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Cognition involves the global integration of distributed brain regions that are known to work cohesively as
cognitive subsystems during brain functioning. Empirical evidence has suggested that spatiotemporal phase
relationships between brain regions, measured as synchronization and metastability, may encode important
task-relevant information. However, it remains largely unknown how phase relationships aggregate at the level
of cognitive subsystems under different cognitive processing. Here, we probe this question by simulating
task-relevant brain dynamics through regional stimulation of a whole-brain dynamical network model operating
in the resting-state dynamical regime. The model is constructed with structurally embedded Stuart-Laudon
oscillators and then fitted with human resting-state functional magnetic resonance imaging data. Based on
this framework, we first demonstrate the plausibility of introducing the cognitive system partition into the
modeling analysis framework by showing that the clustering of regions across functional networks is better
circumscribed by the predefined partition. At the cognitive subsystem level, we focus on how task-relevant
phase dynamics are organized in terms of synchronization and metastability. We found that patterns of cognitive
synchronization are more task specific, whereas patterns of cognitive metastability are more consistent across
different states, suggesting it may encode a more task-general property during cognitive processing, an inherent
property conferred by brain organization. This consistent network architecture in cognitive metastability may be
related to the distinct functional responses of realistic cognitive systems. We also provide empirical evidence
to partially support our computational results. Our paper may provide insights for the mechanisms underlying
task-relevant brain dynamics, and establish a model-based link between brain structure, dynamics, and cognition,
a fundamental step for computationally aided brain interventions.
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I. INTRODUCTION

Cognition involves a global integration of distributed brain
regions [1], and deviance from such functional capacity
is associated with neurological and psychological disorders
[2]. Progress in brain network studies has revealed a well-
structured pattern of neural activities in the human resting
brain [3]. Task-evoked networks are reported to be highly cor-
related with the resting-state ones, and task-based functioning
is assumed to be initiated by the task-specific activation of
the intrinsic network architecture at rest [4]. Moreover, brain
regions are found to work cohesively as grouped commu-
nities under different cognitive operations and play distinct
roles in maintaining healthy brain functions [5,6]. Therefore,
understanding how these patterns are dynamically formed
and linked to cognitive processing is an important problem
remaining to be solved.

Phase relationships among brain regions have gained in-
creasing attention in studying macroscopic brain activities
[7,8]. Phase synchronization is ubiquitous in natural systems
including the brain, and conjectured to be a fundamental
mechanism for neural communication [9]. Empirical and
theoretical evidence has suggested that coordinated brain
dynamics arise from a dynamical metastable regime that
could balance functional segregation and integration [10–13].

Phase synchronization, denoted as the standard Kuramoto
order parameter [14], has been demonstrated to be pow-
erful in informing the dynamic traits of brain oscillations
[15,16]. Metastability, measured as the temporal variation of
the Kuramoto order parameter [12], may encode important
information for cognitive processing. Empirical evidence has
suggested an association between metastability and cogni-
tive performance in both healthy cognitive operations [17]
and impaired brain functions such as senescence [18] and
Parkinson’s disease [8]. Researchers have also speculated that
a higher level of metastability is linked to higher cognitive
performance, while a lower level of metastability will re-
sult in impaired cognitive performance [18]. Therefore, brain
regions may rely on metastability to bind into functionally
connected subnetworks during cognitive operations. However,
how metastability is circumscribed by the cognitive subnet-
works remains largely unclear.

Empirically, brain states can be intervened by external
means such as transcranial direct current stimulation and deep
brain stimulation, which have been applied to improve cogni-
tion and emotion [19] and the treatment of Parkinson’s disease
[20]. Effects on cognitive performance also accompany ob-
servable changes in functional connectivity patterns [19] and
preferential response among specific cognitive subnetworks
[20]. However, such practices are largely constrained by
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FIG. 1. (a) A schematic of modeling and analyzing methods. (b) Spatial distribution of the eight cognitive subsystems: Attention (Att),
cingulo-opercular (CO), fronto-parietal (FP), medial default mode (mDM), motor and somatosensory (MS), visual (V), ventral temporal
association (VTA), and auditory (Aud).

ethical restrictions that limit their capability in providing
mechanistic views on the brain system. In contrast, in sil-
ico perturbational experiments are free of such limitations,
where systematic explorations of control parameters can paint
a full picture of the system’s dynamic working space. Com-
putational brain models are promising to provide mechanistic
insights into the underlying link between brain structure, dy-
namics, and function [21]. A recently proposed modeling
framework that leverages the integration of empirical neu-
roimaging data and theoretical neural dynamical models has
been applied to approach this goal. These models have been
used to elucidate the metastable nature of human resting-state
networks [13,22–25]. However, dynamical insights for brain
states other than rest are still lacking, especially for cogni-
tive operations. Preliminary efforts have employed in silico
perturbational experiments to represent task-evoked states in
a general way, and measure brain synchronization among
predefined cognitive subsystems [21,26]. The consistency of
these patterns has been used to explain the functional roles of
different cognitive subsystems [27].

