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Visibility graphs of critical and off-critical time series for absorbing state phase transitions
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It is possible to investigate emergence in many real systems using time-ordered data. However, classical time
series analysis is usually conditioned by data accuracy and quantity. A modern method is to map time series onto
graphs and study these structures using the toolbox available in complex network analysis. An important practical
problem to investigate the criticality in experimental systems is to determine whether an observed time series
is associated with a critical regime or not. We contribute to this problem by investigating the mapping called
visibility graph (VG) of a time series generated in dynamical processes with absorbing-state phase transitions.
Analyzing degree correlation patterns of the VGs, we are able to distinguish between critical and off-critical
regimes. One central hallmark is an asymptotic disassortative correlation on the degree for series near the
critical regime in contrast with a pure assortative correlation observed for noncritical dynamics. We are also able
to distinguish between continuous (critical) and discontinuous (noncritical) absorbing state phase transitions,
the second of which is commonly involved in catastrophic phenomena. The determination of critical behavior
converges very quickly in higher dimensions, where many complex system dynamics are relevant.
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I. INTRODUCTION

Since the onset of statistical mechanics, scientists have
learned that a system composed of many interacting agents
can be macroscopically described by a finite number of vari-
ables which is much lower than the actual system’s degrees
of freedom. In the case of equilibrium matter, they can be
reduced from ~10?* to less than a handful whereas in a
nonequilibrium situation more information is needed [1].
Emergence in complex interacting systems are commonly
characterized by series composed of time-ordered data which
can be experimentally accessible in diverse natural [2,3],
social [4,5], and biological phenomena [6,7]. The reverse
engineering to understand the underlying process which gen-
erates the observed series remains a challenge. Following
stock exchange indices to prevent economic crashes [4]; hu-
midity, pressure, and other series for weather forecasting [8];
brain activity in electroencephalogram for disease prevention
and treatment [9], are among a plethora of examples where
understanding time series plays an essential role. For ex-
ample, epidemiological series of confirmed cases, epidemic
incidence, deaths, and so on are essential for epidemiology
forecasting [10]. Moreover, epidemic contagion phenomena
[11-13] can be extended to the information propagation
[14,15] or marketing [16]. Actually, epidemic models are
benchmarks for nonequilibrium phase transitions and critical
phenomena [17,18] and have been investigated in several con-
texts such as turbulence onset [19] and brain activity criticality
[20].
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Once the many ordinary observables in real-world spread-
ing phenomena are presented as time series, a framework
to identify when the emerging properties reveled by the
series is due to long-range temporal correlations is challeng-
ing [21]. Several approaches have proposed to analyze time
series such as the phase-space reconstruction using delayed-
coordinate embedding method [22,23], (multi)fractal analysis
[24], wavelets [25], and others [21]. More recently, methods to
map time-ordered data onto graphs have been applied to time
series analysis [26]. One particular case is the algorithm pre-
sented by Lacasa et al. [27] that uses geometric criteria to map
time series onto visibility graphs (VGs). It was shown that the
generated graph allows the investigation of some important
properties of the time series through the degree distribution
such as its fractality, periodicity, and randomness [26-28].
The VG has been applied, for example, to geophysical time
series [29], turbulence [30], electroencephalogram analysis at
functional brain networks in Alzheimer’s disease [31,32], and
in the sleep stages classification [33].

Absorbing state phase transitions (ASPT) is a branch of
nonequilibrium statistical physics and its most prominent
representative is the directed percolation (DP) universality
class [17,18] which encompasses a wide variety of models
[34-36] and experiments [19,37]. Other universality classes
also play an important role on the field [38—40]. Below the
critical dimension d. = 4, above which mean-field exponents
are found [35], DP is featured by relevant spatial and temporal
fluctuations. For d > d., temporal fluctuations rule the tran-
sition. Long-range and long-term correlations are expected
in the neighborhood of the transition where the time series
of the order parameter are expected to be fractal. This lead
to the application of models with ASPT to understand, for
example, the critical dynamics observed in brain activity
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[41,42], first reported in the seminal experiments of Beggs
and Plenz [43]. However, the brain’s criticality and its origins
are topics of controversy [44] and further investigation is
necessary.

