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Distribution of shortest path lengths on trees of a given size in subcritical Erdős-Rényi networks
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In the subcritical regime Erdős-Rényi (ER) networks consist of finite tree components, which are nonextensive
in the network size. The distribution of shortest path lengths (DSPL) of subcritical ER networks was recently
calculated using a topological expansion [E. Katzav, O. Biham, and A. K. Hartmann, Phys. Rev. E 98, 012301
(2018)]. The DSPL, which accounts for the distance � between any pair of nodes that reside on the same finite
tree component, was found to follow a geometric distribution of the form P(L = �|L < ∞) = (1 − c)c�−1,
where 0 < c < 1 is the mean degree of the network. This result includes the contributions of trees of all
possible sizes and topologies. Here we calculate the distribution of shortest path lengths P(L = �|S = s)
between random pairs of nodes that reside on the same tree component of a given size s. It is found that
P(L = �|S = s) = �+1

s�
(s−2)!

(s−�−1)! . Surprisingly, this distribution does not depend on the mean degree c of the
network from which the tree components were extracted. This is due to the fact that the ensemble of tree
components of a given size s in subcritical ER networks is sampled uniformly from the set of labeled trees
of size s and thus does not depend on c. The moments of the DSPL are also calculated. It is found that the
mean distance between random pairs of nodes on tree components of size s satisfies E[L|S = s] ∼ √

s, unlike
small-world networks in which the mean distance scales logarithmically with s.
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I. INTRODUCTION

Random networks provide a useful framework for the anal-
ysis of a large variety of systems that consist of interacting
objects [1–4]. One can distinguish between two major types
of random networks: supercritical networks and subcritical
networks. Supercritical networks form a giant component that
encompasses a macroscopic fraction of all the nodes. The
giant component may provide a useful description of networks
in which the connectivity is essential, such as the world-
wide-web, social networks, and infrastructure networks. The
giant component is a small-world network, namely, the mean
distance between pairs of nodes on the giant component scales
logarithmically with its size. It includes a large number of
cycles with a broad spectrum of cycle lengths [5–7]. These
cycles provide redundancy in the connectivity between pairs
of nodes via multiple paths. The redundancy helps to main-
tain the integrity of the giant component upon deletion of
nodes or edges due to failures or attacks. The combination
of the small-world property and the redundancy gives rise
to highly efficient channels of transport and communication
and to the robustness of the network. In contrast, subcritical
networks consist of finite tree components that do not scale
with the overall network size. In a tree topology, each pair of
nodes is connected by a single path. Therefore, in subcritical
networks, the shortest path between any pair of nodes that
reside on the same tree component is, in fact, the only path
between them. As a result, in subcritical networks each node
of degree k � 2 is an articulation point, namely, its deletion
would break the tree component on which it resides into at
least two disconnected parts [8,9]. Moreover, each edge is a
bredge (bridge edge), namely, its deletion would break the tree
component on which it resides into two disconnected parts

[10]. The subcritical tree components may describe the frag-
mented structure of secure compartmentalized networks, such
as the communication networks of commercial enterprises,
government agencies, and illicit organizations [11]. The struc-
ture of such networks may be determined by the trade-off
between efficiency and security. When security considerations
outweigh efficiency considerations, the number of communi-
cation lines may need to be reduced to a minimum, which
is achieved in the case of tree structures. Other examples of
fragmented networks include networks that suffered multiple
failures, large-scale attacks, or epidemics, in which the re-
maining functional or uninfected nodes form small, isolated
components [12,13]. In spite of their importance, the struc-
tural and statistical properties of subcritical networks have not
attracted nearly as much attention as those of supercritical
networks.

Random networks of the Erdős-Rényi (ER) type [14–16]
are the simplest class of random networks and are used as a
benchmark for the study of structure and dynamics in complex
networks [17]. The ER network ensemble is a maximum-
entropy ensemble, under the condition that the mean degree
〈K〉 = c is fixed. It is a special case of a broader class of
random uncorrelated networks, referred to as configuration
model networks [18–21]. In an ER network of N nodes, each
pair of nodes is independently connected with probability p,
such that the mean degree is c = (N − 1)p. It was recently
shown that the ER graph structure is an asymptotic structure
for networks that contract due to node deletion processes,
which may result from failures, attacks or epidemics [22,23].

The degree distribution of ER networks follows a Poisson
distribution of the form

P(K = k) = e−cck

k!
. (1)
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FIG. 1. The structure of a single instance of a subcritical ER network of N = 100 nodes with mean degree c = 0.9. It consists of 33 isolated
nodes, nine dimers, two chains of three nodes, two chains of four nodes, and trees of 5, 6, 10, and 14 nodes.

ER networks exhibit a percolation transition at c = 1 such that
for c > 1 (supercritical regime) there is a giant component
[24], while for 0 < c < 1 (subcritical regime) the network
consists of small, isolated tree components [17,25]. In the
special case of c = 0 the network consists of N isolated nodes
and the degree distribution degenerates into P(K = k) = δk,0.

In Fig. 1 we present the structure of a single instance of a
subcritical ER network of size N = 100 with mean degree c =
0.9. It consists of 33 isolated nodes, nine dimers, two chains
of three nodes, two chains of four nodes and trees of 5, 6, 10,
and 14 nodes.

