expression of the
force-extension relation is written with three parameters: the
rest length �0, the persistence length �p, and the stretch rigidity
μ [39–41],

�(τ ) − �0

〈��〉 = �0

〈��〉
τ

μ
+ ε

[
τ

τ0

(
1 + τ

μ

)]
. (3)

Here τ0 ≡ π2kBT/(6〈��〉) is a characteristic tension and
〈��〉 � �2

0/(6�p) is a characteristic length, see Appendix A
for details. Here kB is the Boltzmann constant, T is the tem-
perature, and ε(φ) = 1 − 3π

√
φ coth(π

√
φ)−1

π2φ
[32].

As discussed above, the robustness of the contractility does
not depend on the specific form of the asymmetric PMF.
To illustrate this we will also use a simple and analytically
tractable two-spring PMF,

τ (�) =
{

K1(� − �0) (� < �0)

K2(� − �0) (� � �0)
, (4)

where K1 < K2 are two different spring constants under com-
pression and extension.

The paper is organized as follows. We first introduce a
microscopic model which accounts for the details of the
binding-unbinding process and discuss the contractile veloc-
ity for a viscoelastic substrate characterized by the Maxwell
model (Sec. III). We show that, while a viscoelastic substrate
is equivalent to a viscous substrate with a modified binding
potential, its relaxation time strongly affects the contractile
velocity (Sec. III). Next, we prove that under certain limits the
microscopic model reduces to a coarse-grained model, which
has been discussed in our previous work [33] (see Sec. IV).
In Sec. V we draw our conclusions. The meaning of symbols
used in the paper can be found in Tables I–III in Appendix B.

III. MICROSCOPIC MODEL

We begin with the microscopic model, in which we con-
sider the detailed binding-unbinding process of two pointlike
crosslinkers that are attached to two ends of a polymer
segment. With detailed balance being broken by active
binding-unbinding rates, we study the resulting contraction of
a viscoelastic substrate. As sketched in Fig. 2(a), we consider

a semiflexible segment whose two ends, A and B, bind and
unbind to two regions on a viscoelastic substrate denoted as SA

and SB, respectively. Each of the substrate regions represents a
small part of the entire substrate, and they can move indepen-
dently to each other or the rest of the substrate. The substrate
regions are assumed to be rigid and their positions are denoted
by yA and yB, respectively. We consider a Maxwell substrate
by connecting each substrate region to the rest of the substrate
via a viscous damper of mobility my and a spring with spring
constant K in series. Let ye

A and yv
A be the lengths of the elastic

and viscous parts of the substrate region SA, and similarly
define ye

B and yv
B. These lengths satisfy yA,B = ye

A,B + yv
A,B.

The two polymer ends (crosslinkers) can be thought of as
particles moving within the substrate with effective mobility
mx, whose positions are denoted by xA and xB, respectively
[note that xA,B and yA,B are in the same direction, as we are
using a one-dimensional (1D) model]. The polymer end A
(B), successively binds to and unbinds from the substrate
region SA (SB). When A (B) is unbound, there is no interac-
tion between the polymer end A (B) and the substrate region
SA (SB). When A (B) is bound to SA (SB), the polymer end
interacts with the substrate region via an effective binding
potential, Ub(xA − yA) [Ub(xB − yB)]. The binding potentials
of biopolymers are usually rugged due to the microscopic
structure of the monomers. Since we assume the substrate is
apolar, these potentials should be symmetric. For simplicity,
we assume Ub to be a periodic triangular potential of depth
�E and period d , although periodicity is not essential. Last,
the PMF of the polymer is Ue(xB − xA).

The binding and unbinding rates of the two polymer ends
are denoted by ωon and ωoff , respectively. If DB is satisfied,
then the binding-unbinding rates follow ωon = ωoff exp(Ub).
Here we assume constant binding-unbinding rates, which
break DB on a rugged binding potential. Together with an
asymmetric elasticity, these active binding-unbinding rates
lead to a steady-state substrate contraction.

The polymer can only exert tension on the substrate when
its two ends are bound to the substrate, and we define this state
as the bound state. The unbound state is thus the state in which
one or both polymer ends are unbound. We are interested in
how the substrate length, defined as yB − yA, changes during
the bound state. For that aim we consider a bound state which

044405-3



CHEN, MARKOVICH, AND MACKINTOSH PHYSICAL REVIEW E 108, 044405 (2023)

starts at t = 0. Just before t = 0, one of the two ends must
be bound to the substrate region while the other is unbound,
so the system could enter the bound state. We assume the
polymer end A is bound while B is unbound (this is equivalent
to the case in which B is bound while A is unbound). At t = 0,
B binds to SB, and the system enters the bound state. While
in the bound state, the polymer interacts with the substrate
and deforms it. The evolution of the system is described by a
survival probability Pve(xA,B, ye

A,B, yv
A,B; t ) (each variable with

subscript A, B stands for two variables with subscripts A and
B, respectively, such that this probability is a function of 6
spatial degrees of freedom). The bound state ends at t = te,
when one of the polymer ends unbinds from the substrate. The
distribution of te is exponential with unbinding rate 2ωoff [for
the derivation see the paragraph before Eq. (18) below], where
the factor of two is due to the fact that the unbinding of either
polymer end terminates the bound state.

During a single binding-unbinding event, the average con-
traction of the substrate is defined as

�y = 〈
yv

B − yv
A

〉
t=0 − 〈

yv
B − yv

A

〉
t=te

, (5)

where〈
yv

B − yv
A

〉
t=0 =

∫
DxDy

(
yv

B − yv
A

)
× Pve

(
xA,B, ye

A,B, yv
A,B; t = 0

)
,〈

yv
B − yv

A

〉
t=te

= 2ωoff

∫ ∞

0
dte

∫
DxDy

(
yv

B − yv
A

)
× Pve(xA,B, ye

A,B, yv
A,B; t = te

)
. (6)

are the average values of yv
B − yv

A at the start and at the
end of the bound state. Here Dx = dxA dxB and Dy =
dye

A dye
B dyv

A dyv
B. In Eq. (6) we only consider the viscous

parts of the substrate, because the elastic parts relax immedi-
ately to their rest lengths in the unbound state, and the lengths
of the viscous parts are the only lengths that show changes due
to the relaxation in the bound state.

The contractile velocity is calculated using v = �y/T ,
where T = (ωon + ωoff )2/(2ω2

onωoff ) is the average time be-
tween two binding-unbinding events (see Appendix C for
details).

In the bound state, the evolution of the system can be
described by six variables: xA,B, ye

A,B, and yv
A,B, with the total

potential energy W ve(xA,B, ye
A,B, yv

A,B):

W ve = Ue(xB − xA) + Ub
(
xB − ye

B − yv
B

)
+ Ub

(
xA − ye

A − yv
A

) + K

2

(
ye

A

)2 + K

2

(
ye

B

)2
. (7)

Note that we set the rest lengths of both ye
A and ye

B to zero for
simplicity. In principle one can assume nonzero rest lengths
y0

A,B. However, because ye
A,B + yv

A,B does not depend on the rest
lengths, applying variable substitutions from ye

A,B and yv
A,B to

ze
A,B = ye

A,B − y0
A,B and zv

A,B = yv
A,B + y0

A,B leads to same form
of the total potential as Eq. (7), suggesting that the values of
rest lengths do not affect the contractile velocity.

