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Translation is one of the most fundamental processes in the biological cell. Because of the central role that
translation plays across all domains of life, the enzyme that carries out this process, the ribosome, is required to
process information with high accuracy. This accuracy often approaches values near unity experimentally. In this
paper, we model the ribosome as an information channel and demonstrate mathematically that this biological
machine has information-processing capabilities that have not been recognized previously. In particular, we
calculate bounds on the ribosome’s theoretical Shannon capacity and numerically approximate this capacity.
Finally, by incorporating estimates on the ribosome’s operation time, we show that the ribosome operates at
speeds safely below its capacity, allowing the ribosome to process information with an arbitrary degree of error.
Our results show that the ribosome achieves a high accuracy in line with purely information-theoretic means.

DOI: 10.1103/PhysRevE.108.044404

I. INTRODUCTION

The ribosome is a Brownian nanomachine that assembles
proteins from codon sequences in messenger RNA (mRNA,
and codons are nucleotide triplets), matching each codon to
an anticodon and through that to an amino acid by a kind
of look-up table (i.e., the genetic code) in the physical form
of transfer RNA (tRNA) [1,2]. After joining the codon with
its anticodon tRNA, the ribosome catalyzes the peptide bond
formation, producing an amino acid string that folds into a
protein.

A ribosome is a one-way, almost deterministic, finite
transducer (in the terminology of Aho [3]): It is almost de-
terministic in the sense that rare errors occur approximately
once in 1000 to 10 000 codons [4–9]. Ribosomes process
between about 99.9% to 99.99% of codons accurately, thanks
to proof-reading mechanisms, and errors often result in pre-
mature abandonment of translation. Ribosomes usually halt
correctly at stop codons but occasionally get stalled if a stop
codon is missing, damaged, or misread. Such stalling can be
deadly for a cell, but there are mechanisms in eukaryotes for
rescue [10–12].

In addition, the ribosome is a memoryless finite-state ma-
chine having 64 codon symbols and 20 amino acid states: It is
memoryless because the ribosome’s current state determines
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its next action, and that next action is energetically favorable
[13]. Because it links the amino acids in an ordered chain,
there are combinatorially many possible output proteins.
In theory, a ribosome could make more than 2050 outputs
(50–2000 amino acids being the length of a typical protein
[9], and some can potentially reach 38 000 amino acids long
[14,15]); although in practice, the ribosome is limited by the
information it is fed by the mRNA sequences.

Ribosomes operate quickly, translating a codon in about 50
ms and producing a typical-length polypeptide on the order
of minutes [2,9,16]. The polypeptide then folds into its func-
tional protein form, with the fastest folding times being on the
order of microseconds [17].

The natural interpretation of protein synthesis as a process
of information transmission is widespread and may contribute
to our understanding of the ribosome’s simultaneously high
accuracy and speed. Applications of information theory are
numerous; efforts have been made at the neuron, network
[18], and system levels in a variety of ways with names
such as information bottleneck [19], information distortion
[20], effective information [21], consistent information [22],
teleosemantic information [23], and positional information
[24–27]. But there is no consensus yet on which are the most
useful interpretations, and they are all problematic [28].

Calculations of information-theoretic quantities focusing
generally on gene expression and protein synthesis have been
conducted previously using specially constructed channel ma-
trices [29–31]. We build on these results by introducing a
novel channel matrix for the ribosome and show that it op-
erates at rates below its channel capacity and satisfies the
hypotheses of Shannon’s Noisy Channel Coding theorem, al-
lowing the ribosome to transmit information with an arbitrary
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FIG. 1. The ribosome as an information-theoretic channel: The
input string X ∗ is translated into an output string Y ∗, which folds into
protein Ỹ .

degree of error. We do so by modeling the ribosome as an
information channel, calculating bounds on the ribosome’s
channel capacity and comparing the capacity with experi-
mentally determined translation rates. These results provide
explanations for the ribosome’s high accuracy despite its high
translation rate.