In the asymptotic limit, ER networks exhibit duality with
respect to the percolation threshold [17]. In a supercritical ER
network of N nodes the fraction of nodes that belong to the
giant component is denoted by 0 < g � 1, while the fraction
of nodes that belong to the finite components is 1 − g. Thus,
the subcritical network that consists of the finite components
is of size N (1 − g). This network is in itself an ER network
whose mean degree is c′ = c(1 − g), where c′ < 1.

The distribution of tree sizes in subcritical ER networks
with mean degree 0 < c < 1 is given by [17,26,27]

P(S = s) = 2ss−2cs−1e−cs

(2 − c)s!
. (2)

In the special case of c = 0 this distribution degenerates into
P(S = s) = δs,1.

The mean tree size is given by [27]

〈S〉 = 2

2 − c
. (3)

The expected number of trees in a network instance consisting
of N nodes is thus given by

NT = N

〈S〉 = N
(

1 − c

2

)
. (4)

The variance of P(S = s) is given by [27]

Var(S) = 2c

(1 − c)(2 − c)2 . (5)

Note that Var(S) diverges as c → 1−, which implies that, near
the percolation transition, some of the trees are very large.

Trees of a given size s may exhibit different structures,
where the number of distinct structures increases with s. An

important distinction in this context is between labeled trees,
in which nodes are distinguishable and carry labels, and un-
labeled trees in which the nodes are indistinguishable. The
number Ts of distinct labeled tree configurations of size s is
given by the Cayley formula [28]

Ts = ss−2. (6)

Each one of these labeled tree configurations can be encoded
by a unique sequence, refereed to as the Prüfer sequence [29].
The Prüfer sequence of a labeled tree of s nodes is a string
of s − 2 integers, taking values in the range of 1, 2, . . . , s.
The Prüfer code provides a very powerful tool for the random
sampling of labeled trees of a given size.

When the labels are removed, the number of distinct
configurations is reduced since each unlabeled configuration
corresponds to several labeled configurations. In the case of
unlabeled trees, the number of nonisomorphic tree topologies,
n(s), which can be assembled from s nodes quickly increases
as a function of s. For example, the values of n(s) for s =
1, 2, . . . , 13 are 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, and
1301, respectively [30]. An efficient algorithm for generating
all the tree topologies that can be assembled from s nodes, is
presented in Refs. [31,32]. A list of all possible tree topologies
up to s = 13 is presented in Ref. [30].

In Fig. 2 we present the tree topologies that consist of s
nodes for s = 1, 2, . . . , 7. For s � 3 the linear chain topology
is the only possible topology while for s � 4 more complex
topologies appear and their number quickly increases. The
number of labeled configuration associated with each one of
the tree topologies is also shown. Note that the total number
of labeled trees that consist of s nodes add up to ss−2, which
is consistent with the Cayley formula (6).

While the local structure of a network is well character-
ized by the degree distribution, the distribution of shortest
path lengths (DSPL), denoted by P(L = �), provides a useful
characterization of its large-scale structure. When two nodes
i and j reside on the same connected component, the distance
�i j between them is given by the length of the shortest path
that connects them. When nodes i and j reside on differ-
ent network components, there is no path connecting them
and the distance between them is �i j = ∞. The probability
that two randomly selected nodes reside on the same com-
ponent and thus are at a finite distance from each other, is
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FIG. 2. The tree topologies that consist of s nodes for s = 1, 2, . . . , 7. For s � 3 the linear chain topology is the only topology, while for
s � 4 more complex topologies appear and their number quickly increases. The number of labeled configurations associated with each one of
the tree topologies is also shown. Note that the total number of labeled trees that consist of s nodes add up to ss−2, which is consistent with the
Cayley formula (6).

denoted P(L < ∞) = 1 − P(L = ∞). The conditional DSPL
between pairs of nodes that reside on the same component
is denoted P(L = �|L < ∞), where � = 1, 2, . . . , N − 1. The
conditional DSPL satisfies

P(L = �|L < ∞) = P(L = �)

P(L < ∞)
. (7)

Note that P(L = �|L < ∞) is well defined only for c > 0.
This is due to the fact that P(L < ∞) = 0 for c = 0. Thus,
the analysis presented below is focused on 0 < c < 1.

The DSPL provides a natural platform for the study of
dynamical processes on networks, such as diffusive processes,
epidemic spreading, critical phenomena, synchronization,
information propagation, and communication. For super-
critical networks the DSPL was calculated using various
theoretical approaches, which include recursion equations,
generating functions, master equations, and branching pro-
cesses [7,12,13,21,24,33–45]. In the special case of random
regular graphs with c � 3, the giant component encompasses
the whole network. In this case there is a closed-form ana-
lytical expression for P(L = �) [34,40,44], which follows a
discrete Gompertz distribution [46].

It was shown that the mean distance E[L|L < ∞] =∑∞
�=1 �P(L = �|L < ∞) scales like E[L|L < ∞] ∼

ln N/ ln c, in agreement with rigorous results, showing
that supercritical random networks are small-world networks
[47–50]. It was also shown that the variance of the DSPL of
supercritical random networks does not scale with N , and
satisfies Var(L) ∼ O(1) [40]. The statistical properties of
distances in scale-free networks, which typically consist of a
single connected component, were studied in Refs. [36,37,51].
Using an analytical argument it was shown that scale free
networks with degree distributions of the form P(k) ∼ k−γ

are ultrasmall, namely, they exhibit a mean distance which

scales like E[L] ∼ ln ln N for 2 < γ < 3. For γ = 3 it was
shown that the mean distance scales like E[L] ∼ ln N/ ln ln N ,
while for γ > 3 it coincides with the common scaling of small
world networks, namely, E[L] ∼ ln N .