In general, the survival probability of the system is
described by these six variables, Pve(xA,B, ye

A,B, yv
A,B; t ). How-

ever, we can eliminate ye
A and ye

B since they obtain their

deformed values instantaneously, such that they can always
be considered as fast variables. Therefore, we can describe
the system dynamics using a four-variable survival probabil-
ity Pv (xA,B, yv

A,B; t ) [34] (see Fig. 3 and Appendix D). The
evolution of Pv satisfies a FPE,

∂tPv + ∇ · Jv = −2ωoffPv, (8)

with Jv
α = −mα (kBT ∂αPv + Pv∂αW v ) without the summa-

tion convention. Here mα = mx for α = xA,B and mα = my

for α = yv
A,B. Notably, this FPE is governed by an effective

potential W v (xA,B, yv
A,B) (see Appendix D):

W v = Ue(xB − xA) + U v
b

(
xB − yv

B

) + U v
b

(
xA − yv

A

)
. (9)

Surprisingly, we find this effective potential to have the same
form as the original total potential energy of a pure viscous
substrate (see discussion later on the viscous substrate), but
with a modified binding potential U v

b (see Appendix D). This
suggests that a viscoelastic substrate is equivalent to a viscous
substrate with a modified binding potential U v

b .
The effective potential U v

b couples the original binding
potential Ub and the elastic energy of the substrate. Same as
the bare binding potential, it is periodic with period d , but the
profile of each potential well is flattened by the elastic energy
[see Fig. 2(b)]. For K 
 �E/d2, the substrate shows almost
a pure viscous response, where U v

b ≈ Ub. For smaller K , U v
b

deviates from Ub, and for K � �E/d2, U v
b becomes entirely

flat. This is because when K → ∞ the Maxwell substrate
reduces to a pure viscous substrate, and when K is small the
elastic compliance of the substrate is weak and almost all
the stress can be relaxed by the deformation of the elastic
part, while the deformation of the viscous part is negligible.
Therefore, in order to generate nontrivial contractility during
the binding-unbinding events, the substrate rigidity K should
be large enough (K � �E/d2).

To determine the initial condition of Eq. (8), we need to
specify the meaning of yv

A and yv
B. Since the substrate regions

are defined to be rigid, their positions can be represented by
any point within them. At the same time, the contraction,
which is defined as the length difference before and after a
binding event, is not affected by the choice of the reference
positions. Here, for simplicity, we choose yv

A and yv
B to be the

positions of the nearest binding sites (bottoms of the potential
wells in U v

b ) of A and B at t = 0, respectively. Hence, at t = 0
we have |xA,B − yv

A,B| � d/2. Assuming the system relaxes
fast in the unbound state, the initial condition is given by

Pv
(
xA,B, yv

A,B; t = 0
) = χ

(
xA,B, yv

A,B

)
Z

exp{−[Ue(xB − xA)

+ U v
b (xA − yA)]/kBT }, (10)

where Z = ∫
DxDyvPv is the partition function (Dx =

dxA dxB and Dyv = dyv
A dyv

B) and

χ
(
xA,B, yv

A,B

) = �
(
d/2 − ∣∣xA − yv

A

∣∣)
× �

(
d/2 − ∣∣xB − yv

B

∣∣), (11)

gives the boundaries of the initial condition [�(x) is the Heav-
iside function]. χ appears because we define the values of yv

A
and yv

B at t = 0 to be the positions of the nearest binding sites
of A and B. Note that U v

b for the polymer end B is taken
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FIG. 3. Illustration of the variable elimination process. When reducing from the four-variable probability to the one-variable probability,
we take two physical limits: (1) mx 
 my and (2) Tr � Toff � Thop.

into account implicitly in the initial condition, because it is
assumed to be bound and immobile during the binding of A.

The survival probability at time t is then derived from
Eqs. (8) and (10), which can be used to calculate the con-
tractile velocity. The large number of variables in the FPE
prevents intuitive understanding of the dynamics and further
introduces difficulties in the numerical solution. Therefore,
below we will apply two physical conditions that reduces the
four-variable FPE to a one-variable equation, which is easier
to be understood.

First, we assume mx 
 my because mx is the mobility of
one end of a single polymer, while my stands for the mobility
of a substrate region which is a collection of multiple poly-
mers that feels larger friction than a single polymer end.

To introduce the second condition we consider three key
timescales in the system. The first one is the time for a
single polymer end to relax within one potential well, Tr =
Td (kBT /�E v ), where Td = d2/2kBT mx and �E v is the dif-
ference between the maximum and minimum of U v

b . The
complete derivation of Tr , which is the so-called intrawell
relaxation time [44] is provided in Appendix E. The second
timescale is the time for the polymer end to hop to another
potential well, Thop = Td exp(�E v/kBT ) (see Appendix E for
derivation). Last, the third timescale is the average lifetime in
the bound state, Toff = 1/(2ωoff ). In biopolymers �E is usu-
ally much larger than kBT , and we assume �E v is also large
enough such that Tr � Toff � Thop. This requires the network
rigidity K to be comparable or larger than �E/d2. Because
the value of K is in principle proportional to the network
density, the assumption is relevant for densely crosslinked
networks. The relation between the three timescales implies
that during the bound state the polymer end relaxes quickly
within the initial potential well and unbinds before it can hop
to another potential well. With these two physical conditions
we simplify the FPE as follows. Since Toff � Thop, the prob-
ability that either of the polymer ends hops before unbinding
is small, and both polymer ends are trapped in the potential
wells to which they bind, indicating that Pv ∼ χ (xA,B, yv

A,B).
Furthermore, because Tr � Toff and mx � my, we can treat xA

and xB as fast variables and eliminate them. The two variable
left are yv

A,B, whose evolution is governed by an effective
potential W v∗,

W v∗(yv
B − yv

A

) =
∫

dxA dxB
χ

(
xA,B, yv

A,B

)
ZY

(
yv

A,B

)
× W v

(
xA,B, yv

A,B

)
exp(−W v/kBT ). (12)

Equation (12) is the effective interaction between the two
substrate regions SA and SB. Note that W v∗ is a function of
(yv

B − yv
A) because the original interaction potential W is a

function of relative positions, such that the substrate is trans-
lational invariant. Due to this symmetry, it is instructive to
perform a variable substitution: (yv

A, yv
B) → (y+, y−), where

y+ = yv
A + yv

B and y− = yv
B − yv

A. It is straightforward to verify
that y+ follows diffusional dynamics with mobility my, while
the survival probability of y− satisfies the following 1-variable
FPE,

∂tP−(y−; t ) + ∂y−J−(y−; t ) = −2ωoffP−, (13)

where J− = −2mykBT ∂y−P− + P−∂y−W v∗. Equation (13)
suggests that the distance between the two substrate regions
follows the same equation of motion as a particle diffusing
in 1D under the influence of the potential W v∗. The effective
interaction W v∗ is essentially the averaged W v in the equilib-
rium distribution of xA and xB. As shown in Fig. 4(a), W v∗
becomes asymmetric for any rescaled substrate spring con-
stant, K̃ = Kd2/�E , and its shape becomes more asymmetric
for increasing K̃ . When K̃ → ∞, the substrate reduces to a
pure viscous substrate and the profile of W v∗ approaches that
of W ∗, the effective interaction for the viscous substrate (see
discussion later in this section). In the K̃ → 0 limit in which
the substrate is extremely soft, both U v

b and W v∗ become flat
and there is no interaction between the two substrate regions,
resulting in vanishing contractility. However, for any finite
value of K̃ , the profile of W ∗ will always be asymmetric
for contraction and expansion, such that a positive contractile
velocity is expected.