II. THE RIBOSOME WORKS WITHIN
ITS CHANNEL CAPACITY

We view the ribosome as a discrete memoryless channel:
The input message X ∗ is mRNA, and the output Y ∗ is the
resulting polypeptide. As mentioned above, the ribosome has
an accuracy of about 99.9% to 99.99%. Why is this high
level of accuracy possible? Shannon’s Noisy Channel Coding
theorem sets the channel capacity C as the maximum rate at
which a channel can transmit information with arbitrarily low
error [32]. The capacity is defined as

C := sup
pX

I (X ;Y ), (1)

where I (X ;Y ) is the mutual information of random vari-
ables X (input) and Y (output), and the supremum is taken
over all input distributions pX . In Sec. II A, we give explicit
bounds on Eq. (1). For the remainder of this paper, “log”
denotes the base-2 logarithm so that the units of information
are bits, unless stated otherwise.

While we acknowledge that several ribosome variants
exist—for example, there are structural differences between
the ribosomes of prokaryotes and eukaryotes—we also recog-
nize that the fundamental informational function of translation
across these different variants remains the same [33]. There-
fore, we focus on the ribosome’s basic translational process,
the conversion of information contained in mRNA’s codon
string into a polypeptide string (Fig. 1).

A. Bounding the ribosome’s capacity

We first note that there are 43 = 64 codons, each requir-
ing log 64 = 6 bits to be specified as triplets from the input

FIG. 2. Transmission diagram for the ribosome. There are 64
input symbols (codons, left) and 21 output symbols (amino acids
plus the “Stop” symbol, right), although most symbols are hid-
den for clarity. Solid arrows indicate “correct” transmissions [i.e.,
y = G(x)], and dashed arrows represent “incorrect” transmissions
[i.e., y �= G(x)]. Only UUU’s incorrect transmissions are depicted
here. Synonymous codons are mapped to the same amino acid—e.g.,
codons GGC, GGA, and GGG are all mapped by G to the amino acid
glycine (Gly). Synonymous codons represent the degeneracy of G,
which contributes to the ribosomal channel’s asymmetry.

alphabet X := {A, C, G, U}3. Additionally, the output set
is the alphabet Y := {Met, Leu, . . . , Ser, Stop}, which in-
cludes all 20 standard proteinogenic amino acids and the
“Stop” symbol. Therefore, each amino acid is specified by
log 21 ≈ 4.3923 bits.

We model the ribosome directly as an information channel
by specifying its conditional probability distribution p(y|x):

p(y|x) =
{

1 − r, y = G(x)
r

20 , y �= G(x) , (2)

where G : X → Y is the standard genetic code, and r ∈
[0, 1] is the probability of error. G is constructed from a table
of the standard genetic code [33]. For example, G(AUG) =
Met, where Met is the amino acid methionine. A diagram of
the ribosome as an information channel is given by Fig. 2.
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According to Eq. (2), the ribosome correctly matches a
codon x ∈ X to its corresponding amino acid y ∈ Y according
to G [i.e., y = G(x)] with some (preferably large) probability
1 − r. Conversely, there is a (preferably small) probability r
that the ribosome performs an incorrect match [i.e., y �= G(x)].
In this case, our model assumes that the error probability r is
distributed equally over all 20 possible incorrect outputs in Y ,
i.e., for a fixed codon x, each y �= G(x) has a probability r

20 .
These conditions ensure the proper normalization of p(y|x).

Equation (2) resembles the well-studied q-ary symmetric
channel [34], except that here the input and output alphabets
are different (codons vs amino acids), whereas the input and
output alphabets of the q-ary symmetric channel are identi-
cal to each other. Moreover, our channel defined by Eq. (2)
depends on an external function, namely the genetic code
G. These new features necessitate a new calculation in our
ribosomal context.