The DSPL of subcritical ER networks was recently studied
using a topological expansion [27]. This analysis employs the
fact that, in the subcritical regime, in the large-network limit,
the network consists of finite tree components with no cycles
[17,25]. It was found that for 0 < c < 1 the DSPL between
pairs of nodes that reside on the same tree component is given
by [27]

P(L = �|L < ∞) = (1 − c)c�−1, (8)

and that the probability that two random nodes reside on the
same tree component is [27]

P(L < ∞) = c

(1 − c)N
. (9)

The corresponding tail distribution is given by

P(L > �|L < ∞) = c�. (10)

The mean distance between pairs of nodes that reside on the
same tree component is

E[L|L < ∞] = 1

1 − c
, (11)

while the variance of the DSPL is given by

Var(L|L < ∞) = c

(1 − c)2 . (12)

While subcritical ER networks consist of finite tree compo-
nents, in supercritical ER networks there is a coexistence
between the giant component and the finite tree components.
As a result, the DSPL of supercritical ER networks combines
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the contributions of the giant and finite components. Using
the duality relations discussed above, the DSPL of the finite
components of a supercritical ER network can be obtained
from the analysis of its dual subcritical network [24,27].

In this paper we calculate the DSPL of finite tree com-
ponents of size s, denoted by P(L = �|S = s), in subcritical
ER networks. This is done by expressing the overall distribu-
tion P(L = �) as a linear combination of the corresponding
conditional distributions P(L = �|S = s), using the known
distribution of tree sizes. Using an inverse transformation we
extract the conditional distribution P(L = �|S = s). Surpris-
ingly, this distribution does not depend on the mean degree
c of the network from which the tree components were ex-
tracted. This is due to the fact that the ensemble of tree
components of a given size s in subcritical ER networks is
sampled uniformly from the set of labeled trees of size s and
thus does not depend on c. This insight is corroborated by a di-
rect combinatorial argument. We also calculate the DSPL over
all tree components up to size s, denoted by P(L = �|S � s)
and examine its convergence towards the DSPL of the whole
network, P(L = �|L < ∞), as s is increased. The moments of
the DSPL are also calculated. It is found that the mean dis-
tance between random pairs of nodes on tree components of
size s satisfies E[L|S = s] ∼ √

s, unlike small-world networks
in which the mean distance scales logarithmically with s.

The paper is organized as follows: In Sec. II we consider
the conditional DSPL on finite tree components. The moments
of the DSPL are calculated in Sec. III. The results are dis-
cussed in Sec. IV and summarized in Sec. V.

II. THE DISTRIBUTION OF SHORTEST PATH LENGTHS

Using the law of total probability, the DSPL of subcritical
ER networks, given by Eq. (8), can be expressed in the form

P(L = �|L < ∞) =
∞∑

s=2

P(L = �|S = s)P̂(S = s), (13)

where P(L = �|S = s) is the DSPL on tree components that
consist of s nodes and P̂(S = s) is the distribution of tree
sizes on which a pair of random nodes resides (given that
they reside on the same tree component). In the analysis be-
low we extract a closed-form expression for P(L = �|S = s)
by inverting the infinite system of linear equations given by
Eq. (13). Unlike commonly used methods for the calculation
of such distributions, which are based on combinatorial con-
siderations, this approach is purely algebraic. It is essentially
a top-down approach, in which the conditional distribu-
tion P(L = �|S = s) is obtained from the overall distribution
P(L = �|L < ∞) via the distribution of tree sizes P(S =
s). This approach is advantageous over the complementary
bottom-up approach, which would require a detailed knowl-
edge of all the tree configurations of size s, their weights, and
the DSPL over each and every one of them.

The distribution P̂(S = s) is given by

P̂(S = s) =
(s

2

)〈(S
2

)〉P(S = s), (14)

where 〈(
S

2

)〉
=

∞∑
s=2

(
s

2

)
P(S = s) (15)

is the mean number of pairs of nodes in a randomly selected
tree component, and P(S = s) is given by Eq. (2). This is
due to the fact that the number of pairs of nodes on a tree
component of size s is given by the binomial coefficient

(s
2

)
.

The evaluation of
〈(S

2

)〉
is presented in the Appendix. It yields〈(

S

2

)〉
= c

(1 − c)(2 − c)
, (16)

where 0 < c < 1. Inserting P(S = s) from Eq. (2) and
〈(s

2

)〉
from Eq. (16) into Eq. (14), we obtain

P̂(S = s) = (1 − c)
ss−2cs−2e−cs

(s − 2)!
. (17)

Inserting P̂(S = s) from Eq. (17) and P(L = �|L < ∞) from
Eq. (8) into Eq. (13), we obtain

∞∑
s=2

ss−2cs−1e−cs

(s − 2)!
P(L = �|S = s) = c�. (18)

This equation can be rewritten in the form

∞∑
s=2

ss−2(ce−c)s

(s − 2)!
P(L = �|S = s) = c�+1. (19)

The distribution P(L = �|S = s) is obtained by inverting
Eq. (19). In the inversion process we assume that P(L = �|S =
s) does not depend on the mean degree c. The results presented
below show that such a solution indeed exists and is justified
by a combinatorial argument. The resulting expression for
P(L = �|S = s) is verified by computer simulations.

