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Assisted percolation of slow-spreading mutants in heterogeneous environments
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Environmental heterogeneity can drive genetic heterogeneity in expanding populations; mutant strains may
emerge that trade overall growth rate for an improved ability to survive in patches that are hostile to the wild type.
This evolutionary dynamic is of practical importance when seeking to prevent the emergence of damaging traits.
We show that a subcritical slow-spreading mutant can attain dominance even when the density of patches is below
their percolation threshold and predict this transition using geometrical arguments. This work demonstrates a
phenomenon of “assisted percolation”, where one subcritical process assists another to achieve supercriticality.
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I. INTRODUCTION

Pesticides are used to control crop pests, antimicrobials to
eliminate microbes, and cancer drugs to contain tumors. The
emergence of mutants that are resistant to these agents is a
major concern in all these scenarios [1–3]. The double-edged
sword of use and control on the one hand, and loss of efficacy
through the emergence of resistance is widely acknowledged,
but we know relatively little about the role spatial structure
plays in the dynamics of resistance emergence. Research on
the effects of spatial structure on resistance emergence include
the effects of compartmentalisation, for example in the human
body [4,5], and the effect of gradients on evolutionary dynam-
ics [6,7]. Research on the durability of genetically controlled
plant resistance to pests in fields of crops is conceptually
very similar [8]. These studies focus on the emergence of
mutants which overcome the efficacy of control agents or ge-
netic protection; how these mutants then spread in a complex
environment is not understood.

II. MODEL AND PHENOMENOLOGY

We here address this question from a theoretical physics
perspective, for a two-dimensional environment with isolated
patches that can be thought of as being protected by the
control agent. We generalize the Type C variant [9] of the
Eden model [10], a lattice-based model for growth which
is suitable for spread in heterogeneous environments, intrin-
sically incorporates stochasticity, and whose computational
efficiency matches the requirement to investigate large sys-
tems and many replicates [Figs. 1(a) and 1(b), and S1, and

*w.moebius@exeter.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

expanding on previous work [11–15], see the Supplemental
Material [16]).

Incorporating environmental heterogeneity, mutation, and
selection in a two-species Eden model, we consider a
hexagonal lattice of sites. Unoccupied sites can be either
“background” or “patch” varieties, whilst occupied sites are
either “wild-type” (WT) or “mutant” (M) [Fig. 1(a)]. During
each time step, an occupied site on the population frontier is
selected to reproduce, at which point offspring of the same
type as the parent are placed in a random unoccupied neigh-
boring site; only M are able to reproduce into a patch site,
to represent their resistance to the control measure. During
reproduction, there is a finite probability μ of mutation from
WT to M [Fig. 1(a)], but no mutations from M to WT can
occur. Selection of WT or M sites to reproduce occurs with
probability proportional to their “fitness” which is taken to
be 1 for WT and 0 < F < 1 for M, modeling the cost of
resistance [Fig. 1(b)].

In finite-width spreading fronts, M will eventually come
to dominate as this is the only absorbing state. However,
the timescale can vary dramatically: Even in the absence
of patch sites, one can distinguish a supercritical phase of
fast fixation and a subcritical phase of exponentially slow
fixation [12]. Below criticality, small clusters of M appear,
but typically die out before coalescing with others. Increas-
ing M fitness or mutation rate causes these clusters to grow
in size or frequency, respectively, to the point where mul-
tiple coalescence events can occur and the M population
becomes supercritical [Fig. S1(c)]. For a similar model with
a flat expanding front [Fig. S2(a)], the dynamics fall into
the directed percolation universality class [17]. The rough-
ness inherent to the Eden model we use as the basis for
our generalized model greatly perturbs us from the directed
percolation universality class. Kuhr et al. [12] performed phe-
nomenological analysis on the Eden model to determine the
phase boundary at μ ≈ p∗(1 − F )1.4 with p∗ ≈ 0.407 [12].
Generally, for a given mutation rate, we can define the crit-
ical fitness Fc(μ). As a general result, M dominates quickly
if F > Fc(μ).
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FIG. 1. (a) Rules underlying the generalized Eden model. The
possible reproduction events of the next simulation step are repre-
sented by arrows. See also Figs. S1(a) and (b). (b) Visualization
of the effects of increasing fitness F of M and patch area ratio φ.
(c) M dominates in an expanding front in the presence of treated
patches (dark circles) in which only M [red (dark gray)] survive.
The population propagates from bottom to top (see color version to
access all information). See the video in S1 [16] for a depiction of
the full simulation. (d) Sketch of phase diagram, for sufficiently high
fitness F > Fc and patch area φ > φc, dominance of M is expected.
Parameters for simulation in panel (c) lie outside of these regions,
indicating a richer structure to the phase diagram in which assisted
percolation takes place.