One interesting application of the VG is to investigate frac-
tal properties of time series, which are related to the degree
exponent associated with the VG [27,28,45]. Other global
properties of the VGs, such as average clustering coefficient
[46] and shortest distance, were also investigated [26]. In this
work, we map the time series of epidemic prevalence (the
order parameter) generated by simple contagion processes
onto VGs to characterize critical or off-critical series. We
consider lattices of dimension d =1, 2, 3, and 4 as well
as random regular networks (RRNs) representing an infinite
dimension. We focus on the degree correlation rather than the
degree distribution of the VGs. We also apply the methods
to discontinuous (noncritical) phase transitions. We report
that the degree correlations in VGs detect more evidently the
critical behavior in comparison with the degree distribution.
A hallmark of criticality is an asymptotically disassortative
degree correlation associated with the series points of high
visibility in contrast with purely assortative behavior found
for off-critical series. This hallmark is much more evident in
higher than in lower dimensions and opens an alternative pos-
sibility to investigate critical behavior in higher-dimensional
systems such as the brain [47] and other complex systems
[48].

The remainder of the paper is organized as follows. The
VG and some network metrics are introduced and applied
to white noise and fBM in Sec. II. We analyze critical and
off-critical prevalence series of the contact process [34], a
simple contagion model with absorbing states, on lattices and
RRNs in Sec. III. A two-species symbiotic process (2SCP)
model [49], a simple model with a discontinuous ASPT, is
investigated using the VG toolbox in Sec. IV. Our concluding
remarks and prospects are drawn in Sec. V. Appendices A and
B complement the paper with some methodological details.

II. VISIBILITY GRAPHS AND ITS PROPERTIES

In this section, we define the VG and review its central
properties considering fractal series generated with fBM [50].
In particular, we exploit degree correlations [51], which were
not yet thoroughly addressed.

A VG is constructed by associating a node of a network
to each point of an ordered time series {(;, y;)}. In the natu-
ral VG [27], two points (¢,,y,) and (¢, y,) are connected if
all intermediate points (f., y.) where f, < t. < t,, satisfies the
visibility criterion [27]

(tb - tc‘)

Ye < b+ (Va )’b)(tb ) (1)
A schematic representation of the method to generate the
VG is presented in Fig. 1. A variation of the natural VG
[27] is the horizontal VG, where horizontal lines are used
in the visibility criterion such that two points are connected
if all intermediate points obey the criterion y. < min(y,, y»)
[28,52]. Properties of the VG can be investigated using com-
plex network analysis [26]. The most basic one is the degree
distribution P(k) defined as the probability that a randomly
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FIG. 1. (a) Schematic representation of the method to produce
VGs using a small time series of 16 equally spaced points that
generates a heterogeneous graph pictured in panel (b).

chosen node has degree k [46]. Lacasa and Toral [28] showed
that it is possible to distinguish between chaotic and correlated
stochastic processes by analyzing the corresponding degree
distribution of the horizontal VG. Using the natural VG, La-
casa et al. [27] showed that the series of Brownian motion
presents heavy-tailed degree distributions while white noise
leads to exponential decay. Generalizing the analysis for fBM
series where x(br) = bx(t), a relation between the Hurst
exponent H and the degree exponent y, P(k) ~ k™Y, given
by y =3 —2H for 0 < H < 1, was proposed [53]. Note that
Brownian motion corresponds to H = 1/2. A remark on the
relation y = 3 — 2H is that the VG’s degree distributions of
fBM series have diverging variance (y < 3) for 0 < H < 1
while the average degree exists if H < 1/2 (y > 2). In the
present work, we consider only the natural VG, hereafter
called only VG since the horizontal one under represents the
differences between critical and off-critical times series.

One can further investigate the network properties consid-
ering degree correlations [51,54], using the average degree
of the nearest neighbors of a vertex as a function of the
node degree Ky, (k). If Kyn(k) ~ k% with @ > 0, the network
presents an assortative degree correlation where nodes of
similar degrees have a higher probability to be connected. If
o < 0, the network presents disassortative degree correlations
where high-degree nodes tend to be connected to lower-degree
nodes. If « & 0, one has neutral degree correlations and the
network is uncorrelated. Degree correlations of VGs have
attracted little attention and a paper addressing this issue [55]
investigated the degree correlations of horizontal VGs of fBM
series with 10* points and reported assortative mixing (o > 0)
for the Hurst exponent H < 0.6 and neutral correlation (o ~
0) for H > 0.6.