Defining

x = ce−c (20)

enables us to express the left-hand side of Eq. (19) as a power
series in x. For the analysis below, it will be useful to also
express the right-hand side in terms of x rather than c. To this
end, we invert Eq. (20) and obtain

c = −W (−x), (21)

where W (x) is the Lambert W function [52]. Equation (19)
can now be written in the form

∞∑
s=2

ss−2

(s − 2)!
P(L = �|S = s)xs = [−W (−x)]�+1. (22)

From equation (3.2.2) in Ref. [53], which results from the
Lagrange inversion formula, we obtain the identity

[W (x)]r = (−r)
∞∑

s=r

(−s)s−r−1

(s − r)!
xs. (23)

Using Eq. (23) we now express the right-hand side of Eq. (22)
as a power series in x. Comparing the coefficients of xs on both
sides of Eq. (22), we obtain the DSPL of tree components that
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consist of s nodes in subcritical ER networks with 0 < c < 1.
It is given by

P(L = �|S = s) = (� + 1)

s�

(s − 2)!

(s − � − 1)!
, (24)

where s � 2 and 1 � � � s − 1. This is the central result of
the paper. Clearly, this distribution does not depend on the
mean degree c of the subcritical network from which the trees
of size s were extracted.

Unlike the DSPL of the whole network, which is a mono-
tonically decreasing geometric distribution, P(L = �|S = s)
exhibits a peak. The location of the peak is referred to as
the mode of the distribution and is denoted �mode. Since
P(L = �|S = s) exhibits a single peak, �mode is the lowest inte-
ger for which P(L = � + 1|S = s) < P(L = �|S = s). Using
Eq. (24), this inequality can be expressed in the form(

� + 2

� + 1

)(
s − � − 1

s

)
< 1. (25)

The solution of this inequality (assuming positive �) is

� >

√
4s + 1 − 3

2
. (26)

The mode �mode is the lowest integer that satisfies Eq. (26),
namely,

�mode =
⌈√

4s + 1 − 3

2

⌉
, (27)

where 	x
 is the lowest integer that is larger than x, also known
as the ceiling function. In the limit of large trees, the mode
scales like �mode ∼ √

s.
It turns out that the DSPL given by Eq. (24) coincides with

the DSPL of the ensemble obtained by uniformly random
sampling over all the labeled tree configurations of size s
[54,55]. The DSPL over all the labeled tree configurations of
size s can be obtained from direct combinatorial considera-
tions. To this end we pick a random pair of nodes i and j on a
tree of size s. We count the number of possible configurations
of labeled trees of size s, in which the distance between a
given pair of nodes i and j is �. The fact that the distance
between i and j is � implies that there is a single path of length
� between them. This path consists of � − 1 intermediate
nodes. The number of ways to select these � − 1 nodes from
the s − 2 nodes (not including i and j), where the order is
important, is given by

(s − 2)!

(s − � − 1)!
=

(
s − 2

� − 1

)
(� − 1)!. (28)

The path joining i and j, which consists of � + 1 nodes (in-
cluding i and j), can be considered as the backbone of the
tree. Each node on the backbone may be the root of a tree
branch such that each one of the remaining s − � − 1 nodes
belongs to one of these tree branches. This enables us to use
the generalized Cayley formula [28,56,57], which provides
the number of labeled tree configurations that consist of � + 1
nonempty disjoint tree components (also known as forests)

with a total of s nodes, namely,

Ts,�+1 = (� + 1)ss−�−2. (29)

Note that Cayley formula of Eq. (6) is a special case of the
generalized Cayley formula (29), namely Ts = Ts,1. The prob-
ability P(L = �|S = s) is obtained by dividing the number of
possible configurations of labeled trees of size s, in which the
distance between a given pair of nodes i and j is � by the total
number Ts of configurations of labeled trees of size s. It yields

P(L = �|S = s) = Ts,�+1
(s−2
�−1

)
(� − 1)!

Ts
, (30)

which is equivalent to Eq. (24). This equivalence suggests that
the ensemble of trees of a given size s in subcritical ER net-
works is equivalent to a uniformly random sampling among all
the Ts labeled tree configurations of size s. This is consistent
with the fact that the DSPL given by Eqs. (24) and (30)
does not depend on the mean degree c of the network from
which these trees were extracted. The equivalence between the
two ensembles can be justified using the following argument:
Given a finite connected component consisting of s nodes in
a subcritical ER network it is almost surely to exhibit a tree
topology containing s − 1 edges [17]. For a set of s nodes,
the probability that these nodes will form a connected tree
component of a given labeled configuration, which is isolated
from the rest of the network, is given by

ps−1(1 − p)(
s
2)−(s−1)(1 − p)s(N−s), (31)

where the first term accounts for the s − 1 edges of the tree,
the second term accounts for the probability that there are no
additional edges between the nodes in the tree component,
and the third term accounts for the probability that the tree
is isolated from the rest of the network. In an ER network,
in which the connectivity between different pairs of nodes
is independent, this probability is the same for all possible
configurations of labeled trees of size s.

Summing up the right-hand side of Eq. (24) from � + 1 to
infinity, we obtain the tail distribution, which is given by

P(L > �|S = s) = (s − 2)!

ss−2

ss−�−2

(s − � − 2)!
, (32)

where � = 0, 1, 2, . . . , s − 2. It is a monotonically decreas-
ing function that satisfies P(L > 0|S = s) = 1 and P(L > s −
2|S = s) = (s − 2)!/ss−2.