We incorporate macroscopic environmental heterogeneity
into this model by arranging treated patch sites into circular
patches of fixed radii, either randomly placed [Fig. 1(b)] or
in a lattice arrangement. This type of heterogeneity differs
from that of previous work [15] by acting asymmetrically on
different genotypes: They act as hard boundaries for WT [18],
but are transparent to M. For random placements, continuum
percolation theory gives a critical threshold of φ◦

c ≈ 0.68 [19]
for the ratio φ of area covered by patches to total area; for
φ > φ◦

c the patches themselves form a percolating cluster
allowing only M lineages to survive. Therefore, for a given
mutation rate, M dominates either if F > Fc or φ > φ◦

c . The
example shown in Fig. 1(c) demonstrates, however, that these
are merely sufficient conditions. Rapid domination of M can
occur with both fitness and patch area ratio being significantly
lower than the critical thresholds. We aim to examine the full
structure of the phase diagram sketched in Fig. 1(d).

III. ESCAPE REGIONS

Close examination of simulations such as that presented
in Fig. 1(c) and the video in S1 [16] reveals the mechanisms

FIG. 2. (a) Cluster height distributions for the Eden model (rough
front) and a flat-front model, both obtained from simulations, to-
gether with the analytical result for flat fronts for F = 0.90. Inset:
Typical cluster in our model. (b) Probability of an isolated patch
being invaded as a function of mutation rate μ for different fitness
values F . Black line represents a linear relationship. (c) Two exam-
ples for how clusters invade a patch with μ = 5 × 10−4, F = 0.90:
(case I) Invasion from the bottom and (case II) invasion from the
bottom right. In both cases, M inside the patch lags the WT front
outside. See the videos in S2 and S3 [16] for a depiction of the full
simulations.

driving M domination. When small M clusters intersect with a
treated patch they spread through it and emerge from the other
side ahead of the faster spreading WT population that is forced
to take a longer route around the patch acting as an obstacle.
If the “escape region” beyond a treated patch is large enough,
it will intersect with another patch and M population growth
will continue. This is an effect of “assisted percolation” as
we will explore later. To determine the boundary of the fast
fixation phase, it is therefore necessary to (i) compute the ex-
pected size of escape regions and (ii) understand the effective
between-patch percolation process.

At first glance, the statistics of lone M clusters are impor-
tant to this problem. These statistics are remarkably complex;
to our knowledge, only the scaling behaviours have been
determined for a square lattice in the literature [12]. However,
as demonstrated in Fig. 2(a), the vast majority of isolated M
clusters in the regime considered here are much smaller than
the typical size of the patches (area ∼103). We have under-
taken further analytical work in determining the dimensions
of the lone M clusters for an equivalent model with a flat
front (expanding and building on previous work [20–23], see
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FIG. 3. (a) Continuing the time evolution of the patch invasions
in Fig. 2(c) with emphasis on the escape region. See the videos in
S2 and S3 [16] for depiction of the full simulations. (b) Sketch of
the deterministic escape region height, found by equating the time
taken for M to pass through the patch with the time taken for WT
to pass around the patch to the same point. (c) Normalized escape
region height as a function of fitness F for patch invasion angle
α = 0. Black data points: Median of simulation results, cyan (light
gray) dashed line: Geometrical prediction. (d) Like panel (c) but as a
function of patch invasion angle α for fitness F = 0.95.

the Supplemental Material [16]). How often these clusters
lead to invasion of a patch depends on mutation rate and
fitness. Figure 2(b) illustrates that the probability to invade
a patch increases linearly and then saturates with increasing
mutation rate as expected; similarly, a higher fitness results
in higher probability of invasion. To abstract from both the
sizes of isolated clusters and their abundance, we focus on
the consequences of individual patches being invaded. In
this way, we capture the long-term behavior of the “ther-
modynamic limit” of a large system of patches with rare
mutations.