Equation (2) is a 64 × 21 channel matrix and contains a
sufficiently large degree of asymmetry such that a closed form
of the capacity C is difficult to obtain. However, one can
still bound C, and we do so here. As a quick estimate, we
immediately see that the channel capacity is bounded above:

0 � C � min{log |X |, log |Y|} = log 21 ≈ 4.3923, (3)

where the upper bound is obtained by maximizing the
entropy of X and Y , respectively [32].

We improve the capacity’s lower bound by an explicit
calculation using Eq. (1). Combining this calculation with
Eq. (3), we obtain the following theorem, whose proof we
outline in the Appendix.

Theorem II.1. The channel capacity C of the ribosome in
bits/use satisfies g(r) � C � log 21, where g(r) is given by

g(r) := 1

64

{
2q log

1280q

43r + 20
+ 63r

10
log

64r

43r + 20
+ 18q log

640q

11r + 20
+ 279r

10
log

32r

11r + 20
+ 6q log

1280q

r + 60
+ 61r

10
log

64r

r + 60

+ 20q log
64q

4 − r
+ 15r log

16r

5(4 − r)
+ 18q log

640q

60 − 31r
+ 87r

10
log

32r

60 − 31r

}
(4)

and q := 1 − r.
It is worth noting that each “use” consists of a single

transmission of a codon through the ribosomal channel to an
amino acid.

A linear-log plot of the lower bound g(r) of C as a function
of the error probability r is shown in Fig. 3. It is straight-
forward to show that g(r) is decreasing on (0, 20/21), is
increasing on (20/21, 1), and has a root at r = 20/21.

FIG. 3. A linear-log plot showing the capacity’s lower bound
g(r) (solid), Djordjevic’s maximization I (r) of Yockey’s mutual in-
formation (dashed), and the capacity’s upper bound in Theorem II.1
(dotted) as functions of error probability r. The space between the
solid and dotted curves represents the region where we predict that
the capacity may lie.

When r = 20/21, Eq. (2) has the highest degree of symme-
try and each amino acid is equally likely. Thus, no information
is transmitted by the ribosome. Once r increases beyond
this point, asymmetry is reintroduced into the channel. This
broken symmetry appears as a slight increase in g(r) for
r ∈ ( 20

21 , 1).
Experimentally measured error probabilities r lie approx-

imately within the range 10−4 � r � 10−3 [4–9], indicating
that the capacity is bounded below by values very close to the
peak of g(r) (solid curve in Fig. 3). This observation is one
demonstration of the ribosome’s ability to translate accurately.

Since g(r) is decreasing on (0, 20/21) and g(0) ≈ 4.2181,
we have

4.2181 � C � 4.3923
bits

use
, (5)

where “�” indicates that C lies strictly between the bounds
as they appear but that the bounds can be better approximated
by appropriate rounding once more significant digits are taken
into account.

Each codon is specified by log 64 = 6 bits, so Eq. (5)
becomes

0.7030 � C � 0.7321
codons

use
. (6)

Evaluating g(r) at r = 1 × 10−4, a typical value for the
ribosome’s error probability, yields

0.7027 � C � 0.7321
codons

use
. (7)

Yockey modeled the genetic communication system using
a different channel matrix Eq. (2) that incorporates point mu-
tations [29,30]. Using this alternative conditional probability
distribution, Yockey derives the system’s corresponding mu-
tual information and through several approximations obtains
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I (X ;Y ) = H (X ) − 1.68 + 6.509r log 0.4594r, where H (X )
is the entropy of input X . Djordjevic maximizes Yockey’s
expression to obtain a channel capacity using the marginal
distribution of X that is uniform over the nonstop codons [i.e.,
p(x) = 1/61 for any nonstop codon x] and zero over the stop
codons [i.e., p(UAA) = p(UAG) = p(UGA) = 0] [31]. Do-
ing so yields H (X ) = log 61, so that I (r) := I (X ;Y ) becomes

I (r) = log 61 − 1.68 + 6.509r log 0.4594r. (8)

We plot Eq. (8) using this value (dashed curve) alongside
our calculated g(r) (solid curve) in Fig. 3.