In Fig. 3 we present analytical results (solid lines) for
the DSPL on trees of size s, denoted by P(L = �|S = s), for
s = 10, 20, 30 and 40, obtained from Eq. (24). The analytical
results are in very good agreement with the results obtained
from computer simulations carried out for c = 0.5 (×) and
c = 0.8 (◦), which coincide with each other. These results
confirm the validity of Eq. (24) as well as the fact that the
ensemble of finite trees of a given size s extracted from sub-
critical ER networks of mean degree c does not depend on c.

In the simulations we generated subcritical ER networks
of size N = 104 with mean degree c = 0.5 and c = 0.8. From
these networks we picked tree components of the desired
sizes, such as s = 10, 20, 30, and 40. The expected number
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FIG. 3. Analytical results (solid lines) for the DSPL on trees of
size s, denoted P(L = �|S = s), for s = 10, 20, 30, and 40 (left to
right), obtained from Eq. (24). The analytical results are in very
good agreement with the results obtained from computer simulations
carried out for networks of size N = 104, c = 0.5 (×), and c = 0.8
(◦), which coincide with each other. These results confirm the valid-
ity of Eq. (24) as well as the fact that the ensemble of finite trees
of a given size s extracted from subcritical ER networks of mean
degree c does not depend on c. Note that the simulation results for
c = 0.5 are shown only for s = 10, 20, and 30, because trees of size
s = 40 are extremely rare in this case.

of trees of size s in a network instance of size N is given by

NT (s) = NT P(S = s). (33)

Inserting NT from Eq. (4) and P(S = s) from Eq. (2) into
Eq. (33), we obtain

NT (s) = N
ss−2cs−1e−cs

s!
. (34)

This result can be used in order to estimate the number of
network instances which is required in order to obtain the
desired number of trees of size s that are needed for the
statistical analysis. The distribution P(S = s) is a quickly
decreasing function of s. Thus, trees of size s become less
abundant as s is increased. As a result, one needs a large
number of network instances in order to obtain sufficient data
for statistical analysis of large tree components. The results
presented in Fig. 3 are based on 1500 instances of subcrit-
ical ER networks of size N = 104 for each value of c. For
c = 0.8 these network instances yield 12 454 trees of size
10, 1823 trees of size 20, 500 trees of size 30, and 183 trees
of size 40. For c = 0.5 these network instances yield 3617
trees of size 10, 91 trees of size 20, 8 trees of size 30, and
no trees of size 40. Therefore, In Fig. 3 the analytical results
for s = 40 are compared only with the simulation results for
c = 0.8 (◦).

Another interesting distribution is the DSPL between pairs
of nodes that reside on all tree components of size s′ � s. It
can be obtained from

P(L = �|S � s) =
∑s

s′=2 P̂(S = s′)P(L = �|S = s′)∑s
s′=2 P̂(S = s′)

. (35)

Taking the limit of large s, P(L = �|S � s) converges towards
P(L = �|L < ∞), as in Eq. (13). To explore this convergence
it is convenient to replace the sums

∑s
s′=2 in Eq. (35) by

the difference
∑∞

s′=2 −∑∞
s′=s+1. Carrying out the first sum-

mations in the numerator and in the denominator, we obtain

P(L = �|S � s) = (1 − c)c�−1 − ∑∞
s′=s+1 P̂(S = s′)P(L = �|S = s′)

1 − ∑∞
s′=s+1 P̂(S = s′)

. (36)

In Fig. 4 we present analytical results (solid lines) for the
distribution P(L = �|S � s) of shortest path lengths on all
tree components of size smaller or equal to s, in subcritical
ER networks with mean degree c = 0.8. The analytical re-
sults obtained from Eq. (36), are presented for tree sizes of
s = 10, 20, 30, and 40 (top to bottom on the left-hand side).
The analytical results are in very good agreement with the
results obtained from computer simulations carried out for
c = 0.8 (◦). As s is increased, the distribution P(L = �|S � s)
converges towards the overall DSPL P(L = �|L < ∞) of the
subcritical ER network (dashed line).

III. THE MEAN AND VARIANCE OF THE DISTRIBUTION
OF SHORTEST PATH LENGTHS

To calculate the moments of the DSPL, we define the
moment-generating function

M(x) =
s−1∑
�=1

ex�P(L = �|S = s). (37)

Inserting the probability P(L = �|S = s) from Eq. (24) into
Eq. (37) and carrying out the summation, we obtain

M(x) = s

s − 1

[(
e−2x − 1

s

)
+e−x

ss
(1 − e−x )es(x+e−x )�(s + 1, se−x )

]
. (38)

where �(a, z) is the incomplete Gamma function [52]. The
nth moment of P(L = �|S = s) is obtained by differentiating
M(x), with respect to x, n times, namely,

E[Ln|S = s] = ∂nM

∂xn

∣∣∣∣
x=0

. (39)

Inserting n = 1 in Eq. (39), we obtain the mean distance be-
tween random pairs of nodes that reside on a tree component
of size s. It is given by

E[L|S = s] = s[ess−s�(s + 1, s) − 2]

s − 1
. (40)

044310-6



DISTRIBUTION OF SHORTEST PATH LENGTHS ON … PHYSICAL REVIEW E 108, 044310 (2023)

FIG. 4. Analytical results (solid lines) for P(L = �|S � s) on
tree components of size smaller or equal to s in subcritical ER
network with mean degree c = 0.8, for s = 10, 20, 30, and 40
(top to bottom on the left-hand side), obtained from Eq. (36).
As s is increased, P(L = �|S � s) converges towards the overall
DSPL, P(L = �|L < ∞), of the subcritical ER network (dashed
line). The analytical results are in very good agreement with the
results obtained from computer simulations (◦).