While clusters are small relative to the patch’s radius when
outside a patch, they can spread unimpaired through the patch,
leading to large domains within patches, as seen in Fig. 2(c).
These domains may eventually become trapped within or es-
cape the patch. Examples of the latter are shown in Fig. 3(a),

where the invading M domain spreads upward through the
patch and is able to escape before it can be headed off by
WT. We expect the existence of the escape region and, if
applicable, its height to depend on the patch invasion angle
α (which acts as the starting point for a race between M and
WT strains), M’s fitness F (the relative speed of M), as well as
stochastic effects. In fact, simulations with invasions seeded
at different locations of the patch’s boundary show that the
median of escape region height increases with fitness F and
decreases with absolute value of the invasion angle, i.e., it is
largest if the invasion occurs at the bottom of the patch [black
line, Figs. 3(c) and 3(d)].

To understand this dependence quantitatively we turn to
geometric arguments. Previous work has characterized front
shape of a population encountering an obstacle in the absence
of mutations and if front speed is the same everywhere outside
the obstacle [13]. There, the front shape was determined as
the set of all points that can be reached within a given time.
Here we aim to find the point along the symmetry axis which
is reached at the same time by WT expanding around the
patch (with relative speed 1) and M expanding through the
patch (with relative speed F ), Figs. 3(b) and S3. Measured in
units of patch radius, we find that the typical maximum extent
of escape regions �(F, α) solves the following equation (for
|α| < π

2 , see the Supplemental Material [16] for derivation):

1

F

√
1 + 2(1 + �) cos |α| + (1 + �)2

= cos |α| + arcsin
1

1 + �
+

√
(1 + �)2 − 1. (1)

If a real, positive solution does not exist, this means that M
was cut off immediately and did not escape, thus � = 0.
The numerical solution of Eq. (1) describes the simulation
data well when varying fitness F or patch invasion angle α

[Figs. 3(c) and 3(d)].

IV. INTERACTION BETWEEN PATCHES

Having developed an understanding of the escape region
from a single patch, we can examine the macrostructure emer-
gent in a system of many randomly distributed patches. Three
expansions for mutation rate μ = 10−3 and with varying fit-
ness F and patch area ratio φ are displayed in Fig. 4(a). For
low F and φ, patches and/or escape regions rarely overlap;
when either of these values crosses a threshold, overlaps
appear to lead to a growth of the fraction of M and ulti-
mately domination of the front. To predict the patch area
ratio at which this transition takes place, we estimate the
percolation threshold for patches including escape regions
[Fig. 4(b)].

Given the nature of the system with a front mainly prop-
agating from bottom to top, with M clusters typically being
oriented in the direction of overall front propagation, we
expect most invasions to occur at the bottom of the patch
[invasion angle α ≈ 0, Figs. 3(a) and 3(b)]. In this case,
macrostructures consist of the patch and a symmetric es-
cape region with height �(F, α = 0). Continuing to measure
length in units of radius R, the macrostructures have width
2 and height 2 + �. These are approximated by aligned el-
lipses of semiminor axis 1 and semimajor axis (2 + �)/2.
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FIG. 4. (a) Three snapshots of simulations for different values of
fitness F and patch area ratio φ and μ = 10−3. See the videos in
S4–S6 [16] for depictions of the full simulations. (b) Description of
the approach and approximation used to determine whether, for given
fitness F and patch area ratio φ, the system displays subcriticality (M
extinction) or supercriticality (M domination) in the case of a single
mutation event. (Left) The patches are randomly distributed. With
each patch invaded from below, fitness-dependent escape regions
form. (Center) The macrostructure consisting of patch and escape
region is approximated by an ellipse. (Right) Rescaling the height of
the system allows one to recover the case of overlapping discs for
which the percolation threshold is known. The system is subcritical
below and supercritical above the percolation threshold. (c) Grid heat
map of the probability of M dominating the front determined by
simulations in which the mutation rate is set to zero after the first mu-
tation occurs. The black line indicates the prediction of the boundary
by Eq. (2), where the region of low probability is below the curve and
the region of higher probability is above the curve. Horizontal and
vertical dashed lines indicate the transition by the mutation-selection
process and percolation threshold of patches, respectively.

The percolation transition for vertically aligned ellipses can
be obtained from the percolation transition for circles by
rescaling the height of the system such that ellipses become
circles.

As detailed in the Supplemental Material [16], we can thus
express the critical area ratio of patches φ∗

c assisting percola-
tion of the slow-spreading mutants by the critical area ratio of

discs in two dimensions, φ◦
c ≈ 0.68 [19,24]:

φ∗
c (F ) = 1 − (1 − φ◦

c )2/(2+�(F )), (2)

where we explicitly denote that φ∗
c depends on fitness F be-

cause the (rescaled) escape region height � depends on F .
Note that Eq. (2) reduces to φ∗

c (F ) = φ◦
c for �(F ) = 0 as

expected. When F is sufficiently small such that no escape
region is expected to arise, the transition line becomes vertical
as seen in Fig. 4(c). In this argument we demonstrate that su-
percriticality can be achieved via the dynamics of a subcritical
M population being perturbed by the presence of a subcritical
area ratio of patches, hence the term “assisted percolation”.

