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We consider a class of spreading processes on networks, which generalize commonly used epidemic models
such as the SIR model or the SIS model with a bounded number of reinfections. We analyze the related problem
of inference of the dynamics based on its partial observations. We analyze these inference problems on random
networks via a message-passing inference algorithm derived from the belief propagation (BP) equations. We
investigate whether said algorithm solves the problems in a Bayes-optimal way, i.e., no other algorithm can
reach a better performance. For this, we leverage the so-called Nishimori conditions that must be satisfied by
a Bayes-optimal algorithm. We also probe for phase transitions by considering the convergence time and by
initializing the algorithm in both a random and an informed way and comparing the resulting fixed points.
We present the corresponding phase diagrams. We find large regions of parameters where even for moderate
system sizes the BP algorithm converges and satisfies closely the Nishimori conditions, and the problem is
thus conjectured to be solved optimally in those regions. In other limited areas of the space of parameters, the
Nishimori conditions are no longer satisfied and the BP algorithm struggles to converge. No sign of a phase
transition is detected, however, and we attribute this failure of optimality to finite-size effects. The article is
accompanied by a Python implementation of the algorithm that is easy to use or adapt.
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I. INTRODUCTION

Spreading models on graphs are ubiquitous in many sci-
entific domains. Examples range from modeling epidemic
spreading processes [1], diffusion or relaxing out of equi-
librium dynamics in physical systems [2], social dynamics
processes, and spreading processes in technological systems
[3].

In inference on spreading models, we typically want to
recover some missing information, having a limited amount
of observations on the system. Examples are the identifica-
tion of the sources of a spreading process (the well-known
patient-zero problem) [4,5], epidemic mitigation efforts [6–8],
or the anonymization of Bitcoin transactions [9]. Inference
problems on spreading models have a natural representa-
tion in a Bayesian framework. In the Bayesian approach,
the spreading model is the prior, the partial observations on
the system induce the likelihood, and the inference problem
reduces to the computation of marginals of the posterior dis-
tribution. We will give a more precise formulation of the
Bayesian approach to the problems and the assumptions in
Sec. II.

A large volume of literature in different domains under-
takes inference problems on spreading processes. Many are
dedicated to the patient-zero problem, where the goal is to
infer the nodes (patients) that start the spreading process. This
problem was introduced in two different application areas
[10,11]. In Ref. [12] the belief propagation (BP) equations to
solve these inference problems were derived. Nevertheless, re-
garding their range of applicability and generality, we believe
these results are not well shared among communities beyond
the statistical physics ones.

This is, in particular, striking for two reasons. First, the BP-
based inference algorithm obtained better results than com-
petitors across various cases, and graph structures [6,13–15].
Second, on sparse random graphs the BP inference algorithms
designed for other problems were argued to obtain an asymp-
totically exact estimation of the marginals of the posterior
and thus the Bayes-optimal inference; see Refs. [16–18] for
examples. One can thus expect that also the algorithm of [13]
is Bayes-optimal on sparse random graphs and that there does
not exist an algorithm that finds, on average, a more accurate
solution.

In this paper, we investigate whether the BP for inference
in spreading models [13] provides Bayes-optimal inference
on large sparse random graphs. In particular, we rederive
the algorithm, illustrating that it indeed is an instance of a
standard BP algorithm applied in a setting where it is expected
to be asymptotically optimal. We then investigate in detail its
convergence from both random and informed initializations
seeking a possible algorithmically hard phase, which we do
not find. We study the phase diagram of inference problems,
identifying regions of parameters where the optimal estima-
tion error is large and others where it is rather small. We also
evaluate the so-called Nishimori conditions [19,20] that must
be satisfied for the Bayes-optimal inference. To facilitate the
broad usage of these types of algorithms, we also share a basic
Python code [21] to solve several inference problems that can
be easily modified to deal with different spreading models.

This paper is structured as follows: in Sec. II we introduce
the definition and the assumptions on the spreading and ob-
servations models; then the Bayesian approach to inference
problems is presented. Furthermore, we define the observables
and their optimal estimators to measure the performances of
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the algorithm, the concept of Bayes-optimal inference, and
the Nishimori conditions. In Sec. III the BP equations are
derived and in Sec. IV we show the results of the algorithm
on some specific inference problems and the corresponding
phase diagrams.

Finally, in Sec. V we focus on some small regions of
parameters for which the BP algorithm does not seem Bayes-
optimal, in the sense that it does not converge and the
Nishimori conditions are no longer respected. We conjecture
that this behavior is due to finite-size effects.