We hypothesize that metastability at the level of cog-
nitive subsystems will provide meaningful information for
task-relevant operations. Task-relevant brain dynamics are
generated in a phenomenological way by applying regional
stimulation on a calibrated resting-state brain network model,
allowing the relationship between characteristics of brain dy-
namics and underlying structures to be explored explicitly. We
characterize both spatial and temporal aspects of brain dy-
namics, i.e., synchronization and metastability, at the level of
predefined cognitive systems and examine their relationship
to the underlying structure. We also show that the functional
roles of cognitive subsystems are embodied in their metasta-
bility interactions and provide empirical evidence for this
using human functional data in rest and task operations. Our
results may provide a mechanistic insight into how brain func-
tioning relies on phase relationships at the level of network
communities.

II. MODEL AND METHODS

A schematic of the simulating and analysis framework is
shown in Fig. 1(a). Briefly, task-relevant brain dynamics is
simulated by regional stimulation of a whole-brain dynam-
ical network model operating in the resting-state dynamical
regime. The model is composed of coupled Stuart-Laudon
oscillators with human realistic structural connectivity (SC).
We first demonstrate the plausibility of introducing a prede-
fined cognitive partition into the modeling analysis framework
by showing that the functional roles of systems are recov-
ered from the simulations of putative task-relevant functional
networks. The functional roles of systems are indicated
by a summarized metric of common community activation
called the allegiance matrix [Fig. 2(a)]. We then character-
ize network dynamics at the level of cognitive subsystems
and examine their relationship with the underlying structure
[Fig. 2(b)].

A. Empirical data preparation

Empirical data of 20 healthy subjects were obtained from
the Human Connectome Project (HCP) 100 unrelated dataset
[28]. We used the minimally preprocessed structural and dif-
fusion magnetic resonance imaging data provided by the HCP
to generate group-averaged structural connectivity [29]. For
each subject, a tractography of 10 × 106 streamlines was gen-
erated under a probabilistic fiber tracking algorithm, and was
further processed with spherical-deconvolution informed fil-
tering of tracks to mitigate the bias toward overestimating long
tracks. We parcellate the brain into N = 68 cortical regions
using the Desikan-Killiany atlas [30]. Then the structural con-
nectivity matrix C was generated by counting the number of
streamlines between pairwise regions, and normalized by the
region’s volume. To compute the group SC, each individual
SC was thresholded to exclude potential false positives if
connections of the pairwise regions were zero in more than
half of the subjects [31].
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FIG. 2. A schematic of analysis methods for the results. (a) Procedure of obtaining module allegiance across brain states to demonstrate
the clustering of regions within predefined cognitive subsystems. (b) Visualization of the similarity between cognitive synchronization
metastability patterns across task-relevant states under specific stimulation schemes.

Time series of preprocessed resting-state blood oxygen
level dependent (BOLD) signals were extracted at the voxel
level (repetition time = 0.72 s, 14.4 min) and then aver-
aged within the same regions defined by the Desikan-Killiany
atlas (N = 68) for each subject and each session (four ses-
sions in total). The signals were filtered in a narrowband of
0.04–0.07 Hz that is thought to be most functionally relevant
with resting-state dynamics [15,16].

B. Whole-brain dynamical network model

The whole-brain computational model is based on anatom-
ically constrained coupled nonlinear oscillators. Despite its
phenomenological nature compared to biophysically realistic
models, theoretical studies have shown its capability of ex-
plaining brain dynamics in the resting state [12,32].

Dynamics of each brain region i were generated by the
Stuart-Landau oscillator [33], also known as the Hopf model
denoting the normal form of supercritical Hopf bifurcation.
The Hopf model is capable of describing the dynamical tran-
sition between noise and oscillation, has been demonstrated
to exhibit the richness and generality of observed EEG sig-
nals at the local level, and is thus frequently employed as a
representative of mesoscopic neural dynamics [34,35]:

dxi

dt
= (

ai − x2
i − y2

i

)
xi − ωiyi + βηi(t ), (1)

dyi

dt
= (

ai − x2
i − y2

i

)
yi + ωixi + βηi(t ) (2)

where ai is the bifurcation parameter with a critical value of
zero. State variables xi and yi describe the node dynamics in
Cartesian coordinates, and we take xi as a phenomenological
representation of the regional BOLD signal. The intrinsic

frequency fi = 2π/ωi is set equal to the peak frequency
of the corresponding functional magnetic resonance imaging
(fMRI) time series in the range of 0.04–0.07 Hz reported to
be most functionally relevant. ηi(t ) is the Gaussian noise with
a strength of β = 0.002.

Hopf oscillators are coupled through the structural connec-
tivity matrix C that was derived from human structural data.
The full model is described as follows:

dxi

dt
= (

ai − x2
i − y2

i

)
xi − ωiyi + k

N∑
j=1

Ci j (x j − xi ) + βηi(t ),

(3)

dyi

dt
= (

ai − x2
i − y2

i

)
yi + ωixi + k

N∑
j=1

Ci j (y j − yi ) + βηi(t )

(4)

where i, j = 1, 2, . . . , N indexes various cortical regions. Dif-
fusive coupling is used as the simplest approximation of the
general coupling function and is valid in the weakly coupled
oscillator limit [25]. C was normalized such that its maximal
entry equals 0.2 to scale range of a grid search in the parameter
space. k is a scaling factor representing the global coupling
strength between all the brain regions. ai is set to be the
same among all the regions and tuned together with k to find
candidate working points for resting-state dynamics.