To test how well Eqs. (1) and (2) capture the transition from
subcritical to supercritical regime, we simulated the system 50
times for a wide range of fitness values F and patch area ratios
φ with patch radius R = 40 and computed the probability PD

with which M fixes at the front conditional on invasion of one
patch (Fig. 4, see the Supplemental Material [16] for details).
To ensure that we only study the fate of a single mutation, the
mutation rate is set to zero after the first mutation occurs. To
ensure that we have studied the case where M has invaded a
patch, we keep track of the number of M on the population
frontier: If this value ever exceeds the diameter of a patch, we
can be confident that a patch has been invaded. If a cluster
collapses before this threshold is met, the simulation is rerun
for the same distribution of patches. The transition region is
characterized by PD being distinct from zero and one and is
thus indicated by lighter colors. φ∗

c (F ) in Eq. (2), indicated as
a black line, indeed captures this transition region very well.
This means that the description of macrostructures interacting
with each other and the approximations made capture the
dynamics of the system very well.

V. PATCHES ARRANGED IN A HEXAGONAL LATTICE

Motivated by wanting to further explore the applicability
of these geometric arguments, and to develop a symmetri-
cal patch distribution which can be designed to inhibit M
domination, we considered patches organized on a hexagonal
lattice. We chose the hexagonal lattice because it allows for
the densest packing of patches [25] and because of its high
symmetry. Once again we display three expansions for mu-
tation rate μ = 10−3 with varying fitness F and patch area
ratio φ (Fig. 5(a)), and observe that a threshold exists for
both of these variables which separates subcriticality from
supercriticality.

In the hexagonal lattice, the separation between the sur-
faces of adjacent patches, S, is related to the patch area ratio
by φ = 2πR2/(

√
3(2R + S)2). As in the case of randomly

oriented patches, we were interested in the critical patch area
ratio, φ�c , above which M quickly dominates.

For S = 0, neighboring patches are in contact and there
is no path for WT to propagate vertically. Conversely, for
sufficiently large S, WT can propagate vertically unhindered
by obstacles, and isolated M clusters will become enclosed
by WT for any F < 1. The presence of these vertical paths
depends upon the orientation of the lattice relative to the
population front. For the case where nearest-neighbor patches
are horizontally adjacent (the “horizontal alignment”, as
seen in Fig. S4(a), upper), vertical channels occur for large
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FIG. 5. (a) Three snapshots of simulations for different combi-
nations of φ and F for μ = 10−3. See the videos in S7–S9 [16]
for depictions of the full simulations. (b) Grid heat map of the
probability of M dominating the front, determined by simulation in
which the mutation rate is set to zero after the first mutation occurs.
Dotted black line indicates a numerical prediction generated by con-
sideration for short-term success, solid black line indicates analytical
prediction generated by consideration for long-term success. The
region of low probability is at the bottom left, and the region of higher
probability is above the curves. Horizontal and vertical dashed lines
indicate the transition by the mutation-selection process and overlap
of patches, respectively.

separations of S � 2R. For the case where nearest neighbor
patches are vertically adjacent (the “vertical alignment”, as
seen in Fig. S4(a), lower) vertical channels are present for S �
( 4√

3
− 2)R ≈ 0.31R. We focus on the horizontal alignment as

it provides a bigger path length advantage to M. In this case,
the critical patch area ratio φ�c is bounded as φ(S = 2R) =

π

8
√

3
≈ 0.23 � φ�c � φ(S = 0) = π

2
√

3
≈ 0.91 given the ar-

guments above.
To estimate the regime of assisted percolation, i.e., φ�c ,

more precisely, we considered two different rationales, both
sketched in Fig. S4 and detailed in the Supplemental
Material [16]: First, we asked whether, in the short term, an
escape region can lead to invasion of an adjacent downstream
patch. This could lead to propagation of M through rows of
patches given an initially expanding M cluster. However, it
is difficult to prove whether this would prompt a continually
expanding M cluster, as there is an asymmetry between the
invasion of downstream patches and the initial patch: Whereas
we assume the initial patch is invaded from the bottom of the
patch, there is no guarantee that the downstream patches will
also be invaded from the bottom. The second approach is to
determine whether, in the long term, M can propagate faster
vertically through the lattice of patches than WT. This ap-
proach is symmetrical across all rows and does not depend on

the initial invasion of a patch. Focusing here on the long-term
consideration, φ�c can be determined by comparing the path
length of WT snaking around patches while M passing straight
through, similar to the computation of escape region height
above. This yields the analytical result for the corresponding
critical fitness F�

c :