Interestingly, a particle moving in a periodic W v∗ is
mathematically equivalent to a motor binding on a polar
filament [18], with the crucial distinction that the motor di-
rectional motion is dictated by the filament polarity, while the
motion here is always contractile in character.

After obtaining the effective potential, we use Eq. (13) to
calculate the survival probability for y− and �y of Eq. (5) is

�y = 〈y−〉t=0 − 〈y−〉t=te , (14)

where the average at t = 0 and t = te follows the same defini-
tion as in Eq. (6), with the average being respect to P− instead
of Pve.

In Fig. 5 we numerically calculate the contractile velocity
as function of the rescaled substrate spring constant K̃ . The
velocity increases monotonically with K̃ , as a result of the
more asymmetric W v∗ for increasing K̃ . For K 
 �E/d2, the
velocity asymptotically converges to the velocity profile for a
viscous substrate. Therefore, to reach a maximum contractile
velocity, the substrate rigidity should be much larger than
�E/d2.

The Maxwell substrate also introduces an intrinsic sub-
strate relaxation time, Ts = 1/(Kmy). If Ts � Toff , where
Toff = 1/(2ωoff ) is the average lifetime of the bound state,
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FIG. 4. Numerical results for the microscopic model. (a) Profile of the modified effective interaction W v∗, for various rescaled substrate
spring constants, K̃ = Kd2/�E . W v∗ becomes more asymmetric for increasing K̃ and approaches W ∗ of the viscous substrate limit [see (c)]
when K̃ → ∞. (b) Rescaled contractile velocity, ṽ = v/(2ωoffδ�), as function of rescaled binding site spacing d̃ = d/δ�, for various K̃ values.
The dependence on d̃ is nonmonotonic. In the small-d̃ limit the microscopic model reduces to the coarse-grained model. The maximum
velocity is reached at d̃ ∼ 1. Dashed yellow line shows a realistic value d = 10 nm with δ� = 6 nm, which is close to the maximum-velocity
location. (c) Profile of the effective interaction W ∗ in the viscous limit, for various d̃ values. W ∗ is more asymmetric for small d and approaches
Ub when d̃ → ∞. (d) Rescaled contractile velocity as function of rescaled binding site spacing for various rescaled substrate mobility, m̃y =
myτ0/(2ωoffδ�) values in the viscous substrate limit. Similarly to the viscoelastic case [see (b)], the dependence on d is nonmonotonic. PMF
parameters and the binding potential are the same as that in Fig. 2. In (a) d̃ = 10. In (b) and (d) we assume ωon 
 ωoff [T = 1/(2ωoff )].

then the substrate relaxes completely before the polymer un-
binds, leading to a small contractile velocity. A monotonic
dependence between the contractile velocity and the ratio
Ts/Toff is observed in Fig. 5. Clearly, Ts/Toff must be large
enough to reach a considerable contraction. If Ts/Toff 
 1,
then the substrate behaves almost like an elastic substrate
with spring constant K , with v/my being the contractile force
exerted on the substrate. In this case the substrate relaxation
can be neglected during a single binding-unbinding event, so
the contractile force is not reduced by the substrate relaxation,
leading to maximized contractile force.

In Fig. 4(b) we plot the relation between the contractile
velocity and the binding site spacing d . Interestingly, we find
that in the small-d limit the velocities calculated from various
K̃ values collapse on a single curve, which shows a quadratic

FIG. 5. Rescaled contractile velocity, ṽ = v/(ωoffδ�), as func-
tion of K̃ , for various ratios between the substrate relaxation time
Ts = 1/(Kmy ) and the unbinding time Toff = 1/(2ωoff ). The PMF
parameters are same as Fig. 2. Here d = 10 nm and ωon 
 ωoff .

dependence on d . In fact, this limit is the coarse-grained
model that will be introduced in Sec. IV. In the small-d limit,
the details of the effective binding potential U v

b are not impor-
tant, and the contractile velocity of the microscopic model for
any K value is the same as that of the coarse-grained model
(see Sec. IV C).

We also find that the contractile velocity shows a nonmono-
tonic dependence on d in Fig. 4(b). The velocity increases
with d for d � δ�, decreases with d for d 
 δ�, and reaches
its maximum at d ∼ δ�. When d is large, the effective binding
potential U v

b essentially becomes flat, weakening its ability
to stretch or compress the polymer when it binds. This also
explains the different predictions of the microscopic model
and the coarse-grained model in the large-d limit. The coarse-
grained model is valid only when the change in Ue is smaller
than the binding potential [see discussion after Eq. (15) be-
low]. Since the change in the polymer length is of the order of
d , the change in Ue can be approximated by Ue(�0 + d ), which
increases dramatically with d when d > δ�. Therefore, for
d 
 δ� we have Ue � �E v , where �E v is the height of the
effective binding potential U v

b . This suggests that the effective
binding potential does not have sufficient energy to deform
the polymer, hence, the maximum velocity is always reached
at d ∼ δ�. We also find that the value of d at the maximum
velocity is larger for increasing K̃ [Fig. 4(b)], due to the fact
that �E v increases with K̃ [Fig. 2(b)].

Figure 4(b) implies that the values of d and δ� needs
to be close enough for considerable contraction. Biologi-
cally, the value of d is fixed for a given substrate filament,
which is about the same order of magnitude as monomer
size, e.g., d ≈ 10 nm for actin filaments. δ�, on the other
hand, has a strong dependence on the segment rest length
�0 (crosslinking distance), δ� ∼ �2

0/�p. Therefore, we expect
the contractile velocity of a crosslinked network to be max-
imized under an appropriate crosslinking distance. For actin
in the cytoskeleton, for instance, a typical distance between
crosslinkers is �0 ≈ 1 μm, corresponding to δ� = 6.2 nm and
d̃ = 1.6. Surprisingly, we find this d̃ value is very close
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FIG. 6. Illustration of the binding-unbinding event. (i) The poly-
mer relaxes in the unbound state. (ii) The polymer binds to the
substrate with a binding probability Pb(�b). (iii) The polymer con-
tracts the substrate during the bound state. (iv) The polymer unbinds
from the substrate.

to the maximum-velocity position, see dashed yellow line
in Fig. 4(b). Such coincidence implies that the crosslinking
distance in cytoskeleton may be the result of evolution that
optimizes contractility.

A. The limit of a viscous substrate

Having discussed the microscopic model with a Maxwell
substrate, let us switch to a simpler case in which the substrate
is viscous, i.e., the K 
 �E/d2 limit.

Visually, a viscous substrate is obtained by removing the
two springs in Fig. 2(a). In this case, the lengths of the springs
ye

A and ye
B do not appear as variables of the system state, and

the total potential energy is W v defined in Eq. (9), with U v
b

replaced by Ub. The survival probability, Pv (xA,B, yv
A,B), is

governed by the same FPE of Eq. (8), with the initial condition
Eq. (10).