Simulation under each parameter set was run for 16.4 min
with a step of dt = 0.001 s and random initial conditions,
and the first 2 min of activities were discarded as tran-
sients. Simulation under each parameter set was repeated 150
times, over which the dynamical measures were averaged to
achieve convergent values.
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C. Measures of functional connectivity and phase dynamics

Functional connectivity (FC) was obtained by computing
the Pearson correlation of the fisher z-transformed pairwise
time series as a time-averaged measure of coherence for both
empirical and simulated signals. The empirical group-level
FC was obtained by averaging across all the subjects and
sessions. The temporal dynamics of FC is represented by the
functional connectivity dynamics (FCD) to provide informa-
tion of network coherence in temporal aspects [24,25]. FCD
is obtained first by truncating the time series with a sliding
window approach (window length = 60 s, overlap = 59 s), and
a static FC matrix was calculated for each window resulting
in a series of Cfunc(t ). Then, the FCD matrix is defined by
the pairwise correlation between all the possible Cfunc(t ) pairs,
where transient stable FC states would appear in the matrix as
squared patterns.

Phase synchronization is measured by the Kuramoto order
parameter [14], which is given by

R(t ) =
∣∣∣∣∣∣

1

N

N∑
j=1

exp[iφ j (t )]

∣∣∣∣∣∣ (5)

where φ j is the instantaneous phase of the jth region at time
t . The instantaneous phase is obtained by applying the Hilbert
transform to the narrowband signal x(t ):

z(t ) = x(t ) + iH[x(t )] (6)

where i is the imaginary unit, and H denotes the Hilbert
transformation. The variable z(t ) is a complex signal whose
argument and modulus denote the phase and the amplitude of
the narrowband signal, respectively.

The global synchronization is obtained by averaging R(t )
over the whole time course (ttotal), and metastability is mea-
sured as the fluctuation of R(t ) to indicate the temporal aspects
of brain dynamics:

λ = 1

λmax

{
1

ttotal − 1

∑
t�ttotal

[R(t )− < R(t ) >ttotal ]
2

}
. (7)

Here, λmax = 1
12 is a normalization factor representing

the scenario with maximal metastability [10]. For empirical
values, the global synchronization and metastability were av-
eraged across all the subjects and sessions to represent the
group-level dynamics.

In this paper, we put a special focus on network dynamics
at the level of the well-defined cognitive subsystems. Since the
instantaneous phase is computed for each region separately,
the interactive phase relationship among subsystems can be
quantified by computing Kuramoto order parameters among
regions from pairwise subsystems in a network format, lead-
ing to cognitive synchronization and metastability. The two
measures are defined as follows:

RSi,S j (t ) =
∣∣∣∣∣∣

1

NSi + NSj

∑
j∈Si,S j

exp[iφ j (t )]

∣∣∣∣∣∣, (8)

RSi,S j =< RSi,S j (t ) >ttotal , (9)

λSi,S j = 1

λmax

{
1

ttotal − 1

∑
t�tttotal

[RSi,S j (t )− < RSi,S j (t ) >ttotal ]
2

}
.

(10)

Here, Si means region i is a member of the subsystem
S. The 68 regions were allocated into eight subsystems fol-
lowing Ref. [27] [see Fig. 1(b)], which are the attention
(Att), cingulo-opercular (CO), fronto-parietal (FP), medial
default mode (mDM), motor and somatosensory (MS), visual
(V), ventral temporal association (VTA), and auditory (Aud)
system.

D. Fitting the model with empirical resting-state fMRI data

A typical workflow of the brain network modeling frame-
work is to constrain model behavior with metrics derived from
empirical functional data [36]. To obtain a model operating
in the resting state, we fit the model to empirical data based
on four metrics: Static FC, FCD, global synchronization, and
metastability. FC and FCD characterize network synchroniza-
tion from the amplitude perspective; the former is a statistical
average over time and focuses on the spatial aspect, and the
latter is the summary of FCs in consecutive time windows and
focuses on the temporal aspect. It was suggested that fitting
FCD could reflect the dynamic switching of FC states which
cannot be obtained by fitting grand-average FC only [25].
The Kuramoto order parameter characterizes network syn-
chronization from the phase coherence perspective. Empirical
evidence has suggested that global phase synchronization is
a sensitive metric in differentiating two brain states [16], and
global metastability was found to be maximal in the model’s
best fitting regime [25]. We take these considerations in all
to determine the model’s best working point to reproduce
resting-state dynamics.

We evaluate model performance by measuring the differ-
ence between empirical and simulated values. The similarity
between empirical and simulated FCs is measured as the Pear-
son correlation between the upper triangular entries of the
two matrices (Cfunc. corr.). The Kolmogorov-Smirnov distance
(dKS) is used to compare the cumulative sum of the upper
triangular entries of the FCD matrices. Global dynamics are
measured by the absolute difference between the empirical
and the simulated values (dR and dλ). We expect Cfunc. corr. to
be close to 1, and we expect dKS, dR, and dλ to be close to zero.
Thereby we use an integrated metric to summarize all these
effects like in Ref. [37]. The four metrics were integrated as

D = (1 − Cfunc. corr. )dKSdRdλ. (11)

A smaller D indicates a better model performance, and
the best-fitted parameter set [abest, kbest] is identified when D
achieves its minimum.