Inserting n = 2 in Eq. (39), we obtain the second moment,
which is given by

E[L2|S = s] = s[4 + 2s − 3ess−s�(s + 1, s)]

s − 1
. (41)

The variance of P(L = �|S = s) is given by

Var(L|S = s) = E[L2|S = s] − (E[L|S = s])2, (42)

where E[L2|S = s] is given by Eq. (41) and E[L|S = s] is
given by Eq. (40).

For sufficiently large values of s one can obtain simpli-
fied asymptotic expressions for the moments of the DSPL.
To achieve this we use the double-asymptotic expansion of
�(s, s), given by equation 8.11.12 in Ref. [52], namely,

�(s, s) = ss−1e−s

[√
π

2

√
s − 1

3
+ O

(
1√
s

)]
. (43)

To evaluate the moments, we need a closed-form expression
for �(s + 1, s). Using equation 8.8.2 in Ref. [52], we obtain

�(s + 1, s) = s�(s, s) + sse−s, (44)

where �(s, s) is given by Eq. (43). Equipped with these ex-
pressions, we can now obtain asymptotic expansions for the
moments in the limit of large s. More specifically, the mean
distance on a random tree of size s is given by

E[L|S = s] =
√

π

2

√
s − 4

3
+ O

(
1√
s

)
. (45)

It is found that the mean distance between random pairs of
nodes that reside on a tree component of size s scales like
square root of s. Comparing the right-hand sides of Eqs. (27)
and (45), which show the mode �mode and the mean distance

FIG. 5. Analytical results (solid line) for the mean distance
E[L|S = s] between pairs of nodes that reside on the same tree
component of size s, in a subcritical ER network, as a function of
s. The analytical results are in very good agreement with the results
obtained from computer simulations for subcritical ER networks of
size N = 104 and c = 0.5 (×) and c = 0.8 (◦), which coincide with
each other. Note that the simulation results for c = 0.5 are shown
only up to s = 30, because in this case larger trees are rare.

E[L|S = s], respectively, it is found that while both of them
scale like

√
s, the prefactor of the mean distance is larger than

the prefactor of the mode. This implies that the distribution
P(L = �|S = s) is positively skewed. Interestingly, the scaling

FIG. 6. The variance Var(L|S = s) of the DSPL between pairs
of nodes that reside on the same tree component of size s, in a
subcritical ER network, as a function of s. The analytical results
are in very good agreement with the results obtained from computer
simulations for subcritical ER networks of size N = 104 and mean
degree c = 0.5 (×) and c = 0.8 (◦), which coincide with each other.
Note that the simulation results for c = 0.5 are shown only up to
s = 30, because in this case larger trees are rare.
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of the mean distance, implied by Eq. (45), resembles the
scaling of distances on two-dimensional lattices. It is in con-
trast with small-world random networks in which the mean
distance scales like ln s. This means that the tree components
in subcritical ER networks are not small-world networks.

In Fig. 5 we present analytical results (solid line) for the
mean distance E[L|S = s] between pairs of nodes that reside
on the same tree component of size s, in a subcritical ER
network, as a function of s. The analytical results are in
very good agreement with the results obtained from computer
simulations for subcritical ER networks of size N = 104 with
c = 0.5 (×) and c = 0.8 (◦), which coincide with each other.
Note that the simulation results for c = 0.5 are shown only up
to s = 30, because in this case larger trees are rare.

The second moment of the DSPL can be expressed by

E[L2|S = s] = 2s − 3

√
π

2

√
s + 2 + O

(
1√
s

)
. (46)

Combining the results presented above for the first and second
moments, we obtain an asymptotic expression for the vari-
ance. It is given by

Var(L|S = s) = 4 − π

2
s −

√
π

18

√
s + O(1). (47)

Thus, the standard deviation of the DSPL on trees of size
s scales like

√
s, namely, it scales like the mean distance

E[L|S = s]. Interestingly, the same qualitative relation is
found in the DSPL of the whole subcritical ER network. This
implies that P(L = �|S = s) is relatively broad distribution, in
contrast with the typical results for the DSPL of supercritical
configuration model networks [39,40,44].

In Fig. 6 we present analytical results (solid line) for the
variance Var(L|S = s) of the distribution of shortest path
lengths between pairs of nodes that reside on the same tree
component of size s, in a subcritical ER network, as a function
of s. The analytical results are in very good agreement with
the results obtained from computer simulations for subcritical
ER networks of size N = 104 and mean degree c = 0.5 (×)
and c = 0.8 (◦), which coincide with each other. Note that the
simulation results for c = 0.5 are shown only up to s = 30,
because in this case larger trees are rare.