We analyzed the fBM series generated with Davies-Harte
method [56] using the f{BM library in PYTHON [57] for values
of H=0.3, 0.5, and 0.7 representing antipersistent, unbi-
ased, and persistent fluctuation trending [58], respectively.
White noise was applied as a nonfractal time series. The
typical investigated time series are presented in Fig. 2(a) while
the corresponding degree distributions and average neighbor
degree are shown in Figs. 2(b) and 2(c). One can observe
that the degree distribution obtained for fBM series is heavy-
tailed, more for higher Hurst exponents while the white noise
presents an exponential decay in agreement with Lacasa et al.
[27,53]. The function Ky, (k), however, shows a more complex
dependence on the degree. The network presents assortative
degree correlations (a > 0) for a large range of degrees,
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FIG. 2. (a) Example of time series of fBM for different values of H and white noise. Time series were scaled to variance 1 and shifted to
improve visibility. This rescaling does not alter the VG. (b) Degree distribution and (c) average neighbor degree of the corresponding VG of

the series shown in (a). Series of 2!® points are considered.

crossing over towards a neutral assortativity (low «) for high
degrees, and finally, a disassortative correlation (@ < 0) for
a very high degree regime; more evidently for higher Hurst
exponents. The crossover was not reported in Ref. [55] where
horizontal VGs and shorter time series with 10* points were
analyzed. The degree distribution for a white noise series
is exponentially distributed and a crossover to neutral and
disassortative regimes are not seen.

An interpretation of K, (k) of fBM series is the following.
The fractal series have fluctuations (peaks and valleys) of all
ranges within the lower and upper cutoffs imposed by the fi-
nite size and time resolution (6¢ = 1) of the series. The effects
of finite time and size as well as of time resolution of series are
investigated in Appendix B. The peaks have higher visibility
than valleys, and the visibility increases with the height of
the peak. Peaks of intermediary sizes block the visibility of
valleys and smaller peaks, such that the higher a peak is, the
higher the visibility points that it sees. Since the series is
finite, this hierarchy saturates near the correlation time and
the neutral regime is observed. The highest peaks are few and
can see large intervals of a series, including many valleys and
small peaks of low visibility that reduces the average visibility
of their neighbors. This is the reason why nodes of extreme
visibility present disassortative behavior.

III. VG FOR CRITICAL SPREADING DYNAMICS
ON LATTICES

Let us consider the basic Harris contact process [17,34]
consisting of binary dynamics where individuals, represented
by nodes of a lattice or a graph, can be susceptible (inactive) or
infected (active). Infected individuals heal spontaneously with
rate j, which is fixed to u = 1 in this work, while infected
individuals infect each of their susceptible contacts with rate
A/k, where k is the number of contacts. On regular lattices,
the CP model belongs to the directed percolation universality
class [17]. We can construct the time series of epidemic preva-
lence or density of active nodes p, defined as the fraction of
infected individuals in the population. Examples of time series
of epidemic prevalence are shown in Fig. 3(a).

We performed stochastic simulations using the optimized
Gillespie algorithm [59] for dynamic processes on graphs
explained in Appendix A. The critical point of the CP
dynamics on regular lattices is known with accuracy on
d-dimensional hypercubic lattices. The thresholds A4=1 =

3.29785, A=Y = 1.64877, A?=%) = 1.31686, and A=Y =
1.19505 with uncertainty in the last digit [18], were used in
the present work wherever referring to critical series. The time
series are obtained in the steady state; see Appendix A.

Scaled time series of epidemic prevalence for the CP model
on square lattices with 500 x 500 nodes are presented for
critical (A = 1.6487), subcritical (A = 1.48), and supercritical
regimes (A = 1.76) in Fig. 3(a). While off-critical series are
featured by short wavelength fluctuations, the critical one
presents fractal nature with a wide range of wavelengths. It
is important to remark that the analyzed series are not strictly
critical since the system size is finite and time correlations are
bounded by a characteristic time that scales as T ~ L%, where z
is the dynamical exponent [18]. The degree distribution of the
VG considering critical and off-critical time series are shown
in Fig. 3(a). Degree distributions in the off-critical case have
similar shapes with an exponential decay while the critical one
is heavy-tailed. Notice that the degree distribution presents
an upper cutoff even for the critical series due to the upper
and lower bounds in the size of the time series as well as the
finite size of the system. A strict power-law tail is, therefore,
expected only in the asymptotic limits of infinite-size systems
and series; see Appendix B. Differences between critical and
off-critical regimes are more striking in the analysis of the
degree correlations by means of the K, (k) curves. The VGs
of the three regimes present assortative degree correlations for
low degrees while, in the critical one, this pattern is altered
for higher degrees, approaching a neutral correlation while
the off-critical curves do not. It is also qualitatively analogous
to the behavior found in the fBM (fractal) and white noise
(nonfractal) time series shown in Fig. 2(c). Here, the disassor-
tative degree correlation for the largest degrees, observed in
the fBM series, is not evident, which is again due to finite-size
and finite-time effects, and is expected to be observed in much
larger systems and longer series.