As seen in Fig. 3, our result differs slightly from Eq. (8). As
stated in Theorem II.1, we predict a range of possible values
for C, with greater uncertainty as r increases. It is worth noting
that g(r) represents a lower bound on an upper bound, namely
the capacity C.

We recognize that, by the asymmetry of the channel
(Fig. 2), we are able to analytically calculate only bounds on
the capacity, such as Eqs. (5), (6), and (7). Thus, to verify the
bounds in Theorem II.1 and better approximate the capacity,
we do so numerically, which we outline in the next section.

B. Numerical approximation of the capacity

To approximate the channel capacity, we apply the well-
known Blahut-Arimoto algorithm, which is often used to
compute capacities for arbitrary channels [35,36].

Given an input set X and output set Y , the problem of com-
puting a channel capacity [Eq. (1)] amounts to maximizing
the mutual information I (X ;Y ) between the channel input and
output over all possible input distributions pX . One method for
accomplishing this maximization is to calculate the gradient
of I (X ;Y ). However, this direct method often leads to a non-
linear system in a high-dimensional space. For the ribosome,
this space has |X | = 64 dimensions, one dimension for each
codon, leading to a computationally intractable problem.

Fortunately, the Blahut-Arimoto algorithm provides an al-
ternative, efficient method for computing the capacity. Note
that for a fixed conditional distribution p(y|x), I (X ;Y ) is
a concave function of the input distribution, i.e., I (X ;Y ) =
I (pX ). The algorithm iteratively yields a sequence of input
distributions {Qn}n∈N . This sequence, in turn, yields a se-
quence of mutual informations {I (Qn)}n∈N that monotonically
converges to the capacity quickly.

More precisely, starting from an arbitrary initial input dis-
tribution Q1, for each x ∈ X , the quantity

Tn(x) :=
∑
y∈Y

p(y|x) log

[
Qn(x)p(y|x)

Rn(y)

]
(9)

is calculated for each iteration, where Rn(y) is the marginal
distribution of the output:

Rn(y) :=
∑
x∈X

p(y|x)Qn(x). (10)

A sequence of input distributions is then calculated accord-
ing to the following rule:

Qn+1(x) = eTn(x)∑
x′∈X eTn (x′ ) . (11)

FIG. 4. Results of the Blahut-Arimoto algorithm with r = 1 ×
10−4. The mutual information I (Qn) converges to the capacity C with
monotonically.

It can be shown that I (Qn)
n→∞−−−→ C monotonically from

below (Theorem 3 in Ref. [36]) and that the channel capacity
C satisfies [37], p. 524]

mn � C � Mn, (12)

where

mn := min
x∈X

Tn(x) − log Qn(x), (13)

Mn := max
x∈X

Tn(x) − log Qn(x). (14)

Equation (12) provides a termination criterion that stops
the algorithm once I (Qn) falls within a chosen accuracy of C.

We start by initializing {Qn}n∈N with the uniform distribu-
tion, i.e.,

Q1(x) = 1

64
, ∀x ∈ X . (15)

We iteratively generate the subsequent terms of the se-
quence {Qn}n∈N using Eqs. (9)–(11) and the ribosome’s
characteristic conditional probability distribution Eq. (2) for
the error probability r = 1 × 10−4. We allow the algorithm to
continue until the difference Mn − mn � 10−35.

The results of this algorithm are plotted in Fig. 4. We ob-
serve monotonic convergence to a value C ≈ 4.3904 bits per
use = 0.7317 codons per use, which falls within the bounds of
Eq. (7). In fact, these values lie very near the capacity’s upper
bound.

In addition to the capacity, the Blahut-Arimoto algorithm
also outputs an approximation to the capacity-achieving distri-
bution Q∗, that is, the input distribution for which C = I (Q∗).
This distribution is shown in Fig. 5. It is currently unknown
whether the approximated optimum Q∗ is unique.