The cumulative mean distance between pairs of nodes that
reside on a tree of size smaller or equal to s is given by

E[L|S � s] =
∑s

s′=2 P̂(S = s′)E[L|S = s′]∑s
s′=2 P̂(S = s′)

. (48)

To evaluate the right-hand side of Eq. (48), it is convenient
to express the numerator and the denominator as differences
between two infinite sums, namely,

E[L|S � s] =
∑∞

s′=2 P̂(S = s′)E[L|S = s′] − ∑∞
s′=s+1 P̂(S = s′)E[L|S = s′]∑∞

s′=2 P̂(S = s′) − ∑∞
s′=s+1 P̂(S = s′)

. (49)

The first term in the numerator amounts to E[L|L < ∞], which is given by Eq. (11), while the first term in the denominator is
equal to 1 [due to the normalization of P̂(S = s)]. Equation (49) can thus be simplified to

E[L|S � s] =
(

1

1 − c

)
1 − (1 − c)

∑∞
s′=s+1 P̂(S = s′)E[L|S = s′]

1 − ∑∞
s′=s+1 P̂(S = s′)

. (50)

Inserting P̂(S = s) from Eq. (17) and E[L|S = s] from Eq. (45), which is accurate for sufficiently large s, into Eq. (50) and
carrying out the summations, we obtain

E[L|S � s] �
(

1

1 − c

) 1 − (1−c)2√
2πc2 (ce1−c)s+1

[√
π
2

1
1−ce1−c − 4

3�
(
ce1−c, 1

2 , s + 1
)]

1 − 1−c√
2πc2 (ce1−c)s+1[

�
(
ce1−c, 1

2 , s + 1
) − �

(
ce1−c, 3

2 , s + 1
)] , (51)

where

�(z, s, a) =
∞∑

n=0

zn

(a + n)s (52)

is the Lerch Phi transcendent [52]. Equation (51) is expected
to be valid for large values of s.

In Fig. 7 we present analytical results (solid lines) for the
mean distance E[L|S � s] between pairs of nodes that reside
on the same tree component, for all tree components of size
smaller or equal to s, in subcritical networks, as a function
of the mean degree c. The results are presented for s = 10,
20, 40, and 80 (from bottom to top). The analytical results,
obtained from Eq. (51), are in very good agreement with the
results obtained from computer simulations (◦). As s is in-
creased, the mean distance E[L|S � s] converges towards the

mean distance over the whole network, E[L|L < ∞] (dashed
line), given by Eq. (11).

IV. DISCUSSION

The ensemble of trees that appear in subcritical ER net-
works belong to the class of equilibrium trees [4]. These are
trees that are formed by equilibrium processes. Their statisti-
cal properties can be analyzed using methods of equilibrium
statistical mechanics. In this paper we calculated the DSPL
of trees of a given size s in subcritical ER networks. It was
found that P(L = �|S = s) is independent of the mean degree
c of the subcritical network from which these trees were
extracted. It was also found that the mean distance on the
ensemble of trees of size s scales like E[L|S = s] ∼ √

s. This
scaling implies that the Hausdorff dimension of the trees is
DH = 2, in agreement with earlier results obtained for other
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FIG. 7. Analytical results (solid lines), obtained from Eq. (51),
for the mean distance E[L|S � s] between all pairs of nodes that
reside on the same tree component, for all tree components of size
smaller or equal to s, in subcritical networks, as a function of the
mean degree c. The results are presented for s = 10, 20, 40, and
80 (from bottom to top). The analytical results are in very good
agreement with the results obtained from computer simulations (◦).
As s is increased, the mean distance E[L|S � s] converges towards
the mean distance over the whole network, E[L|L < ∞] (dashed
line), given by Eq. (11).

equilibrium trees [4]. It is in contrast with the scaling obtained
in supercritical ER networks and other configuration model
networks. In these networks the mean distance E[L] scales
logarithmically with the network size N and they are thus
referred to as small-world networks.

Another important ensemble of trees consists of random
recursive trees, which belong to the class of nonequilibrium
trees. These trees grow via a kinetic process of node addition.
The simplest model of random tree growth is the random
attachment model. In this model, starting from a small seed
network, at each time step a new node is added and is con-
nected to one of the existing nodes uniformly at random. For
simplicity we consider the case in which the seed network
consists of a single node. Interestingly, the ensembles of equi-
librium and nonequilibrium trees of size s include the same
set of tree configurations. However, their statistical properties
are different due to the different weights assigned to each one
of the possible configurations. In growing trees, the order in
which the nodes are added is important. In particular, nodes
that appeared early in the growth process are likely to gain
more links than nodes that appeared at later stages [4].

The DSPL of the ensemble of random attachment trees of
size s was found to follow a Poisson distribution whose mean
is given by E[L|S = s] = 2 ln s [42]. This implies that the
random attachment trees belong to the class of small-world
networks, in which the mean distance scales logarithmically
with the network size. These trees tend to form compact
structures dominated by the nodes that appeared early in the
growth process. This is in sharp contrast to the results obtained

for the subcritical ER trees in which the mean distance scales
like

√
s.

The methodology presented in this paper can be ap-
plied to the calculation of the distribution P(L = �|S = s) in
configuration model networks with various degree distribu-
tions P(K = k), such as the exponential distribution and the
power-law distribution. To this end, one needs to obtain the
distribution P(S = s) of tree sizes in the subcritical configu-
ration model network under study and the DSPL of the whole
network, P(L = �|L < ∞) and to insert them into Eq. (13).
The distribution P(S = s) can be calculated using the gener-
ating function approach presented in Ref. [26]. The inversion
of Eq. (13) to extract P(L = �|S = s) is possible probably in
those cases in which P(L = �|S = s) is independent of the
mean degree c. The validity of this condition will need to be
tested on a case-by-case basis.