F�
c (φ) =

√
3

2

2 + η(φ)√
η(φ)2 + 4η(φ) + 2

(
π
3 − arccos 2

2+η(φ)

)
(3)

with η the ratio of separation S to patch radius R, which is a

function of patch area ratio, η(φ) =
√

2π√
3φ

− 2.

To test these predictions, we performed simulations
investigating the fate of a single mutation and, as before, de-
termined the probability of M dominating from 50 replicates.
Figure 5(b) confirms the existence of the assisted percolation
regime in which M dominates but for which M propagates
slower than WT (F < 1) and in which no vertical paths not
overlapping with patches exist. Note that compared to the
case of randomly distributed patches [Fig. 4(c)], for a given
patch area ratio the fitness of M needs to be higher to ensure
M domination. The transition computed numerically for the
short-term argument (see Supplemental Material [16]) and the
transition based on the analytical long-term argument [Eq. (3)]
both adequately capture the transition to assisted percolation.
This highlights that geometric arguments alone can predict
the behavior of the intrinsically stochastic system. Further
research, however, is necessary to disentangle whether short-
or long-term prediction or another approach are best suited to
predict the dynamics of the system.

VI. CONCLUSION AND DISCUSSION

We addressed the question of how mutants spread in a com-
plex environment of control agents using a generalized Eden
model with mutations in a heterogeneous environment. In the
analysis, we incorporated results from disparate analyses of
the Eden model (mutation-selection process in the absence of
patches [12] and the perturbation of a front in the presence
of obstacles [13,18]). We demonstrated the phenomenon of
assisted percolation where two subcritical processes, mutation
selection and overlap of patches, assist each other to achieve
supercriticality. The regime within which assisted percolation
occurs depends on the distribution of patches, i.e., the param-
eters of environmental heterogeneity of the system.

There are three parameters of the system we did not
systematically vary, but whose effects we can nevertheless
predict. First, we chose mutation rate to be very low; specifi-
cally, we systematically investigated the fate of a single M site
for patches organized randomly [Fig. 4(c)] and in a hexagonal
lattice [Fig. 5(b)]. With increasing mutation rate we expect M
to dominate for a larger range of parameter pairs of fitness
and patch area ratio, (F, φ). Conversely, introducing back
mutations would leave the system without an absorbing state.
Determining the resulting steady state ratio of WT and M
at the front is a question for further research. We did not
systematically vary the radius of patches, measured in units
of the lattice constant. Our predictions are based on geometric
arguments relying on front propagation of WT and M [e.g.,
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Fig. 3(b), Eq. (1)]. Stochastic effects should become less im-
portant on larger scales; we therefore predict the phenomenon
of assisted percolation and specifically the prediction of the
transition between WT and M dominating to be valid for
patches of larger radius. For significantly smaller radii, we
expect the geometrical description to break down.

Our findings suggest two broader avenues for further re-
search. First, in the control of pests, microbes, and tumors, the
emergence of resistance to the control agent can lead to failure
of control. Comparing Fig. 4(c) to Fig. 5(b) demonstrates that
the choice of patch distribution strongly affects how quickly
M dominates the front, which we here use as a proxy for fail-
ure for control. Tackling the complex optimization problem
of preventing M domination for given patch area ratio but
arbitrary organization of patches would be a natural next step
in the translation of this work to an applied setting.

Second, we have demonstrated the existence of the dy-
namic of assisted percolation in a generalized version of a
popular surface growth model. We speculate that the phe-
nomenon might be relevant to a range of other systems. This
may not be limited to systems with short-range invasion as
considered here. Long-range dispersal may provide a further

benefit for M, but limited dispersal compared to WT may
hinder its spread. Extending our generalized model to include
long-range dispersal of both WT and M [26,27] would be the
next step.

In particular we expect that further examples may be
found in the field of complex networks where, for example,
a weak signal might achieve long-range transmission through
a subcritical set of amplifying nodes; potentially important
applications to epidemiology and social dynamics are not hard
to imagine.

The code with instructions on how to reproduce individual
figures is available in Ref. [28].
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