C. The ribosome’s capacity in time

In practice, one has access to only the ribosome’s in vivo
or in vitro translation rate, which is needed so that Shannon’s
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FIG. 5. Capacity-achieving input distribution Q∗. Codons are or-
dered alphabetically. The codons having the largest probabilities are
the start codon AUG, which codes for methionine, and UGU, which
codes for cysteine.

theorem may be applied. Time must be incorporated so that
we may compare our results to experimentally measured rates.

In Ref. [38], Fluitt et al. devise a model of translation
showing that competition between cognate, near-cognate, and
noncognate aminoacyl-tRNAs (aa-tRNAs) cause delays in the
observed translation rate. The authors perform Monte Carlo
simulations of the ribosome during translation that yield the
average translation time for each of the 64 codons [38]. Their
model accounts for peptide bond catalysis and the translo-
cation of the ribosome from one codon to the next using
experimentally determined kinetic rate constants obtained in
vitro for Escherichia coli by Gromadski and Rodnina [39].

Under the assumption that each aa-tRNA that arrives via
diffusion is an aa-tRNA corresponding correctly to the codon
in the ribosome’s active site (i.e., each aa-tRNA is cognate),
the authors find that the average translation time for a single
codon at 37◦C is τribo = 9.06 ms. We interpret τribo as the
time that corresponds to the condition where aa-tRNAs are in
sufficiently high concentrations such that aa-tRNA availability
does not limit the rate of translation; that is, we take τribo to
be a good estimate of the ribosome’s theoretically minimal
translation time.

Dividing Eq. (7) by τribo, we obtain the capacity range

77.5964 � C∗
ribo � 80.7655

codons

second
, (16)

where we have defined C∗
ribo := C/τribo.

In addition, by dividing our numerical approximation
C ≈ 0.7317 codons per use by τribo, we obtain C∗

ribo ≈ 80.7655
codons/s, which agrees with the range in Eq. (16). We can
also see that our approximated capacity lies very near the
upper bound of the analytically calculated capacity.

Experimental ribosomal translation rates in prokaryotes
fall approximately within 13–22 codons/s [16]. (Eukaryotic
translation is even slower at about 5 codons/s [40,41].) This
range lies below the range of Eq. (16) by a large margin, which
implies, by Shannon’s Noisy Channel Coding theorem, that
the ribosome is able to translate at its observed speeds without
sacrificing accuracy.

III. SUMMARY AND CONCLUSION

We have shown that the accuracy of the ribosome can
be explained through purely information-theoretic means by
introducing a new model that views the ribosome as a dis-
crete memoryless channel. The ribosomal channel operates at
rates below its capacity in time, allowing it to reliably trans-
mit information with an arbitrary degree of error. We have
shown this result by analytically bounding and numerically
computing the ribosome’s channel capacity and verifying that
these values lie above the ribosome’s experimentally observed
operation rate. Our study is, as far as we know, the first to
compare experimentally determined translation rates with a
calculated capacity, showing that these rates lie safely below
the ribosome’s channel capacity.

To summarize, our result successfully explains, from an
information-theoretic perspective, existing observations that
the ribosome translates accurately at experimentally measured
translation rates.

It is worth noting that Shannon’s theorem is a nonconstruc-
tive theorem. In other words, although the theorem guarantees
the existence of a coding scheme that achieves informa-
tion transmission having an arbitrary degree of error, such a
scheme is not specified.

It is well known that there are many other alternative,
naturally occurring genetic codes, with the standard genetic
code the most prevalent [42]. For example, vertebral mito-
chondria utilize a genetic code that maps the codon AUA to
the amino acid methionine, whereas the standard genetic code
maps AUA to isoleucine. Our method can be extended to other
genetic codes by changing the function G appropriately, and
we anticipate this accommodation may be accomplished at a
later time.