Apart from the DSPL there are other metric properties
that characterize the large-scale structure of finite trees in
subcritical configuration model networks. These include the
distributions of eccentricities and diameters of trees of size
s. The eccentricity is a property of a single node i and it is
equal to the largest distance between the given node i and
any other node in the tree. The diameter is a property of
the whole tree and it is equal to the largest distance between
any pair of nodes in the tree. The distribution of the largest
diameter among all the trees in a subcritical ER network was
recently studied [58,59]. It was found that this distribution
follows a Gumbel distribution [60], which is one of the three
distributions encountered in extreme-value theory.

The resistance distance between two nodes in a network
is a measure of how difficult it is for electricity (or some
other form of flow) to pass between these two nodes. In an
unweighted network, the resistance distance is defined as the
resistance between the two nodes, where the resistance of each
edge is equal to 1 Ohm. The resistance distance can be thought
of as a generalization of the concept of distance to networks,
where the “distance” between two nodes is determined by
the flow resistance between them rather than their physical
separation. A more formal definition is given in Refs. [61,62],
where it is also shown that it is a proper metric, satisfying
for example the triangle inequality. In general, the resistance
distance between two nodes will be smaller if there are more
paths between the two nodes with lower resistance, and larger
if there are fewer paths or if the paths have higher resistance.
Random networks of resistors have been studied, mainly in
two dimensions [63], and recently calculated for supercritical
ER networks [64,65]. Interestingly, on tree graphs the shortest
path between a pair of nodes i and j is in fact the only path
between them. As a result, the resistance distance between i
and j is equal to the shortest path length between them. This
means that the results presented in this paper provide also
the distribution of resistance distances in ER networks in the
subcritical regime.

V. SUMMARY

We calculated the distribution of shortest path lengths
P(L = �|S = s) between random pairs of nodes that reside
on finite tree components of a given size s in subcritical ER
networks. It was found that P(L = �|S = s) = �+1

s�

(s−2)!
(s−�−1)! .
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Surprisingly, this probability does not depend on the mean
degree c of the network from which these tree components
were extracted. This is due to the fact that the ensemble of
tree components of a given size s in ER networks is sampled
uniformly from the set of labeled trees of size s. The mo-
ments of the DSPL were also calculated. It was found that the
mean distance between random pairs of nodes on tree compo-
nents of size s satisfies E[L|S = s] ∼ √

s, unlike small-world
networks in which the mean distance scales logarithmically
with s.
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APPENDIX: THE GENERATING FUNCTION OF P(S = s)

The generating function of P(S = s) is given by

H (u) =
∞∑

s=1

usP(S = s). (A1)

Inserting P(S = s) from Eq. (2) into Eq. (A1), we obtain

H (u) = 2

2 − c

∞∑
s=1

ss−2cs−1e−cs

s!
us. (A2)

Rearranging terms on the right-hand side of Eq. (A2), we
obtain

H (u) = − 2

c(2 − c)

∞∑
s=1

1

s

(−s)s−1

s!
(−uce−c)s. (A3)

Replacing the term 1/s on the right-hand side of Eq. (A3) by
the integral expression

1

s
=

∫ ∞

0
e−sτ dτ, (A4)

yields

H (u) = − 2

c(2 − c)

∞∑
s=1

∫ ∞

0
e−sτ dτ

(−s)s−1

s!
(−uce−c)s.

(A5)

Exchanging the order of the sum and the integral on the right-
hand side of Eq. (A5), we obtain

H (u) = − 2

c(2 − c)

∫ ∞

0
dτ

∞∑
s=1

(−s)s−1

s!
(−uce−ce−τ )s.

(A6)

Using the series expansion of the Lambert W function, which
is given by

W (x) =
∞∑

s=1

(−s)s−1xs

s!
, (A7)

we obtain

H (u) = − 2

c(2 − c)

∫ ∞

0
dτW (−uce−ce−τ ). (A8)

Changing the integration variable from τ to x = −uce−ce−τ ,
we obtain

H (u) = 2

c(2 − c)

∫ 0

−uce−c

W (x)
dx

x
. (A9)

Changing the integration variable again, from x to y = W (x),
which from the definition of the Lambert function implies that
x = yey, we obtain

H (u) = 2

c(2 − c)

∫ 0

W (−uce−c )
y

(
1 + 1

y

)
dy. (A10)

Carrying out the integration on the right-hand side of
Eq. (A10), we obtain

H (u) = − 1

c(2 − c)
{[W (−uce−c)]2 + 2W (−uce−c)}. (A11)

The moments of P(S = s) can be obtained by taking suitable
derivatives of H (u). In particular, the mean tree size is

〈S〉 = dH (u)

du

∣∣∣∣
u=1

= 2

2 − c
. (A12)

and the second factorial moment is given by

〈S(S − 1)〉 = d2H (u)

du2

∣∣∣∣
u=1

= 2c

(1 − c)(2 − c)
. (A13)

Using these results, it is found that the second moment of
P(S = s) is given by

〈S2〉 = 2

(1 − c)(2 − c)
, (A14)

and the variance is given by

Var(S) = 2c

(1 − c)(2 − c)2 . (A15)

It is also found that〈(
S

2

)〉
= c

(1 − c)(2 − c)
. (A16)
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