E. Modeling putative task-relevant states
by regional stimulation

By considering the brain as a dynamical system, it is sug-
gested that spontaneous brain dynamics in the resting state
carry information about how the brain explore the dynamics
repository of all possible functional states [13]. Task-evoked
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networks are reported to be highly correlated with the resting-
state ones, and task-based functioning is assumed to be
initiated by the task-specific activation of the intrinsic net-
work architecture at rest [4]. We hypothesize that stimulation
involving different brain regions would encode particular
cognitive processing. In this paper, task-relevant brain dy-
namics are simulated by applying regional stimulation to the
fitted resting-state dynamical model in a phenomenological
way. The effect of stimulation was modeled by changing
the value of the bifurcation parameter ai of the stimulated
regions i into as. The perturbation is chosen mainly based
on phenomenological considerations. As the Hopf model is
a phenomenological representation of regional dynamics, the
local bifurcation parameter ai does not have a direct biolog-
ical correlate with real systems. But in a dynamical sense, it
defines the distance to a supercritical Hopf bifurcation which
can exert a significant impact on local dynamics, and its
change can be related to some general effects of biological
processes in an abstract way. We performed four stimulation
schemes by considering the direction of perturbations and the
numbers of stimulated regions being single or multiple (ten
randomly selected regions), which are denoted as single stim-
uli (+), single stimuli (−), multiple stimuli (+), and multiple
stimuli (−) (with as = [0.1,−1, 0.01,−0.4], respectively).
The positive (negative) values of as aim to drive the model
with a qualitative dynamic consequence of moving closer to
(away from) the oscillatory regime relative to abest at rest.

F. Evaluating the clustering of simulated
task-relevant brain activities

We evaluate whether the simulated brain states could re-
cover the clustering of brain regions under empirical cognitive
processing [5]. The common community architecture across
activated states is first detected by the Louvain algorithm
and then summarized by the allegiance matrix. Each entry of
the allegiance matrix indicates the probability of coactivation
for pairwise regions across different task operations which
allows us to characterize the functional roles of the cognitive
subsystems using its derived coefficients. A schematic of the
analysis procedure is given by Fig. 2(a).

More in detail, under a specific stimulation scheme, a set
of FCs from T = 60 stimulation-induce task-relevant states is
generated, and then we apply a generalized Louvain algorithm
to obtain a consistent community detection across multiple
networks [38,39]. Briefly, multiple FC matrices were treated
as a multislice system linked by interslice connections, and
a categorical multislice Louvain detection was performed to
obtain a consistent community partition that maximizes the
modularity Q, which is defined as

Q(γ , ω) = 1

l

∑
i jsr

[(
ai js − γs

kik j

l

)
δ(σis, σ js) + δ(i, j)ω jrs

]

× δ(σis, σ jr ) (12)

where l represents the sum of all weights in the network,
and ki is the degree of node i. ai js denotes the connectivity
of the multislice network with subscript s indexing slices.
δ(i, j)ω jrs is the coupling strength between slice s and r. δ is
the Kronecker delta function and equals to 1 if the community

assignments σ are the same. γ and ω are resolution parame-
ters to control the size and number of detected communities
(M). We explored various combinations of parameters in the
range of γ ∈ [0.5, 1.2] and ω ∈ [0.3, 0.8] with a step size
of 0.05. Then a specific parameter regime is identified to
allow meaningful difference between resting and task-relevant
states, so that resting and task FCs have equivalent number
of communities with M � 3. This choice is to avoid overly
coarse partitions involving the whole left or right hemisphere.

The obtained community structures with a size of [N, T, O]
are summarized into [N, N] using a metric called the alle-
giance matrix P [5,40]:

Pi j = 1

OT

O∑
o=1

T∑
t=1

ut,o
i, j (13)

where O is the number of runs of the algorithm (O = 100),
and T is the number of task slices (T = 60). ut,o

i, j equals 1 if
nodes i and j are assigned into the same community and zero
otherwise.

The allegiance matrix gives a picture about how regions are
functionally connected across task operations. Assuming that
regions are clustered into different cognitive subsystems, we
use two metrics derived from the allegiance matrix directly,
namely, network recruitment RS

i and integration IS
i , to quantify

the functional role of each region i with respect to a specific
cognitive subsystem S:

RS
i = 1

nS

∑
j∈S

Pi j, (14)

IS
i = 1

N − nS

∑
j /∈S

Pi j (15)

where nS is the total number of regions in system S, and N
denotes the total number of regions in the network. Briefly,
recruitment and integration measure the tendency of a given
region to be activated together with regions from the same
or other system(s). To evaluate how critical the predefined
cognitive system partition is to circumscribe functional activ-
ities, we quantify the similarity of functional roles for regions
within a particular system. Functional similarity is calculated
simply as the sum of standard deviations of recruitment and
integration, which is given by std(RS ) + std(IS ).

To give more intuition for the above methods, a schematic
is given in Fig. 2.

III. RESULTS

A. Resting-state dynamics simulated by fitting the whole-brain
dynamical model with empirical fMRI data

We commence by fitting the model to human realistic
resting-state fMRI data. In this paper, four metrics are used
to constrain the model’s behavior, including FC, FCD, global
synchronization, and metastability, and their distance to the
corresponding empirical value is measured as Cfunc. corr., dKS,
dR, and dλ.