Following the same steps of variable elimination in Eqs. (8)
and (9), the four-variable FPE is reduced to a one-variable
equation governed by the potential energy W ∗(yB − yA),
which has the same form as W v∗(yv

B − yv
A) in Eq. (12), with

U v
b replaced by Ub. As shown in Fig. 4(c), W ∗ becomes asym-

metric for finite d , and its shape becomes more asymmetric
for small d . In fact, in the small-d limit (d � δ�), W ∗ has the
same form as the polymer PMF Ue, because in this limit the
microscopic model reduces to the coarse-grained model (see
discussion in Sec. IV C).

In Fig. 4(d) we numerically calculate the contractile ve-
locity and show its dependence on d . It shows similar
nonmonotonically d dependence as the viscoelastic substrate.
This is because the viscoelastic substrate is equivalent to the
viscous substrate with a modified binding potential, as we
point out in Eq. (9). We also find that the contractile velocity
decreases for increasing m̃y (or decreasing ωoff ), similar to that
in the coarse-grained model [see Fig. 7(c) below].

IV. A SIMPLE COARSE-GRAINED MODEL

Having demonstrated how contractility originates from a
detailed microscopic model, let us discuss a coarse-grained
model that was proposed in our earlier work [33]. In the
coarse-grained model, the details of the binding potential
are neglected, which greatly simplifies the complexity of the
model. In this section we first discuss the contractility in the
coarse-grained model and then show that the coarse-grained
model is nothing more than a limit of the microscopic model.

In the coarse-grained model, we neglect the details of the
binding potential and consider a single polymer that binds to
(unbinds from) the substrate with constant rates ωon (2ωoff ,
the factor of 2 accounts for the fact that both of the two
polymer ends can unbind). As explained in Sec. III, the
constant binding-unbinding rates break detailed balance on
the rugged binding potential. We consider a single binding-
unbinding event that is divided into the following steps (see
Fig. 6): (i) in the unbound state the polymer length �u is
assumed to relax fast to an equilibrium distribution, Peq(�u) =
exp[−Ue(�u)/kBT ]/Z , where Z = ∫

d�u exp[−Ue(�u)/kBT ]
is the partition function [Fig. 1(b)], and the rest length of Ue

is �0, (ii) the polymer binds to the substrate at rate ωon; at
the same time, its initial end-to-end length changes from �u to
�b due to the binding (see discussion above), with probability

FIG. 7. Numerical results for the contractile velocity. (a) Contractile velocity as function of the typical binding-site spacing for γ̃ → ∞.
For the semiflexible PMF the parameters are the same as Fig. 2. For the two-spring PMF we use two different sets of parameters which
reproduces the small-d and large-d limits of the semiflexible PMF separately. For the large-d limit we use K2 = μ/�0 and K1 = 0.35τ0/δ�,
while for the small-d limit we use K2 = 13τ0/δ� and K1 = 0.35τ0/δ� (in both cases the two-spring PMF and the semiflexible PMF have the
same δ�). The solid purple line is the large-d analytical solution of Eq. (22) and the solid red line is the small-d analytical solution of Eq. (26).
In (b) and (c) we plot the force-velocity relation for the two-spring and the semiflexible PMFs, respectively. The dimensionless quantities used
are as follows: d̃ = d/δ�, γ̃ = 2γωoffδ�/τ0, ṽ = v/(2ωoffδ�) and F̃ = F/τ0. Parameters used: (b) d̃ = 0.1 and (c) d̃ = 10. Both F̃ and γ̃ ṽ are
further rescaled according to their d dependence (quadratic for large d̃ and linear for small d̃). In (a), (b), and (c) ωon 
 ωoff (Con = 1).
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Pb(�b), (iii) once the polymer binds, it contracts the viscous
substrate due to its PMF, Ue, such that the polymer length in
the bound state � f changes with time, and (iv) the polymer
actively unbinds at constant rate 2ωoff . Here we neglect ther-
mal aspects of unbinding that we assume to be dominated by
active processes.

As mentioned before, in this coarse-grained model the
details of the substrate binding potential are neglected. The ef-
fect of the binding process is modeled as an immediate change
of the polymer length from �u (before binding) to �b (after
binding). Such a change in length is a result of the rugged
binding potential of biopolymers [18,45]. The probability that
the polymer length has changed from �u to �b due to binding
is denoted by Pc(�b, �u), such that the binding probability (the
polymer length distribution just after binding to the substrate)
is

Pb(�b) =
∫

d�uPeq(�u)Pc(�b, �u). (15)

In general the distribution Pc depends on the form of both the
binding potential and the elastic PMF. In the limit where the
binding potential is much larger than PMF, Pc is dominated
by the substrate binding potential. Then, for an isotropic sub-
strate Pc is only a function of the length change (translational
symmetry) [33], Pc(�u, �b) = Pc(�u − �b). Further assuming
a symmetric binding potential, which is the case for, e.g.,
isotropic substrate or a substrate consisting of apolar fila-
ments, we find that Pc is symmetric around �u = �b. Note that
we choose a symmetric binding potential as a “worst-case sce-
nario” in which common motor activity is inhibited, although
our mechanism does not rely on this symmetry. The simplest
form of the binding probability is characterized by a single
length scale d that can be associated with the typical spacing
between binding sites:

Pc(|�b − �u|) = 1

d
for |�b − �u| <

d

2
, (16)

and Pc = 0 otherwise. Any symmetric (or even slightly
asymmetric) Pc leads to contractility. Notably, the uniform
distribution of Pc is also a coarse-grained limit of the binding
process of the microscopic model, see Sec. IV C below.

After the polymer binds to the substrate with initial length
�b at t = 0, it contracts the substrate due to its elastic energy.
The polymer length in the bound state, � f , thus changes over
time. For a viscous substrate with drag coefficient γ , the
survival probability for � f , P(� f ; t ) (the probability that at
time t the polymer is still bound to the substrate and has length
� f ), follows a one-variable FPE,

∂t P(� f ; t ) + ∂� f J (� f ; t ) = −2ωoff P

P(� f ; t = 0) = Pb(�b = � f ), (17)

where J = −(kBT ∂P/∂� f + P∂Ue/∂� f )/γ . The constant
unbinding rate 2ωoff allows us to write P as P =
Ps exp(−2ωofft ), where the term exp(−2ωofft ) is the proba-
bility that the polymer is still bound at time t . The distribution
Ps then satisfies a standard FPE:

∂t Ps(� f ; t ) + ∂� f Js(� f ; t ) = 0

Ps(� f ; t = 0) = Pb(�b = � f ), (18)

where Js = −(kBT ∂Ps/∂� f − Ps∂Ue/∂� f )/γ . Solving
Eq. (18) gives the distribution Ps, from which the steady-state
distribution Pon is calculated:

Pon(�) = Con

∫
dt · 2ωoff Ps(� f = �; t )e−2ωoff t , (19)

with Con = ωon/(ωon + 2ωoff ) being the probability to be in
the bound state. We then find the contractile force, 〈Fs〉�
through Eq. (1), and the average contractile velocity through
Eq. (2).