II. BAYESIAN INFERENCE FOR LOCAL SPREADING
MODELS ON NETWORKS

A. Local spreading models on networks

We consider a network or equivalently a graph G(V, E )
with N = |V | nodes. Each node i carries a state variable xt

i that
may change at every time step t = 0, 1, 2, . . . , T . The variable
xt

i can take values from an ordered set of p + 1 elements.
We consider a class of models where at most p changes are
possible within the considered time range and each change
must be into the consecutive state, according to the ordering
of the set.

For such a class of models (examples below) we repre-
sent the time trajectory of a node i by a set of times �ti =
{t1

i , . . . , t p
i } defined as the last time steps in which the node

is in a certain state (i.e., it will be in a different state the
next time step). The entire evolution of the system �x, of
variables {xt

i }t=0,...,T −1
i=1,...,N , can thus be mapped to the variables

�t = {�ti}i=1,...,N .
In this work, we consider all stochastic spreading processes

for which the probability of the evolution can be written in the
form

P(�t|λ) = 1

Zprior

N∏
i=1

�i(�ti, {�t j} j∈∂i |λ), (1)

where Zprior is the normalization, λ is a set of parameters and
∂i is the set of neighbors of the node i in the graph G(V, E ).
The function �i can be an arbitrary nonnegative function. In
this work, we assume the spreading model (1) that governs the
process is known, and it depends on a set of parameters λ that
is assumed known.

Example 1: SIR. A canonical model for epidemic spreading
on a network is the SIR model, where each individual node
can be in one of the 3 states: susceptible (S), infectious (I),
and recovered (R). The spreading process is stochastic and,
more specifically, a Markov Chain: at time step t , each in-
fectious node i may infect any one of its susceptible contacts
{ j ∈ ∂i : xt

j = S} with probability λi j (t ) ∈ [0, 1]. We call ti the

time of infection of node i, i.e., xti
i = S while xti+1

i = I . Then,
for each time t > ti, node i can recover (i.e., change to the state
R, earliest we can have xti+2

i = R) with probability μi ∈ [0, 1],
and again we define the time of recovery ri as the last time t in
which xt

i = I . Any given node can only undergo the transitions
S −→ I −→ R. We can easily convince ourselves that this
epidemic model can be described by the model (1), by taking
�ti = {ti, ri}, and as λ the set of all parameters λi j (t ) and μi. We
also note that the SI model where there is no recovered state

is easily obtained as a special case of the SIR with μi = 0 for
every node i.

Example 2: deterministic-SIR. More complicated models
can be considered, for instance, non-Markovian models. As
an example, in this work, we consider a slight variant of the
SIR model, which we call deterministic-SIR (dSIR) or SIR
with deterministic recovery. The model is no longer a Markov
chain and is characterized by a single stochastic transition,
i.e., the one between the S and the I states, which stays the
same as the SIR model. The second transition, between the
I and the R states, is modeled differently than in the standard
SIR model. After being infected, the node i remains infectious
for a fixed time �i, and then becomes recovered: in this
case the infectivity of individual i switches to zero after �i

time steps, and thus there is no stochasticity in the recovery
process. In the following, we will consider the case in which
�i = � ∀ i. In general, we can consider arbitrarily complex
cases in which the infectivity λi j (t, t − ti ) (i.e., the probability
of node i infecting node j at time t , if j is susceptible and i is
infectious) changes both in time and with the time-delay from
the time of infection ti.

Example 3: SIS model with up to � p
2 � − 1 reinfections.

The SIS model is another very commonly considered model
for epidemic spreading, where the infected nodes return to a
susceptible state after some time. The SIS model also falls
under the framework considered in Eq. (1) if we restrict the
number of possible reinfections. In particular, if we assume
that only � p

2 � − 1 reinfections are possible, then we can again
formulate the spreading in terms of the p-dimensional time
trajectories �ti and the probability over them given by Eq. (1).
Such a model is suitable for infections where immunity is
temporary or nonexistent, assuming that only a negligible
fraction of the population gets reinfected more than � p

2 � − 1
times. For example, for COVID-19 this seems a reasonable
assumption for say p ≈ 20.

B. The Bayesian inference framework

The high-level idea of Bayesian inference for spreading
processes is that only some partial observations about the
spreading are available on a given network, and the aim is to
recover as much information about the spreading as possible.