Several other questions naturally arise when consider-
ing alternative genetic codes in the context of our model.
Can the channel capacity be further optimized by choos-
ing a different genetic code? And if so, which one? Is
it the standard genetic code? And as we mention above,
it is currently unknown whether the numerically computed
capacity-achieving distribution Q∗ is unique. These are
some questions that we hope will be addressed in a future
study.

The ribosome is found universally across all domains
of life, albeit with some variations across these domains.
Taken together, our results for the ribosome may serve
as a case study of a more general feature of biological
machines, namely that biomolecules, when viewed as infor-
mation channels, have evolved ways to process information
quickly while minimizing errors. One such class of ma-
chines may include other enzymes such as DNA polymerases
during DNA replication and RNA polymerases during
transcription.
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APPENDIX: PROOF OF THEOREM II.1

Given random variables X and Y in X and Y , respectively,
we substitute both the standard definition of mutual informa-
tion and Eq. (2) into Eq. (1) to obtain

C = sup
pX

I (X ;Y )

= sup
pX

∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

pX (x)pY (y)

= sup
pX

∑
x∈X

∑
y∈Y

p(y|x)p(x) log
p(y|x)

p(y)
, (A1)

where p(x) := pX (x) and p(y) := pY (y) are the respective
marginal distributions for X and Y , and p(x, y) is their corre-
sponding joint distribution.

The estimate continues by picking a particular marginal
probability distribution pX , namely the uniform distribution
over the 64 possible codons, which gives a lower bound on
the supremum as follows:

C = sup
pX

∑
x∈X

∑
y∈Y

p(y|x)p(x) log

[
p(y|x)∑

x′ p(y|x′)p(x′)

]

� 1

64

∑
x∈X

∑
y∈Y

p(y|x) log

[
p(y|x)

1
64

∑
x′ p(y|x′)

]

=: g(r). (A2)

To simplify notation, we define f (y) by

f (y) :=
∑
x∈X

p(y|x) log

[
64p(y|x)∑

x′ p(y|x′)

]
, (A3)

so that

g(r) = 1

64

∑
y∈Y

f (y). (A4)

G is not injective (i.e., the genetic code is degenerate),
and amino acids can be grouped according to the number
of codons that map to each amino acid. (A table of the
standard genetic code can be found in many standard text-
books in biology, such as Ref. [33].) For example, two amino
acids—methionine (Met) and tryptophan (Trp)—both have
exactly one codon that map to each, whereas three other amino
acids—leucine, serine, and arginine—have exactly six such
codons each. Therefore, f (Met) = f (Trp), and so on. Using
Eq. (2), for Met we have

∑
x′∈X

p(Met|x′) = (1 − r) + 63r

20
= 43r + 20

20
. (A5)

Here the term 1 − r corresponds to the case y = G(x),
and the term 63r

20 corresponds to the cases where y �= G(x).
Substituting Eq. (A5) into Eq. (A3), we have

f (Met) =
∑
x∈X

p(Met|x) log

[
1280p(Met|x)

43p + 20

]

= q log
1280q

43r + 20
+ 63r

20
log

64r

43r + 20
, (A6)

where q := 1 − r.
f (y) for each of the other amino acids is calculated simi-

larly. Doing so for each amino acid y ∈ Y and substituting the
results into Eq. (A4), we obtain

g(r) = 1

64

{
2q log

1280q

43r + 20
+ 63r

10
log

64r

43r + 20

+ 18q log
640q

11r + 20
+ 279r

10
log

32r

11r + 20

+ 6q log
1280q

r + 60
+ 61r

10
log

64r

r + 60

+ 20q log
64q

4 − r
+ 15p log

16r

5(4 − r)

+ 18q log
640q

60 − 31r
+ 87r

10
log

32r

60 − 31r

}
. (A7)

Combining Eqs. (A2), (A7), and (3), we obtain the desired
result.
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