We analyzed the critical prevalence series of the CP on
lattices of one to four dimensions with N = L¢ nodes. The
size was chosen to keep the characteristic correlation time of
the same order for different dimensions by fixing L* = 10*
since T ~ L%, where z is the dynamical exponent [18]. The
average degree of the nearest-neighbors for the VG generated
from critical epidemic prevalence of the CP on lattices is
presented in Fig. 4(a). Observe that, as the lattice dimension
increases, the pattern of the degree correlations changes with
the emergence of the disassortativity at large degree values for
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FIG. 3. (a) Time series of epidemic prevalence for the CP model in a two-dimensional lattice of side L = 500 (N = 250000 nodes) for
critical (A = 1.6487), subcritical (A = 1.48), and supercritical (A = 1.76) regimes. Series were scaled to unit variance and shifted to improve
visibility. (b) Degree distribution and (c) average degree of the neighbors for the VGs obtained in subcritical, critical, and supercritical phases.
Time series with 10° points, spaced over times intervals 6t = 1, are considered.

higher dimensions, in agreement with the analysis of fractal
fBM series, especially the persistent ones (H > 1/2) shown in
Fig. 2(c). Actually, the degree correlation patterns for d = 4
change suddenly for small deviation of the criticality, as can
be seen in Fig. 4(b).

A noticeable aspect of Fig. 4 is that the fractal nature of
the critical times series, resembling the fBM, is evident at
d = 4 which is the upper critical dimension of the directed
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FIG. 4. The average degree of the nearest neighbors for the VG
generated from the time series of prevalence for the CP model in
lattices of different dimensions. (a) Curves for different dimensions
and sizes scaled by 2¢~! to improve visibility. The sizes are chosen
such as L7 = 10* for all dimensions. (b) Fixed-size L = 50 and
dimension d = 4 (upper critical dimension) for different infection
rates. The critical curve corresponds to A = 1.1950 [18].

percolation universality class [18], above which the mean-
field exponents hold for all dimensions. Indeed, dynamical
complex systems, in general, evolve on networks [41] which
are usually high-dimensional (many times infinitely dimen-
sional) systems where the mean-field behavior is expected to
be accurate [60]. We simulated the CP on RRNSs, in which all
nodes have the same degree and the connections are random
avoiding multiple and self-connections [61]. In Fig. 5, the
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FIG. 5. Comparison of the VGs generated from time series of
CP critical dynamical on RRNs and square lattices, both with g = 4
nearest neighbors. (a) Average degree of the nearest neighbors and
(b) degree distribution of the VGs are presented. The system size
is N = 107 nodes for RRN (1. = 1.25808) and N = 500 x 500 for
square lattices (A, = 1.64877). An average over ten time series with
10° points equally spaced with intervals 8t = 1 were used.
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FIG. 6. Degree correlations of VG for continuous (us = 0.8) and
discontinuous (i = 0.2) transitions of 2SCP dynamics on RRNs of
degree ¢ = 4. The transition points for continuous and discontinuous
cases are A, = 1.3880(5) and A, = 0.9790(2), where uncertainties
in the last digit are given in parentheses. Two curves are presented
for the discontinuous case: one slightly below and the other slightly
above the transition point. Networks with N = 10° nodes considering
an average over ten time series with 10° points equally spaced with
intervals 6 = 1 were used.

average degree of the nearest neighbors and degree distribu-
tions for VG generated from the critical CP model in an RRN
are compared with the two-dimensional lattice case, for the
same number of connections ¢ = 4. While differences in the
degree distributions are not striking, the degree correlations
for RRN evidently obey the behavior conjectured for fractal
series, with pronounced disassortative correlation for high
visibility nodes.