We explored the combination of bifurcation parameter
a and global coupling strength k to evaluate the perfor-
mance of simulated activities. Consistent with previous work
that employed a similar modeling framework [16,41], the
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FIG. 3. Model fitting with empirical resting-state fMRI data.
(a) The fitting curve of Cfunc. corr., dKS, dR, and dλ, respectively, as
a function of global coupling k with a = −0.04. (b) The curve of
the integrated metric D, with the optimal regime indicated by the
shaded area. Simulated network dynamics at the chosen working
point (a = −0.04, k = 2.72) are given by (c) FC, (d) FCD, and (e)
time-varying Kuramoto order parameter, with its mean and standard
deviation denoting synchronization and metastability, respectively.
(f–h) The same metrics computed from empirical fMRI data.

best-fitting regime lies within −0.04 � a � −0.06, and k >

0.5. The fitting of each metric as a function of k when a =
−0.04 is given by Fig. 3(a). It can be seen that the metrics
vary distinctly with respect to k, with Cfunc. corr. expected to be
1 and others expected to be zero. In order to summarize the
overall fitting performance, an integrated metric D is used.
Figure 3(b) shows the performance curve of D, where the red
shaded area indicates the best-fitting regime with minimum D.
We chose a specific parameter set a = −0.04, k = 2.72 from
the best-fitting regime as a representative working point of the
simulated resting state. Dynamics of the model at the working
point are displayed in Figs. 3(c)–3(e), as compared with those
of empirical data [Figs. 3(f)–3(h)].

B. Clustering of simulated task-relevant brain activities within
the predefined cognitive subsystems

Task-relevant brain activities are simulated by applying
regional stimulation to the fitted resting-state model. Such a
practice is inspired by the empirically proposed hypothesis
that task-based brain functioning is initiated by the activation
of intrinsic network architecture at rest [4]. Each task-relevant
brain state is induced via adjusting the bifurcation parameter
ai from abest to as in one node or multiple nodes at a time
(details in Sec. II E). Empirical evidence suggests that brain
regions tend to work cohesively as communities during task
operations [5]. In order to evaluate whether the simulated ac-
tivities could recover such a feature, and to provide reasonable
evidence for analyzing dynamics subsequently at the cognitive

system level, we examine the common community structure
across activated FCs and its accordance with the predefined
cognitive system partition.

We obtained consistent network modules for all the 60
activated FCs using the Louvain algorithm [38]. The de-
gree of network modularity is measured by the number of
communities M and modularity Q. Their difference with the
resting-state value is displayed on the space of [ω, γ ] which
are the control parameters of the Louvain algorithm. Fig-
ure 4(e) shows that the modularity of task-operating networks
is always lower than the resting ones over the whole pa-
rameter space, which is in line with empirical findings of
functional networks [42]. We obtain meaningful community
detections in the parameter range within the marked rectangle
in Fig. 4(f), where resting and task FCs have equivalent num-
ber of communities with M � 3. This choice is to avoid overly
coarse partitions involving the whole left or right hemisphere.

Based on the obtained communities at γ = 1 and ω = 0.5,
we employ an empirically proposed metric, the allegiance
matrix [5,40], to assess the probability of pairwise regions
to be coactivated across states. The result is illustrated in
Fig. 4(a), and the regions are rearranged in the order of eight
cognitive subsystems as in Fig. 1(b). It is revealed that re-
gions from some subsystems have qualitatively distinguished
module allegiance properties from others (such as CO vs V),
and generally accord with the boundary of the predefined
eight systems. To give a full picture of how the cognitive
subsystems are functionally activated, we characterize the
functional role of each subsystem using the derived metrics
of the allegiance matrix. Briefly, recruitment and integration
measure the tendency of a given region to be activated to-
gether with regions from the same system, or from systems
other than itself. It can be seen from Fig. 4(c) that systems
like MS, V, VTA, and Aud are highly self-recruited, while
CO and FP tend to integrate with other systems with lower
recruitment [Fig. 4(d)]. This divergence of system function
generally agrees with the partition between primary sensory
and higher cognitive systems. Note that the simulations are
interpreted qualitatively because of the poor representation of
cross-hemisphere connections.

To demonstrate that such system function is not observed
by chance and critical to the predefined system partition, we
evaluated the functional role of the system under surrogate
partitions. Functional similarity of regions from the same sys-
tem is quantified by the standard deviation of integration and
recruitment: std(RS ) + std(IS ) as marked by the blue crosses
in Fig. 4(b). This value is expected to be small enough, in-
dicating that regions within a system share similar functional
roles. Surrogate values are computed under randomized parti-
tions to interpret the degree of such similarity. Surrogate par-
titions were generated by randomly grouping network nodes
into eight systems, with each system preserving the same
number of regions as in the cognitive partition. We ran 500 re-
alizations of surrogate system partitions and obtained the dis-
tributions of functional similarity as the boxplots in Fig. 4(b).