In Fig. 7(a) we numerically calculate the contractile ve-
locity for both the semiflexible and the two-spring PMFs.
We find positive contractile velocity for both PMFs, implying
that our contractile mechanism is robust for any asymmetric
elastic PMF that is hard to stretch and soft to compress. For
both PMFs, the d dependence of the velocity are similar. The
velocity increases monotonically with d , with different scal-
ing dependence in two regimes separated by the characteristic
length scale δ�. Its value is δ� = √

(π − 2)kBT/(πK1) for the
two-spring PMF (assuming K1 � K2) and δ� = �2

0/(
√

90�p)
for the semiflexible PMF (see supplementary material of
Ref. [33]). For d � δ�, a quadratic d dependence is observed,
while for d 
 δ� we find that v ∼ d . The different scaling
exponents in these two limits originate in different profiles of
Pon: In the large-fluctuation limit (δ� 
 d), Pon is only slightly
perturbed from the equilibrium distribution Peq, while in the
small-fluctuation limit (δ� � d), Pon is almost independent of
Peq. Below we discuss in detail these two limits.

A. Small-fluctuation limit

We start by writing the corresponding Langevin equa-
tion of the FPE Eq. (18) using standard methods [46]. For
δ� � d , thermal fluctuations are small enough that we can
neglect the thermal term in the Langevin equation. In this case,
for a given binding length �b, the polymer length in the bound
state is uniquely determined by a trajectory �∗

f (�b; t ) which
follows the overdamped dynamics:

γ
d�∗

f (�b; t )

dt
= −τ (�∗

f ) �∗
f (�b; t = 0) = �b, (20)

where τ (� f ) = U ′
e (� f ) is the polymer tension. To obtain the

steady-state distribution Ps, we first solve the FPE in Eq. (18)
with a modified initial condition P∗

s (� f ; t = 0) = δ(� f − �b),
i.e., starting from a given binding length �b. The trajectory in
Eq. (20) gives a solution of the modified FPE, P∗

s = δ(� f −
�∗

f ). Here δ(x) is the Dirac δ function. Therefore, the full
solution of Eq. (18) with the initial condition being the bind-
ing probability Pb, is the average probability distribution of
trajectories starting with all possible �b,

Ps(� f ; t ) =
∫

d�bPb(�b)δ[� f − �∗
f (�b; t )]. (21)

The steady-state distribution in the bound state is then cal-
culated by solving Eq. (21) and substituting Ps into Eq. (19).
Then the contractile velocity can be found with the help of
Eq. (1) and Eq. (2). For the two-spring PMF, this velocity
assumes a simple form:

v = dConγω2
off (K2 − K1)

2(K1 + 2γωoff )(K2 + 2γωoff )
, (22)
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which depends linearly on d . This expression is in perfect
agreement with the numerical solution of the FPE, Eq. (18),
see Fig. 7(a).

The contractile velocity for the semiflexible potential can-
not be found analytically, because the potential does not have
an explicit analytical expression. However, in the δ� � d
limit, the force-extension relation of the semiflexible PMF has
two asymptotic limits for large stretch or compression [32]:

τ (�) ≈
{

μ

�0
(� − �0) (� − �0 
 δ�)

−τ0 (�0 − � 
 δ�)
. (23)

Therefore, if we approximate the semiflexible PMF by a two-
spring PMF with K2 = μ/�0 and K1 � K2, then the two PMFs
generate the same average force just after binding (K1 does
not affect the average force as long as K1 � K2). In Fig. 7(a)
we show that the contractile velocity of the semiflexible PMF
coincides with that of the two-spring PMF in the small-
fluctuation (large-d) limit, given the proper choice of the
two-spring parameters. To be specific, we let the two PMFs
have the same δ�. For this aim we set K1 = 3.32τ0�p/�

2
0 =

0.35τ0/δ� such that the two spring PMF gives the same δ� as
the semiflexible PMF.

B. Large-fluctuation limit

For δ� 
 d , thermal noise cannot be neglected, but the
change in length due to the binding is relatively small. Then
Pb is only slightly perturbed from the equilibrium distribution
in the unbound state. Expanding Pb of Eq. (15) to second order
in d gives

Pb(�b) � Peq(�b)

{
1 + d2

24

[
U ′2

e (�b)

(kBT )2
− U ′′

e (�b)

kBT

]}
, (24)

where f ′(�b) = [ df (�)/ d�]�=�b and f ′′(�b) =
[ d2 f (�)/ d�2]�=�b . Since both the FPEs of Eq. (18) and
Eq. (19) are linear, the resulting Pon is similarly perturbed
around the equilibrium distribution, where the deviation
scales as d2. Thus, from Eq. (1) we have 〈Fs〉� ∼ d2, and the
contractile velocity shows quadratic dependence on d , as is
seen in Fig. 7(a). To show this explicitly, let us consider a
nearly rigid substrate, i.e., γ → ∞. In this case the polymer is
not relaxing in the bound state [i.e., Pon(�) = ConPb(�b = �)]
and produces an average contractile force (on the substrate)
of

〈Fs〉� = Cond2

24

∫
d�bPeq(�b)U ′′′

e (�b), (25)

where we have used Eqs. (1) and (24). This force is positive
for any potential with positive U ′′′

e (�). The origin of the third
derivative is the requirement of spatial asymmetry in our
model: When performing a Taylor expansion of Ue around
the rest length, the third derivative of Ue is the leading-order
asymmetric term. Note that the above result is obtained for
constant on-off rates. In case that the on-off rates obey de-
tailed balance, Pon would remain the equilibrium distribution
even for finite d and 〈Fs〉� would vanish. For the two-spring
PMF, the contractile force calculated from Eq. (25) leads to a

contractile velocity:

v = Con(K2 − K1)
√

K1d2

12
√

2πkBT γ
, (26)

which agrees perfectly to the numerical results in the small-
d limit, see Fig. 7(a). For the semiflexible PMF, numerical
result gives v ≈ 0.24d2τ0/(δ�2γ ). Comparing this result with
Eq. (26), we find that by setting K1 = 0.35τ0/δ� and K2 =
13τ0/δ�, the two-spring PMF gives the same contractile ve-
locity with the semiflexible PMF in the small-d limit, which
is confirmed by our numerical results, see Fig. 7(a). Here the
value of K1 is chosen to be the same as that in Sec. IV A, such
that the two-spring PMF has the same δ� as the semiflexible
PMF. We then set the value of K2 such that Eq. (26) gives
the same velocity as the semiflexible PMF. Together with the
previous discussion on the small-fluctuation limit, this sug-
gests that given the proper parameter choice, the two-spring
PMF can mimic the semiflexible PMF both in the small- and
large-fluctuation limits (separately, but not simultaneously).

Having illustrated the coarse-grained model in two extreme
limits, let us consider a property that is commonly measured
for molecular motors, the force-velocity relation. This relation
describes a motor’s ability to do work under an external load.
Since our nonmotor mechanism creates motorlike contrac-
tion, it is also useful to compute the force-velocity relation
in our model. To calculate this relation, we exert a constant
tension F on the two ends of the polymer. The constant
force modifies the elastic potential of Eqs. (17) and (18) from
Ue(� f ) to Ue(� f ) − F� f . In Figs. 7(b)–7(c) we plot force-
velocity curves for the small- and large-d limits, respectively.
In Fig. 7(b) we use the two-spring PMF, while in Fig. 7(c) we
use the semiflexible polymer PMF. In both cases, the velocity
is reduced by an applied load in a way similar to molecu-
lar motors [47]. We find that decreasing the dimensionless
viscosity γ̃ results in lower velocities and correspondingly
lower stall forces, due to the increased compliance and stress
relaxation of the substrate.