IV. VISIBILITY GRAPHS FOR DISCONTINUOUS ASPT

A modification of the CP dynamics consists of two species
evolving on a substrate where they interact symbiotically
when occupying the same site [49,62]. The 2SCP contagion
dynamics is identical to the original CP while the healing has
areduced rate us < w if a node is concomitantly occupied by
both species. While the ASPT of the 2SCP is continuous in
low-dimensional lattices [63], for d > 4 it is conjectured to
be discontinuous [64]. Indeed, the analysis of 2SCP on com-
plex networks, an infinite-dimensional systems, shows that a
discontinuous transition is confirmed in both simulations and
mean-filed theories [62,65].

We compared the differences pictured by the VG in
time series of prevalence for 2SCP undergoing discontinuous
(us = 0.2) and continuous (us = 0.8) transitions, both run-
ning on a RRN of size N = 10° with degree g = 4. Figure 6
shows a comparison of the degree correlations of VGs ob-
tained for continuous and discontinuous 2SCP, very close to
the transition point where the absorbing state losses global sta-
bility; in the discontinuous transition the dynamics becomes
bistable where either a high prevalence of active nodes or the
absorbing phase are stable states, depending on the initial con-
dition; see Fig. 7. A fully active initial state is used implying
that the steady state is given by the upper spinoidal. While the
continuous transition presents the asymptotic disassortative
degree correlations typical of critical series, both regimes of
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FIG. 7. Discontinuous and continuous phase transitions in the
total prevalence curves of 2SCP model for py = 0.2 (discontinu-
ous) and ps = 0.8 (continuous), corresponding to the simulations
presented in Fig. 6. Curves are obtained on an RRN with N = 10°
nodes with initial condition where all nodes are doubly occupied.

discontinuous 2SCP, slightly above and below the transition
point, exhibit only assortative patterns. Then, the disassorta-
tive degree correlations are not observed in the 2SCP model
even extremely close to the transition point, showing that the
VG method can distinguish a critical and noncritical ASPT.
Conversely, the continuous transition present the disassorta-
tive trend for high visibility nodes.

V. CONCLUSION

Critical dynamics is a central core of complex systems
including many biological, social, technological, and physical
examples [41,66]. While the usual physical systems can be
tuned to criticality by the suitable choice of the control param-
eter, determining whether a self-organized system is critical
or not remains challenging. An emerging feature of critical
dynamics are fractal time series of fluctuating order parame-
ters, which can be used to determine whether a dynamics is
critical or off-critical. In the present work, we contribute to
this issue using visibility graphs [27] to analyze critical and
off-critical series of systems undergoing well-defined absorb-
ing state phase transitions. We analyze some basic network
metrics, namely, the degree distribution and degree correlation
of the generated VGs.

We report that the disassortative correlations of the VGs,
characterized by the average degree of the nearest-neighbors
as a function of the node degree [54] K, (k) is an effective
hallmark to resolve between critical and off-critical dynamics.
We investigate the ASPT of the contact process on lattices of
dimension 1 < d < 4 and on random regular networks, cor-
responding to d = co. We observe that only critical dynamics
is featured by the asymptotic (large degree) disassortative
correlations in VG, while off-critical analyzes present only
assortative regime correlations. While the latter is not enough
to discard critical dynamics due to strong finite-size effects,
which are especially strong in low dimensions, the former
was observed only when the investigated systems were at
their critical points. We also investigate a noncritical ASPT
considering a two-species symbiotic contact processes [49] in
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FIG. 8. Finiteness analysis for VGs obtained for critical CP dynamics (A. = 1.6487) on two-dimensional lattices. Finite-size analysis of
(a) degree distribution and (b) degree correlations for series length fixed to 10° points equally spaced over intervals ¢ = 1. Finite-time analysis
of (c) degree distribution and (d) degree correlations for fixed size L = 1000 and time resolution ¢ = 1.

RRNs and report that VG’s analysis does not point out any
signs of criticality using K, (k). While the fractal behavior of
a critical time series is expected to be resolved by the degree
distribution [53], we provide strong evidence that degree cor-
relations can do this job much more efficiently.