It is shown that functional similarity within the primary
sensory systems (i.e., MS, V, VTA, Aud) is highly differed
from the surrogate distributions and closer to the zero axis.
This indicates that these systems have regions sharing more
similar functional roles only if grouped by the predefined sub-
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FIG. 4. The clustering of brain regions across stimulation-induced brain networks. (a) Allegiance matrix of the left (left panel) and right
(right panel) hemisphere that measures the probability of coactivation for pairwise regions across states. (b) Functional similarity [measured
as the sum of the standard deviation of integration and recruitment, std(RS ) + std(IS )] of nodes under the cognitive partition (marked by blue
crosses) and surrogate partitions (box distributions). (c, d) The spatial distribution of (c) recruitment (RS

i ) and (d) integration (IS
i ) derived from

the allegiance matrix in (a). (e, f) The difference in (e) the numbers of communities (Mtask − Mrest) and (f) the value of modularity (Qtask − Qrest)
as results of the Louvain algorithm on the plane of [ω, γ ].

systems. Though the phenomenon may partly be contributed
by the underlying highly connected structural links (such as
within the visual system), we notice that there are cogni-
tive systems, e.g., the motor and somatosensory system, that
were identified by the allegiance matrix while they cannot be
aggregated as a well-defined structural module (i.e., regions
belonging to MS are assigned into three different structural
modules by applying the Louvain algorithm to the SC matrix).
Therefore, the observed within-system functional similarity in
MS is not as straightforward as what can be expected from the
underlying SC directly. We also observed that the functional
similarity within CO and FP cannot be distinguished from
the surrogate values. In addition to limitations in the model
paradigm itself, this may also reflect the function of cogni-
tive control systems (Att, CO, FP) to be more diverse within
themselves across task operations.

C. Task-relevant changes in global synchronization
and metastability

Global phase dynamics are suggested as a potential
neural communication mechanism underlying cognitive per-
formance, and their alterations are reported in Parkinson’s and
Alzheimer’s disease [8,43,44]. We first examine how global

dynamics changes during task operations and the contribution
of local structural property. Compared to the resting-state
value, global synchronization and metastability change sig-
nificantly (p < 0.01) after stimulation, as shown in Figs. 5(a)
and 5(b). Generally, positive (+) schemes will induce an in-
crease in both synchronization and metastability, and negative
schemes are opposite. We excluded the patterns from the fully
coherent regime, which are considered not relevant in the
task-relevant scenario. For single stimuli schemes, we also in-
vestigate the relationship between changes in global dynamics
and SC strength, which is defined as the summed connection
weights of each node in SC. As revealed by Figs. 5(c) and 5(e),
changes in global synchronization show a negative correlation
with the SC strength of the stimulated node (r = −0.59, p �
0.01; r = −0.40, p � 0.01) under both positive and negative
schemes, while metastability is predictable under the posi-
tive scheme only (r = −0.59, p � 0.01; r = −0.18, p = 0.1)
[Figs. 5(d) and 5(f)]. We did not observe a spatial prefer-
ence between the stimulated cognitive system and changes in
global dynamics. Such results suggest the simulated global
dynamics cannot reflect the functional role of cognitive sys-
tems, and are largely constrained by the underlying structural
connectivity.
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(a) (b)

(c)

(e)

Single s�(+)
(d)

(f)

FIG. 5. Stimulation-induced changes in global network dynam-
ics and contribution of structural connectivity. (a, b) Statistics of
(a) global synchronization and (b) metastability at rest and after
stimulation. The error bar indicates the standard deviation across all
60 states under each scheme. (c–f) Correlations between SC strength
and changes in global synchronization for the (c) single stimuli (+)
and (e) single stimuli (−) scheme, and in global metastability for the
(d) single stimuli (+) and (f) single stimuli (−) scheme.

D. Task-relevant changes in cognitive synchronization
and metastability networks

Assuming that system-level analysis of phase dynamics
may provide valuable insights related to cognitive process-
ing, we compute cognitive synchronization and metastability
networks and obtain the difference between task-relevant and
resting-state patterns. Similarities of cognitive synchroniza-
tion and metastability networks across stimulation-induced
states are displayed in Figs. 6(a) and 6(b). For single stimuli
schemes, the similarity matrix is ordered by the results of
stimulating each system sequentially [from Att to Aud as
shown in Fig. 1(b)], whereas for the multiple stimuli schemes
the order refers to the random 60 realizations of stimulation
experiments. It is shown that under single stimuli schemes
the similarity matrices are highly modularized with bound-
aries accordant with the predefined cognitive systems, which
means stimulating regions from the same system would result
in more similar changes in dynamical patterns [the left two
panels in Fig. 6(a)]. Under multiple stimuli schemes, though
the overall level of pattern similarity is much higher, it is still
diverse between states [the right two panels in Fig. 6(a)]. In
contrast, the changes in cognitive metastable networks are

much more similar across states, with the similarity matrices
having entries close to 1 [Fig. 6(b)], which means a relatively
consistent pattern is obtained from stimulating different re-
gions. It can be thus summarized that changes in cognitive
synchronization networks are more sensitive to where the
stimuli are applied, while those in cognitive metastability net-
works are relatively consistent across task operations. Since
each stimuli implementation encodes a potential cognitive
processing under task paradigms, these results suggest that
cognitive synchronization patterns may be task specific, while
the cognitive metastable networks may reflect a general archi-
tecture across states.

E. Functional role of cognitive systems embodied in the
architecture of cognitive metastable networks

We have found that cognitive metastability has a relatively
consistent network architecture across states, but it is not clear
whether it can be linked to the known functional roles of
cognitive subsystems. We first display this consistent archi-
tecture in Figs. 7(a) and 7(b), and each network is obtained
by averaging the cognitive metastable networks over all the
60 states. It can be seen that the general structure of the cog-
nitive metastable network is similar for the same direction of
dynamical perturbation. We also observed that the metastabil-
ity changes among cognitive control and association systems
(Att, CO, FP, VTA) and primary sensory systems (mDM, MS,
V, Aud) are in the opposite direction for positive and negative
stimulation schemes [Fig. 7(a1), above and below the dashed
line].