C. Derivation from the microscopic model

Above we have introduced a simple coarse-grained model
that is less complicated than the microscopic model intro-
duced in Sec. III. Here we show that the coarse-grained model
is equivalent to the small-d limit of the microscopic model.
To demonstrate this point, we need to prove two statements:
(i) the binding process of the microscopic model leads to a
polymer length change that is described by Eq. (16) and (ii)
in the bound state the evolution of the polymer length of the
microscopic model follows Eq. (17).

To prove the first statement, let us revisit the four-variable
effective potential W v in the microscopic model [see Eq. (9)].
In W v there are two effective binding potentials, U v

b (xA,B −
yv

A,B), which describe the interaction between the crosslinkers
and the substrate. When the crosslinker B binds to the sub-
strate region SB, the effective binding potential U v

b (xB − yv
B) is

activated. In the small-d limit, the force of the effective bind-
ing potential (| dUb(x)/ dx|) is large, driving the crosslinker
B to its nearest binding site (bottom of the potential well) in
a short time after binding. One can approximate this bind-
ing process by B directly binding to its nearest binding site
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(located at yv
B) or, equivalently, an instantaneous change of

xB from its original position to yv
B. Therefore, we also expect

an instantaneous change of the polymer length, � f = xB − xA,
from its length before binding (�u) to its length after binding
(�b). The distribution of the length change is the distribution
of the distance from B to its nearest binding site just before
binding, which is exactly Eq. (16).

For the second statement we revisit the one-variable FPE
in the microscopic model, Eq. (13). Equation (13) describes
the evolution of the distance between two substrate regions,
y− = yv

B − yv
A, which is governed by the effective potential

W v∗. Because in the small-d limit the force provided by U v
b

is large, the two crosslinkers are effectively locked to their
binding sites, i.e., xA = yv

A and xB = yv
B hold during the bound

state. Therefore, we have y− = � f . Moreover, in the small-d
limit, the effective potential W v∗ also reduces to the elastic
energy between two crosslinkers, W v∗ = Ue. Equation (13) is
thus equivalent to Eq. (17) with y− and 2my being replaced by
� f and 1/γ .

V. DISCUSSION

We have presented a detailed (microscopic) model that
demonstrates how contractility can be produced in the absence
of molecular motors. Our model considers the details of the
binding-unbinding process of one polymer on a viscoelas-
tic network, which is assumed to be a Maxwell material.
We find that contractility naturally results from the active
(un)binding that violates DB, together with the asymmet-
ric force-extension relation that breaks spatial symmetry.
Notably, both of these features are generic for biopolymer
networks such as the cytoskeleton. In our model, the key
length scale determining the contractile force is the bind-
ing site spacing d . Taking d � 10 nm, of order the size of
a globular protein or the spacing of binding sites on a cy-
toskeletal filament, and δ� � 6 nm, corresponding to an actin
filament of length 1 μm, our model predicts a maximum
contractile force ∼0.5 pN. As a comparison, single myosin
molecule produces a force ∼3 pN [48], suggesting that the
mechanism proposed in this work generates a weaker but
comparable force relative to motors. It is also worth empha-
sizing that this mechanism is additive in that it can generate
such contractility among multiple filaments even in disordered
networks.

We have explored various limits of our detailed model. Of
special importance are the limits in which the details of the
binding process are neglected (the so-called coarse-grained
model) which greatly simplifies the calculations and allow for
intuitive understanding of the contractile mechanism. Such
simplification is valid at d � δ�, when the coarse-grained
model and microscopic model predict similar contractile ve-
locities. However, their predictions differ when d 
 δ�: For
the microscopic model there exists an optimal d value and
the velocity decreases for d exceeding that optimal value,
while for the coarse-grained model the velocity always in-
creases with d . This difference is due to the large elastic
energy when stretching the polymer in the large-d limit. In the
coarse-grained model, the binding process deforms the poly-
mer length with a binding probability, regardless of the energy
required for the deformation. In the microscopic model, on

the other hand, the deformation of the polymer length is
limited by the binding potential, and the change in the elastic
energy cannot exceed �E . Therefore, in the large-d limit the
coarse-grained model fails. Similarly to molecular motors, a
large-enough �E is required to generate considerable direc-
tional motion [18].

In our microscopic model, we show that the binding-
unbinding on a Maxwell substrate, is equivalent to the
binding-unbinding on a viscous substrate with a modified
binding potential. The reduction naturally originates from the
definition of the Maxwell material, which is composed of a
pure elastic part and a pure viscous part. Since the elastic
part responds to external stress immediately, it can always be
regarded as a fast variable, allowing us to only consider the
relaxation of the viscous part. Therefore, this result does not
rely on any specific assumption, nor is it limited to the particu-
lar model considered in this paper. Rather, it can be applied to
any binding-unbinding events on Maxwell substrates, whether
the binding-unbinding is in or out of equilibrium. Moreover,
the binding site spacing of the modified binding potential
remains unchanged for any substrate elastic rigidity. Because
the binding site spacing is the only parameter associated with
the substrate binding potential in the coarse-grained limit,
when d � δ� the microscopic model should be reduced to the
coarse-grained model with a viscous substrate, regardless of
the original substrate elastic rigidity.

In this work, we have focused on the Maxwell substrate,
which behaves as solid at short times and fluid at long times.
Another well-known viscoelastic model is the Kelvin-vorgit
substrate, which can be applied to our model as well. The
Kelvin-vorgit substrate behaves as fluid in short time and
solid in long time. Therefore, at short times we expect the
Kelvin-Vorgit substrate to deform in the same way as the
viscous substrate that has been discussed in Sec. III, while
at long times the substrate stops deforming due to its own
elasticity. We choose not to study in detail the Kelvin-Vorgit
substrate because most biomaterials, including the cytoskele-
ton and the extracellular matrix, are known to fludize at long
times [49,50]. Therefore, the Maxwell model is more appro-
priate for the substrates we have in mind that are formed
by biomaterials. However, the Maxwell model does impose
an instantaneous elastic response of the substrate, while in
general a viscoelastic material, such as the Burgers model,
needs a finite time to build up its elastic stress. In our model
we assume the elastic relaxation time of the substrate is much
smaller than the unbinding time such that we can consider it
to be instantaneous.

We have only discussed the Maxwell substrate with a sin-
gle relaxation time for simplicity, however, our mechanism
should also generate contraction in Maxwell substrate with
multiple relaxation times [49,51,52]. Our discussion about the
relaxation time (see Sec. III) suggests that contractility will
be observed as long as there exists one relaxation time that is
larger than or comparable to the unbinding time.

The contractile mechanism proposed in our model re-
quires activity that breaks time-reversal symmetry together
with a spatial asymmetry that directs the active motion. Such
Brownian-ratchet-like mechanism is similar to the enzymatic
cycle of molecular motors, which is fueled by the hydroly-
sis of ATP [18]. However, there exists a distinct difference
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between the motor and nonmotor mechanisms, which is the
origin of the broken spatial symmetry. The asymmetry for
motors comes from the geometrical polarity of the substrate
filaments they bind to, which directs the motor motion from
well-defined plus (minus) end to the other end [16]. Because
the motor motion is not directly related to contractility, it may
require a specific network architecture to generate contrac-
tion [53]. On the contrary, the nonmotor mechanism in this
paper does not rely on substrate polarity. Instead, it relies on
the mechanical asymmetry that is generic for any semiflexible
biopolymer. In addition to semiflexible polymers, polymers
with small persistence length may also possess similar me-
chanical asymmetry in the opposite limit of semiflexibility,
e.g., DNA [29]. Such asymmetry leads to a directed motion
that is always towards the contractile direction, resulting in
contractility regardless of network architecture. Moreover, the
nonmotor mechanism may even generate contractility on ap-
olar filaments, such as intermediate filaments, which has not
been thought possible.