We now define what kind of observations we consider. We
assume site-dependent, factorized observations on the system
O = {Oi}i=1,...,N , that are also independent of the parameters
λ and the other transition times �t \�ti when conditioned on the
transition times of the node �ti. Then the likelihood of a set
of observations can be written as P(O|�t,λ) = ∏N

i=1 P(Oi|�ti),
with P(Oi|�ti ) a known probabilistic law. In this notation,
Oi includes all the partial information we get from the ob-
servations on the node i, and the case in which the node
is not observed corresponds to Oi = ∅, for which trivially
P(Oi = ∅|�ti ) = 1 ∀ �ti. Instead, if for instance, we observe
that a node i has been infected at time Tobs, then we have
P(Oi|�ti ) = I[ti = Tobs], where I[·] is the identity function that
is equal to one when the condition in the argument is satisfied
and zero otherwise.

In a Bayesian setting, considering P(�t|λ) as the prior and
P(O|�t,λ) as the likelihood, we can then recover the configu-
ration through the posterior probability distribution that from
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the Bayes rule reads

P(�t|O,λ) = 1

P(O|λ)
P(�t|λ)P(O|�t,λ) (2)

= 1

Z (O)

N∏
i=1

�i
(�ti, {�t j} j∈∂i |λ

) N∏
i=1

P(Oi|�ti ) (3)

= 1

Z (O)

N∏
i=1

�̃i
(�ti, {�t j} j∈∂i ,Oi|λ

)
, (4)

where we defined the normalization constant Z (O) ≡
ZpriorP(O|λ) = Zprior

∑
�t
∏N

i=1 �̃i(�ti, {�t j} j∈∂i ,Oi|λ) and
�̃i(�ti, {�t j} j∈∂i ,Oi|λ) ≡ �i(�ti, {�t j} j∈∂i |λ)P(Oi|�ti ).

Given the observations, there are different properties of
the spreading that we may want to infer. For instance, one
aim is to identify the sources of the infection (the patient(s)
zero problem). This reduces to estimating the marginals over
the individuals (variables) to be infectious at time step zero.
Another possible goal is to assess the epidemic risk of being
infectious at time t , for this, we need to compute the prob-
ability for each variable to be infectious at time t . A broad
range of other possible goals reduces to computing marginals
of the posterior, or averages of quantities over the posterior
probability distribution.

The number of configurations of the systems grows ex-
ponentially with the system size, making the exhaustive
computation of marginals and averages impossible for a size
larger than a few dozen of nodes. In this work, we aim to
show how the BP equations are used to estimate efficiently
the marginals of this posterior probability distribution in a
range of problems where the network of interactions among
the variables is random and sparse.

1. The optimal overlap

Let us define the overlap O(x, y) between two vectors x
and y, of discrete entries and length N , as the fraction of
agreeing elements between the two:

O(x, y) = 1

N

N∑
i=1

δxi,yi . (5)

In particular, we are interested in the quantity O(x̂t , x∗,t ),
where x∗,t is the ground-truth of the state of the system at time
t , and x̂t is a generic estimator of it. In general, we do not know
the ground truth; assuming that it is distributed accordingly
to the posterior, the best thing we can do (in a Bayesian
framework) is to estimate the so-called mean overlap:

MO(x̂t ) = 1

N

∑
xt

P(xt |O)
N∑

i=1

δxt
i ,x̂

t
i
, (6)

where P(xt |O) can be computed from P(�t|Ox). Maximizing
this quantity over the estimator x̂ leads to the maximum mean
overlap estimator

x̂t,MMO
i = arg max

xt
i

Pi
(
xt

i

∣∣O)
, (7)

where Pi(xt
i |O) = ∑

xt \xt
i
P(xt |O) is the marginal probability

for the node i to be in a given state at time t . In the following,

we will refer to the performances of this estimator simply as
Ot ≡ O(x̂t,MMO, x∗,t ) and MOt ≡ MO(x̂t,MMO), both implic-
itly depending on the marginal probability distributions.

Starting from these definitions of overlap and mean over-
lap, we now define the performance parameters which we are
going to use in our numerical studies. The idea is to rescale (5)
and (6) by comparing the performance of the MMO estimator
to the one obtained by running BP without observations, i.e.,
on the prior, which in the following we will call random
estimator and can be written as

x̂RND,t
i = arg max

xt
i

Pi
(
xt

i

)
, (8)

where Pi(xt
i ) = ∑

xt \xt
i
P(xt ) is the marginal of the prior proba-

bility. We write the resulting estimate of the state of the system
at time t as x̂RND,t and we then define the rescaled overlap as

Õt = Ot − O(x̂RND,t , x∗,t )

1 − O(x̂RND,t , x∗,t )
, (9)

and the rescaled mean overlap as

M̃Ot = MOt − MO(x̂RND,t )

1 − MO(x̂RND,t )
. (10)

Notice how these performance parameters are defined in such
a way that they are negative or zero if and only if BP performs
worse or equal to the random estimator, respectively, and are
in (0,1] in any other case, with the value one indicating a
perfect resolution of the problem.