The functional role of each system embodied in the ar-
chitecture of the cognitive metastable network is portrayed
in terms of its network statistics. The total amount of
metastable interactions within and between each system is
denoted as within metastability λSi,Si and between metasta-
bility

∑
j �=i λSi,S j , and the resulting functional role of a

system is reflected by its position on the plane of the two
metrics [Figs. 8(a) and 8(b)]. Under the positive schemes, be-
tween metastability increases for all systems [Figs. 8(a1) and
8(a2)] while it mostly decreases under the negative schemes
[Figs. 8(b1) and 8(b2)]. We observed that the functional roles
of the system can be roughly divided in terms of the cognitive
control and association systems and the primary sensory sys-
tems as well. Within and between metastability in cognitive
control and association systems (Att, CO, FP, VTA) generally
increase (or decrease) more than the default mode and pri-
mary sensory systems (mDM, MS, V, Aud) under the positive
(or negative) schemes, showing that they tend to react more
flexibly to incoming stimuli. This is consistent with empirical
knowledge, such as the attentional system showing greater
variability in functional roles than the default mode, visual,
and somatosensory systems across tasks [5], and also between
subjects [45].

A great advantage of investigating phase relationships be-
tween brain signals is that it allows a direct comparison
between theoretical and empirical results. We empirically pro-
vide evidential support for the computational results. We used
fMRI data from 98 HCP participants for resting and seven
tasks (including emotion perception, gambling, language
processing, motor responses, relational reasoning, social cog-
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(a)

(b)

FIG. 6. Similarity between changes in cognitive (a) synchronization and (b) metastability patterns across states. For single-region
stimulation schemes, the similarity matrix is ordered by the results of stimulating each system sequentially [from Att to Aud as shown in
Fig. 1(b)], whereas for the multiple stimuli schemes, the order refers to the random 60 realizations of stimulation experiments. The similarity
matrix of metastability has entries closer to 1 than the corresponding matrix for synchronization.

nition, and working memory), where each task contained two
sessions with different lengths while the total duration of the
seven tasks was 1 h. The data were processed in the same
way as mentioned above. For each subject and each task, we
obtained the cognitive metastable network as the task-to-rest
difference between cognitive metastability patterns.

Figure 9 shows the empirical cognitive metastable network
under each task, and only the interactions with statisti-
cally significant changes (p < 0.01) are plotted as group
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(b1) (b2)
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FIG. 7. The average cognitive metastable networks under the
four stimulation schemes, with strength of metastability interactions
encoded by the color of connections: (a1, a2) positive (+) stimuli
and multiple schemes and (b1, b2) negative (−) single and multiple
stimuli schemes.

averages. Overall, the cognitive control systems (Att, CO,
FP, VTA) tend to have increased metastability interactions,
while the primary sensory systems (mDM, MS, V, Aud)
tend to have decreased metastability interactions. The dark-
est connections are around CO and FP, while the most

Att

CO FP

mDM

MSV

VTA

Aud
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MS

V
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Aud
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(a1) (a2)

(b1) (b2)

FIG. 8. The functional roles of systems embodied in the ar-
chitecture of cognitive metastable networks. Functional roles of
subsystems are indicated on the plane of within and between metasta-
bility. Dots denote the role for each state and crosses denote the
average over all states. Labels of cognitive control and association
systems (Att, CO, FP, VTA) are marked with red color and underlines
to differentiate from primary sensory systems (mDM, MS, V, Aud):
(a1, a2) positive (+) stimuli and multiple schemes and (b1, b2)
negative (−) single and multiple stimuli schemes.
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FIG. 9. Empirical cognitive metastable networks derived from
HCP resting and task data. We used fMRI data from 98 HCP
participants for resting and seven tasks (including emotion percep-
tion, gambling, language processing, motor responses, relational
reasoning, social cognition, and working memory). The networks are
displayed in the same fashion as Fig. 7, while only the interactions
with statistically significant changes (p < 0.01) are plotted as group
averages.

decreased ones are around mDm and V, which is consistent
with the computational results under the positive stimulation
scheme [Fig. 7(a)]. Although this result was derived from only
a limited number of tasks and subjects, it can qualitatively
support that cognitive metastable networks exhibit similar
patterns across task operations and have distinct functional
responses between cognitive control systems and primary sen-
sory systems.

IV. CONCLUSION AND DISCUSSION

In this paper, we focused on how task-relevant brain phase
dynamics are organized at the level of cognitive subsystems.
Task-relevant dynamics are generated in a phenomenological
way by applying regional stimulation on a calibrated resting-
state brain network model, allowing the relationship between
characteristics of brain dynamics and underlying structures
to be explored explicitly. We first demonstrated the plausi-
bility of introducing the cognitive system partition into the
modeling analysis framework. Second, we found that patterns
of cognitive synchronization are more task specific, whereas
patterns of cognitive metastability are more consistent across
different states. Third, this consistent architecture of cogni-
tive metastable networks can reflect the distinct functional
responses between cognitive control systems and primary sen-
sory systems. We also provided empirical evidence to partially
support our computational results. These results may pro-
vide a mechanistic insight into how brain functioning relies
on phase relationships at the level of network communities,
thereby establishing a model-based link between brain struc-
ture, dynamics, and cognition, which is a fundamental step for
computationally aided brain interventions.