Interestingly, although in this paper we have only con-
sidered the mechanical asymmetry on substrate filaments,
the crosslinking proteins may also be responsible for such
asymmetry if they are soft enough, e.g., filamin. Contractility
has been observed in disordered-apolar actin bundles when
the network is crosslinked with filamin [54], although the
active, nonequilibrium aspect of this system is unclear. It is
even possible that other apolar filaments like septin may be
responsible for force generation, since they play a role in the
contractile ring [55,56].

Despite the different origins of spatial asymmetry, the mo-
tor and nonmotor mechanisms are not mutually exclusive.
Rather, the nonmotor mechanism should be considered as an
additional mechanism to the motor mechanism. The nonmotor
mechanism is able to generate contractility on both polar and
apolar substrates. In our model, we have assumed apolar sub-
strates as a worst-case scenario in which motors do not work.
However, considering a polar substrate within our model
is straightforward, where one should replace the symmetric
binding potential in Sec. III with an asymmetric one, in which
case both the motor and nonmotor mechanisms can take place
simultaneously. In such a case, the nonmotor mechanism en-
hances the contractility of the motor mechanism. The effects
of the two mechanisms may be distinguished from their dif-
ferent d̃ dependence. The motor-driven contractility usually
requires the polymer to buckle [57,58], which only happens
when the tension exceeds τ0. Because τ0 ∼ δ�−1, the motor-
driven contractility strengthens with decreasing d̃ = d/δ�. On
the other hand, the contraction of nonmotor mechanism, as we
have shown for both coarse-grained and microscopic models,
increases with increasing d̃ when d � δ�, which shows oppo-
site d̃ dependence to motor mechanism.

To conclude, our model may provide an explanation for
recent observations of non-myosin-dependent dynamics of the
contractile ring during cell division or cellularization [13,14].
It is possible that ATP-dependent crosslinking by myosin
in disordered actin networks or other structures may gener-
ate contractility [8,57,59–63], without the need for a motor
power stroke. Our model suggests a generic, steady-state
mechanism for contraction even in apolar or fully disordered
structures.
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APPENDIX A: FORCE-EXTENSION RELATION

We give here a brief introduction to the origin of the
nonlinear force-extension relation of biopolymers. This non-
linearity originates from the transverse thermal fluctuations
of semiflexible polymers, which can be described using the
wormlike chain model. We start with an inextensible polymer
(μ → ∞), whose Hamiltonian under tension τ reads [32]

H = κ

2

∫
ds

[
∂2u(s)

∂s2

]2

+ τ��, (A1)

where κ = �p/(kBT ) is the bending rigidity and u(s) is
the polymer displacement field along the contour. �� =∫

ds(∂u/∂s)2 is the contraction of the end-to-end distance
with respect to the contour length, which is caused by the
polymer transverse deformation as a result of inextensibility.
The force-extension relation is derived from the Boltzmann
distribution of Eq. (A1), leading to [32,39–41]

�(τ ) − �0

〈��〉 = ε

(
τ

τ0

)
, (A2)

where 〈��〉 � �2
0/(6�p) is the average contraction and �0 is

the average end-to-end length for τ = 0. Because the exact
distribution of � evolves infinite degrees of freedom u(s), in
this work the distribution of � is approximated by Peq, the
Boltzmann distribution of the potential of mean force Ue(�).
Here Ue is defined as Ue(�) = ∫ �

−∞ d�′ τ (�′). This approxima-
tion leads to a slight difference between Peq and the original
distribution of �: While �0 is the average end-to-end distance
of the original distribution, it is different from the average
end-to-end distance of Peq, see Fig. 1(c). Such a difference is
inevitable because all the internal variables u(s) of the original
distribution are removed by the approximation. However, the
approximation is sufficient for our model because it preserves
the asymmetric force-extension relation.

Next we consider an extensible polymer with stretch rigid-
ity μ, in which an additional stretching energy enters:

Hs = μ

2

∫
ds

[
∂�(s)

∂s

]2

, (A3)

where ∂�(s)/∂s is the relative change in length along the
contour. For stiff chains (�0 
 〈��〉), the total compliance
can be characterized by two mechanical springs in series:
One is the entropic spring induced by the bending energy,
and the other is the enthalpic spring induced by the stretch-
ing energy. The stretching term results in a purely enthalpic
compliance ��s = �0τ/μ. Moreover, it also introduces an
additional correction which renormalizes the force of the en-
tropic spring. The complete expression of the force-extension
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relation reads [25,32,40]

�(τ ) − �0

〈��〉 = �0

〈��〉
τ

μ
+ ε

[
τ

τ0

(
1 + τ

μ

)]
, (A4)

which is Eq. (3) of the main text.

APPENDIX B: TABLES OF SYMBOLS

TABLE I. Symbols used in both models

Ue Polymer elastic energy
δ� Length scale of end-to-end thermal fluctuations
〈Fs〉� Average tension exerted on the substrate
τ Polymer tension
�0 Polymer rest length
〈��〉 Charateristic length
τ0 Characteristic tension
μ Enthalpic stretch rigidity
ε Asymmetric function for inextensible polymers
d Substrate binding site spacing
ωon/off Crosslinker binding-unbinding rates
v Contractile velocity
Peq Equilibrium length distribution
Pon Steady-state length distribution

in the bound state

TABLE II. Symbols used in the microscopic model.

xA,B Crosslinker positions
ye

A,B Elastic parts lengths
yv

A,B Viscous parts lengths
mx Crosslinker mobility
my Substrate mobility
Ub Binding potential
U v

b Modified binding potential for viscoelastic substrates
W v∗ 1-variable potential for viscoelastic substrates
W ∗ 1-variable potential for viscous substrates
K Substrate spring constant
Ts Substrate relaxation time
y− yv

B − yv
A

TABLE III. Symbols used in the coarse-grained model.

�u/�b Polymer length before-after binding
Pc Probability of length change

due to binding
Pb Probability of binding length
γ Substrate viscosity
Pb Survival probability of polymer length
Ps Probability of polymer length without unbinding
Con Average fraction of time a segment spends in the bound state

APPENDIX C: DERIVATION OF T

In this Appendix we derive the average time between bind-
ing events T in the microscopic model. By definition, T is the
sum of the average lifetimes in the bound and unbound states.
The average lifetime of the polymer in the bound state (both
ends are bound) is Toff = 1/2ωoff . The average lifetime in the
unbound state is more complicated as it is composed of two
different states: (i) Both ends are unbound, and (ii) only one
end is unbound. The probabilities to be in these two states
can be written as Ci = (1 − Con)2 and Cii = 2Con(1 − Con),
respectively. Here Con = ωon/(ωon + ωoff ) is the fraction of
time in which one of the polymer ends is bound to the sub-
strate (regardless of the other polymer end), see also Eq. (19)
(note that Con in the microscopic model differs from that in
the coarse-grained model, as a result of different unbinding
rates in two models: ωoff and 2ωoff , respectively). Therefore,
when the polymer is in the bound state, the probabilities to be
in states (i) and (ii) are Pi = Ci/(Ci + Cii ) and Pii = Cii/(Ci +
Cii ), respectively. Since the unbound state can only end when
the system is in state (ii), the net binding rate, given that
the polymer is in the unbound state, is ω∗

on = Piiωon, and the
average lifetime of the unbound state is Ton = 1/ω∗

on. Taken
together, we have T = Toff + Ton = 1/(2C2

onωoff ) = (ωon +
ωoff )2/(2ω2

onωoff ).