2. The optimal mean-squared error

Another property we want to study is how well our algo-
rithm can estimate the entire trajectory of each node. We will
focus on models that feature a single transition time, such as
the SI and dSIR models. However, one can extend our analysis
to cover models with multiple transition times, such as the SIR
and SIS models, by generalizing the following definitions. We
consider the squared error between the ground-truth vector t∗
and an estimator t̂, defining

SE(t̂, t∗) = 1

N

N∑
i=1

(t̂i − t∗
i )2. (11)

As before, since we usually do not know the ground truth,
we can assume that t∗ is distributed according to the poste-
rior probability distribution and then define the mean-squared
error (averaged on the posterior) as

MSE(t̂) = 1

N

∑
t

P(t|O)
N∑

i=1

(t̂i − ti )
2. (12)

In this case, minimizing Eq. (12) with respect to the estimator,
we obtain the minimum mean-squared error estimator

t̂MMSE
i =

∑
t

P(t|O)ti =
∑

ti

Pi(ti|O)ti, (13)

where Pi(ti|O) = ∑
t\ti

P(t|O) is the marginal probability for
the node i to have a certain time of transition ti. In the follow-
ing, we will refer to the performances of this estimator simply
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as SE = SE(t̂MMSE, t∗) and MSE = MSE(t̂MMSE), both im-
plicitly depending on the marginal probability distributions
Pi(ti|O).

We can define the random estimator for the times of tran-
sition, as we did for the overlap where we averaged over the
prior probability distribution, as

t̂RND
i =

∑
ti

Pi(ti )ti, (14)

where Pi(ti ) = ∑
t\ti

P(t) is the marginal of the prior probabil-
ity. Then, our performance parameters will be, respectively,

RSE = SE(t̂RND, t∗) − SE

SE(t̂RND, t∗)
(15)

and

RMSE = MSE(t̂RND) − MSE

MSE(t̂RND)
. (16)

Notice how, as for the rescaled overlaps, these performance
parameters are defined in such a way that they are negative or
zero if and only if BP performs worse or equal to the random
estimator, respectively, and are in (0,1] in any other case, with
the value one indicating a perfect resolution of the problem.

C. Nishimori conditions

In the Bayes-optimal setting, i.e., when the prior probabil-
ity distribution and the probability function used to generate
the observations are known, it is possible to derive consistency
conditions on expectation over the posterior that are called
the Nishimori conditions in statistical physics of disordered
systems [19,20]. In words, the Nishimori conditions state that,
under averages over the posterior, we cannot distinguish the
ground truth we aim to infer and a random sample from the
posterior. These conditions imply certain properties of the
optimal estimators that we make explicit below. As a con-
sequence, when we consider an algorithm that approximates
the optimal estimators, the Nishimori conditions can serve as
a necessary condition for the approximation to be close to
the true optimal estimators. This is how we will use these
conditions in the present work.

To state the Nishimori conditions, let us consider hav-
ing a ground-truth configuration x∗ generated from the prior
distribution Pg.t.(x∗) and a measurement process leading to
observations O, generated through the likelihood function
Pg.t.(O|x∗). Let x denote a sample from the posterior P(x|O).
Then, given an observable f (x), we can compute the two
expectations:

Ex∗ [ f (x∗)] =
∑

x∗
f (x∗)Pg.t.(x∗)

=
∑
x∗,O

f (x∗)Pg.t.(x∗)Pg.t.(O|x∗), (17a)

EOEx|O[ f (x)] =
∑
x,O

f (x)P(O)P(x|O)

=
∑
x,O

f (x)P(x)P(O|x), (17b)

where in the first equation we used the fact that∑
O Pg.t.(O|x∗) = 1 and in the second we applied Bayes the-

orem. Now we can notice that x and x∗ are two dummy
variables, such that when P(x) = Pg.t.(x) and P(O|x) =
Pg.t.(O|x) the two expressions (17a) and (17b) coincide, and
we say that the Nishimori conditions are satisfied. Therefore,
checking that E[ f (x∗)] = E[ f (x)] can give us solid evidence
that we are in the Bayes-optimal case, and thus that the so-
lution the algorithm finds is the best possible in a Bayesian
framework.