The contribution of this paper is twofold. First, we
demonstrate the biological plausibility of introducing the cog-
nitive system partition into modeling analysis. The common
community structure across a set of stimulation-induced func-
tional networks is characterized by the allegiance matrix to
give a general picture of the functional roles of brain regions
and systems across states. This technique was first introduced
to characterize how brain regions were coordinated during
learning [40], and then to characterize the functional prop-
erties of cognitive subsystems [5]. We observed functional
clustering not directly explained by underlying structure, in-
dicating regional dynamics can modulate structure-function
relations. Previous computational works have examined brain
dynamics either globally [21] or at the node level [46].
However, brain regions are known to be activated cohe-
sively along the so-called cognitive subnetworks for healthy
functioning [6,47]. We found that cognitive synchronization
patterns are more sensitive to which structural region is stim-
ulated, suggesting cognitive synchronization may encode task
specificity. Theoretical work has also agreed with this by
showing cognitive synchronization patterns are sensitive to
the stimulated system [27], while their mathematical model
is not constrained by realistic functional data. We extend their
work by finding cognitive metastability is relatively consistent
across task-relevant states and exhibiting opposite directions
of changes between stimulation schemes. Our results, to some
extent, demonstrate the potential of whole-brain dynamical
models to integrate stimuli in a functionally meaningful way,
and the potential to extend the analysis framework to multiple
brain states, such as during cognitive progressions.

Second, we found cognitive metastable networks as a po-
tential dynamical maker associated with task-relevant brain
activities. Cognitive metastability exhibits a relatively con-
sistent network architecture across states, suggesting it may
encode a more task-general property during cognitive pro-
cessing, an inherent property conferred by brain organization.
We also demonstrate that the functional role of cognitive
systems is embodied in this network structure, reflecting a
broad classification between cognitive control systems and
sensory systems and agreeing with their realistic system func-
tion (Fig. 7). Empirical evidence suggests that the attentional
system shows greater variability in functional roles than the
default mode, visual, and somatosensory systems across tasks
[5], and also between subjects [45]. This result demonstrates
a link between phase dynamics at the system level and func-
tionally meaningful neural communication during cognitive
processing.

Metastability, indicating the temporal fluctuations of phase
interactions, is an assumed mechanism of functional seg-
regation and integration which is associated with cognitive
performance [11,48]. Theoretical works have revealed that
the emerging spatiotemporal patterns of brain dynamics re-
semble the empirical human resting-state network best when
the model operates in the metastable regime [12,15,25].
Empirical evidence has linked metastability with cognitive
performance in various contexts, with reduced metastability
in Parkinson’s disease [8] and senescence [18], and increased
under tasks [17]. Thereby it is speculated that a higher level
of metastability is linked to higher cognitive performance,
while a lower level of metastability will result in impaired
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cognitive performance [18]. In our simulations, positive and
negative stimulation schemes lead to dynamics changing in
the opposite direction at global and systems levels (Figs. 6
and 7), with patterns observed in empirical data resembling
those in positive schemes. If positive schemes are related to
normal cognitive processing, then negative schemes may be
associated with a very different condition such as cognitive
impairment [8,17,18,44,49]. A great advantage of investigat-
ing phase relationships between brain signals is that it allows
a direct comparison between theoretical and empirical results.
We use rest and seven-task fMRI data from HCP to provide
evidence for the general network architecture in cognitive
metastability across states and its association with system
function. Our results are also partially supported by a recent
empirical work leveraging human functional data from mul-
tiple task paradigms to inspect spontaneous synchronization
and metastability couplings among cognitive subnetworks
[17]. These findings accord with us in the following aspects.
First, task general states are characterized by higher metasta-
bility in cognitive control systems and lower metastability in
sensory and processing systems [Figs. 7(a) and 8(a)]. Sec-
ond, the specificity of each task is better captured by the
synchronization patterns than metastability [Figs. 6(a) and
6(b)]. Reproduction of the finding with a bottom-up model
can strongly support the genuineness of such observations to
be an intrinsic property of the brain system.

Our paper serves as a proof-of-concept study with ap-
parent limitations. The model construction was based on a

coarse-grained parcellation cortex which limits the inter-
pretability of system function at a low spatial resolution.
Finer parcellations will be used in future work to obtain
a better correspondence between empirical and theoretical
results. We also performed a relatively simple stimulation
protocol in the in silico experiments. The stimulation protocol
could be designed based on known mappings of cognitive
processing to brain regions, for example, the language task-
specific circuit [26], depending on the problem to be solved at
hand. Another apparent drawback is the poor representation
of cross-hemispheres connections in the model’s SC matrix
C, which is an inherent limitation rooted in diffusion tensor
imaging techniques. This would lead to an inevitable low
quality in the simulations. Finally, the presented results are
derived on a group basis, while individual interpretability is of
crucial importance in brain engineering for the ultimate goal
of personalized medical interventions [26,45]. We attempt to
bridge this gap in future works by incorporating personal-
ized structural and functional imaging data into whole-brain
network modeling, with the purpose of establishing a model-
based link between individual structure, brain dynamics, and
cognition.
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