APPENDIX D: VARIABLE ELIMINATION IN THE
MICROSCOPIC MODEL

In this Appendix we detail the variable elimination in the
microscopic model. We begin by describing the variable elim-
ination process in general. The evolution of a multivariable
system can be described by a probability distribution P (X ; t )
that is governed by a potential W (X ), where X is a vector of
all variables. If some variables (fast variables, denoted by X 1)
relax much faster than the rest of the variables (slow variables,
denoted by X 2), then one may approximate the distribution of
the fast variables as an equilibrium distribution [34], i.e.,

P (X ; t ) = exp[−W (X )/kBT ]

Z2(X 2)
P2(X 2; t ), (D1)

where P2(X 2; t ) is the marginal distribution of variables X 2

and Z2 = ∫
dX 1 exp[−W (X )/kBT ]. Equation (D1) ensures

that for any X 2, the distribution of X 1 follows a Boltzmann
distribution. It shows that the distribution of X 2 alone is suf-
ficient to determining the distribution of all variables, i.e., the
fast variables X 1 are eliminated. The evolution of P2(X 2; t ) is
governed by an effective potential W2(X 2),

W2(X 2) =
∫

dX 1
exp[−W (X )/kBT ]

Z2(X 2)
W (X ), (D2)

which is an average of W over a Boltzmann distribution of X 1.

1. Six-variable probability to four-variable probability

We first detail the variable elimination from the
six-variable probability to the four-variable probability.
The six-variable probability is the survival probabil-
ity Pve(xA,B, ye

A,B, yv
A,B; t ) governed by the total energy

W ve(xA,B, ye
A,B, yv

A,B) [see Eq. (7)]. Here the variables ye
A,B are

always fast variables because they are lengths of the elastic
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parts of the substrate. Therefore, we can perform variable
elimination of ye

A,B, leading to the four-variable probability
Pv (xA,B, yv

A,B; t ) that satisfies

Pve = exp[−W ve/kBT ]

Zv
(
xA,B, yv

A,B

) Pv
(
xA,B, yv

A,B; t
)
, (D3)

with Zv = ∫
dye

A dye
B exp(−W ve/kBT ). The evolution of Pv

is governed by the effective potential,

W v =
∫

dye
A dye

B

exp(−W ve/kBT )

Zv
(
xA,B, yv

A,B

) W ve
(
xA,B, ye

A,B, yv
A,B

)
= Ue(xB − xA) + U v

b

(
xB − yv

B

) + U v
b

(
xA − yv

A

)
, (D4)

where

U v
b (x) =

∫
dy

exp
{ − [

Ub(x − y) + K
2 y2

]
/kBT

}
Zb(x)

×
[
Ub(x − y) + K

2
y2

]
(D5)

is the effective binding potential. Here Zb(x) =∫
dy exp{−[Ub(x − y) + Ky2/2]/kBT }.

2. Four-variable probability to one-variable probability

Having reduced the six-variable probability to the four-
variable probability, we take a step further by reducing the
four-variable probability to the one-variable probability. As
discussed above Eq. (12), two physical limits are assumed:
mx 
 my and Tr � Toff � Thop, allowing us to treat xA,B as
fast variables. This suggests that the four-variable probability
Pv (xA,B, yv

A,B; t ) can be determined by its marginal distribu-
tion Pv

Y (yv
A,B; t ),

Pv
(
xA,B, yv

A,B; t
) = exp

[ − W v
(
xA,B, yv

A,B

)
/kBT

]
ZY

(
yv

A,B

)
× χ

(
xA,B, yv

A,B

)
Pv

Y

(
yv

A,B; t
)
, (D6)

with ZY = ∫
dxA dxBχ e−W v/kBT . Substituting Eq. (D6) into

Eq. (8), we have the reduced FPE for Pv
Y (yv

A,B; t ),

∂tPv
Y

(
yv

A,B; t
) + ∇ · J∗(yv

A,B; t
) = −2ωoffPv

Y , (D7)

with J∗
α = −my(kBT ∂αPv

Y + Pv
Y ∂αW v∗) without the summa-

tion convention, and α = yv
A,B. The effective potential W v∗ is a

function of yv
B − yv

A [see Eq. (12)], allowing us to perform vari-
able substitution: (yv

A, yv
B) → (y+, y−), where y+ = yv

A + yv
B

and y− = yv
B − yv

A. The system can then be described by a one-
variable probability P−(y−; t ) which is governed by Eq. (13),
and y+ follows diffusional dynamics with mobility my.

APPENDIX E: ESTIMATION OF Tr AND Thop

In this Appendix we derive the expressions of Tr and Thop

that are used in Sec. III. Tr and Thop are two characteristic
timescales of the modified binding potential U v

b , whose height
is �E v . Since U v

b does not have an analytical expression, to
obtain an estimation of the two timescales we approximate U v

b
by a triangular potential with height �E v and periodicity d .
Tr is the time required for the polymer end to relax within one
binding site. Let the binding site be within (−d/2, d/2) and
consider the diffusion of a particle with mobility mx within a
triangular binding potential. We use the “intrawell relaxation
time” introduced in Ref. [44] to estimate Tr . It is defined as
the average mean-first-passage time of the particle from any
fixed initial position x0, to a final position x that is sampled
from a Boltzmann distribution governed by U v

b :

Tr = 1

kBT Zmx

∫ d/2

−d/2
dx

∫ d/2

x
dy

∫ d/2

y
dz

× exp
{[ − U v

b (x) + U v
b (y) − U v

b (z)
]
/kBT

}
≈ d2

2kBT mx

(
kBT

�E v

)
, (E1)

where Z = ∫ d/2
−d/2 dx exp[−U v

b (x)] is the partition function. In
Eq. (E1), the integrals over dy and dz calculate the mean-
first-passage time from x0 to x, and the integral over dx
calculates the average mean-first-passage time with the Boltz-
mann weight of U v

b (x). Note that Tr is independent of the
initial position x0.

Thop is the average time for the polymer end to hop to
another binding site. The time required to escape from a
potential well can be estimated by the mean-first passage time
from the bottom of the well to the top of the well, which is [46]

Thop = 1

kBT mx

∫ d/2

0
dy

∫ y

−d/2
dz exp

{[
U v

b (y)−U v
b (z)

]
/kBT

}
≈ d2

2kBT mx
exp

(
�E v

kBT

)
. (E2)

We then conclude that for �E v 
 kBT , we have Tr � Toff �
Thop. It can be understood intuitively: In the large-�E v limit,
the potential well is steep enough, thus driving a fast relax-
ation within the potential well, while the high potential barrier
prevents hopping towards another binding site.
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