Finally, while our conclusions are grounded on synthetic
models where critical dynamics can be controlled with high
accuracy, we expect that the present method can be applied to
more complex critical systems such as brain activity dynamics
[44,66] and other biological systems [41].
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APPENDIX A: STOCHASTIC SIMULATION ALGORITHMS

Stochastic simulations of CP were performed considering
=1 as follows [59]. A list of active (occupied) nodes and
their labels are built and kept constantly updated. At each
time step, with probability p = 1/(1 4+ 1), one active node

is randomly chosen and inactivated. With complementary
probability 1 — p = A/(1 4+ A), an active node and one of its
nearest neighbors are chosen at random. If the neighbor is
inactive (empty) it becomes occupied. Otherwise, no alter-
ation of state is implemented. The time step is incremented
by §t = —In&/(n 4+ An) where £ is a pseudorandom number
uniformly distributed in the interval (0,1) and » in the number
of active nodes.

We proceed similarly in the case of 2SCP [62] considering
u =1 and us < 1. We maintain two lists, one of n, individ-
uals of species A and other of np individuals of species B.
Also, the number of singly n; and doubly n, occupied nodes
is constantly updated. At each time step, given by

. —Iné&
b+ D(np +2m)°

one creation or death attempt occurs with probabilities 1 —
p=2X/(1+ 1) and p, respectively. In the case of a creation
attempt, one individual and one of its nearest neighbors are
selected at random. If the neighbor site is not occupied by
the same species, a copy of the selected individual is placed
there. Otherwise, the simulation proceeds to the next step.
In the case of a death attempt, an individual is again chosen
at random. If it lays on a singly occupied site, it dies with
probability 1. If it lays on a doubly occupied site, it dies
with probability u, < 1. Figure 7 shows the density of active
nodes, pr = (n; + ny)/N, as a function of the infection rate
for 2SCP with ps = 0.2 running on RRNs described in the
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FIG. 9. Effects of time series resolution for VGs obtained for
critical CP dynamics on two-dimensional lattices (A, = 1.6487). The
system size is L = 100 and the time series corresponds to a time in-
terval #.ries = 10° with points equally spaced with intervals 8t = 0.1
or §t = 1. (a) Degree distributions and (b) nearest-neighbor degree
correlations are shown.

main text. The discontinuity as A changes is very sharp and
observed in the fourth significant digit. Also, a continuous
transition curves for s = 0.8 is presented in Fig. 7.

The CP dynamics presents absorbing states where indi-
viduals are susceptible. To evaluate long time series in the
subcritical and critical regions, we used a quasistationary
method where every time the system falls into an absorbing

configuration (all nodes become inactive in CP) the last active
configuration is adopted to restart the dynamics [67]. In the
2SCP dynamics, we return to the previously visited configu-
ration whether any of the species is made extinct [49]. In both
models, we considered a relaxation and averaging times of at
least 10°.

APPENDIX B: FINITE-SIZE AND TIME ANALYSIS

We investigated the effects of finite sizes of both time
series and system length as well as the temporal resolutions
considering the critical point of the CP dynamics on two-
dimensional lattices.

Figures 8(a) and 8(b) present the finite lattice size analysis
for critical CP considering a fixed number of points and reso-
lution of the time series. The VG degree distributions present
heavier tails, approaching a power law, as the size increases.
The degree correlations present a crossover from assortative
to a neutral behavior for smaller sizes; the latter turns into
a less assortative regime (lower « in K, ~ k%) while the
disassortative regime observed in fBM series, Fig. 2(c), is
not observed for the range of size investigated. The crossover
indicates that the disassortative behavior will emerge for even
larger sizes. Figures 8(c) and 8(d) present the finite-time anal-
ysis for a fixed size L = 1000. Again, we can observe that
the characteristics of VG of the critical series will emerge
asymptotically.

Strictly critical time series are scale-invariant in all scales.
So, the lower cutoff implicit of series construction eliminates
rapid fluctuations (short wavelength), even in exact mathemat-
ical objects such as fBM time series. The role of temporal
resolution is presented in Fig. 9, in which the same time series
is analyzed with resolutions differing from each other by one
order of magnitude for the same total time of the series. The
effect of increasing time resolution is equivalent to increasing
the size of the time series; see Figs. 9 and 8(c) and 8(d).
A consequence is that one can fix the series resolution and
analyze only the finite-time scaling. Since the natural time unit
is the healing time in the present model, we chose §t = 1.
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