For the overlaps defined above, the Nishimori conditions
lead to checking that the two following quantities coincide:

E[Ot ] = 1

N

N∑
i=1

E
[
I
[
arg max

xt
i

Pi
(
xt

i

∣∣O) = x∗,t
i

]]
, (18a)

E[MOt ] = 1

N

N∑
i=1

E

⎡⎣∑
x̃t

i

Pi
(̃
xt

i |O
)
I
[
arg max

xt
i

Pi
(
xt

i

∣∣O) = x̃t
i

]⎤⎦
= 1

N

N∑
i=1

E
[

max
xt

i

Pi
(
xt

i

∣∣O)]
. (18b)

Analogously, for the squared errors:

E[SE] = 1

N

N∑
i=1

E

⎡⎢⎣
⎛⎝∑

ti

Pi(ti|O)ti − t∗
i

⎞⎠2
⎤⎥⎦, (19a)

E[MSE] = 1

N

N∑
i=1

E

⎡⎢⎣∑
t ′
i

Pi(t
′
i |O)

⎛⎝∑
ti

Pi(ti|O)ti − t ′
i

⎞⎠2
⎤⎥⎦.

(19b)

The above equalities tell us that, in the Bayes-optimal case,
on average, the mean of the observable computed from the
posterior must be equal to the actual observable calculated on
the ground truth. In the following, we will show some cases
where the BP algorithm, described in Sec. III, respects them,
and we are confident that the solutions found are the best
possible on average. Then in Sec. V, we will show other cases
where the BP equations struggle to converge, the Nishimori
conditions are no longer satisfied, and other algorithms should
be used if one aims to reach Bayes optimality.

III. INFERENCE WITH BELIEF PROPAGATION

The BP equations allow computing marginals exactly when
the factor graph associated with a probability distribution is
acyclic [22]. In this paper, we consider large random graphs
that are locally treelike, i.e., the typical length of loops grows
as log N , with N the number of nodes. This is the case of
Erdős–Rényi or random regular graphs (RRG) with an aver-
age degree of order one [23].

In random locally treelike factor graphs, the BP algorithm
is expected to estimate the marginals asymptotically exactly,
i.e., with an error vanishing in the limit of N → ∞, as long
as the system is in the so-called replica symmetric (RS)
phase. As long as we are dealing with inference problems
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(c)(a) (b)

FIG. 1. Factor graph representation of the posterior (2). In panel (a) we show a possible path in a contact network, and in panel (b) its
respective naive factor graph representation. In panel (c) we show the representation obtained by grouping the variables as explained in the
main text.

in a Bayes-optimal setting, such as we are considering here,
the equilibrium properties are in the replica symmetric phase.
This follows from the Nishimori conditions. We thus expect
the BP equations to give the correct marginals as long as their
fixed point satisfies the Nishimori conditions and in the ab-
sence of a first-order phase transition that may prevent the BP
algorithm from reaching the corresponding fixed point [20].
The presence of a first-order phase transition can be verified
by running the BP algorithm both from random and from
informed initializations and checking whether they converge
to the same fixed point.

In our setting, however, the naive factor graph represen-
tation of the posterior probability distribution (2), where the
nodes are the time trajectories of each variable and the fac-
tors are the set of {�̃i}, presents small loops even when the
interaction graph among variables is acyclic. The reason is

that the factor �̃i couples i together with all its neighbors
k ∈ ∂i, see Fig. 1(b). Instead, we use a different factor graph
representation, introducing additional variables. We replicate
the variables �ti on each edge of the interaction graph, calling
the replicas obtained �ti, j with j ∈ ∂i, and we add local con-
straints imposing their equality. Calling �t∂ = {�ti, j} j∈∂i

i=1,...,N , the
new representation of the posterior probability distribution is

P(�t,�t∂|O,λ) = 1

Z (O)

N∏
i=1

�̃i
(�ti, {�t j,i, �ti, j} j∈∂i |λ

)
×

∏
j∈∂i

I[�ti, j = �ti], (20)

and the respective factor graph is represented in Fig. 1(c). The
BP equations associated with this posterior distribution are

mi→ j (�ti, j, �t j,i ) = 1

Zi→ j

∑
�ti,

{�ti,k ,�tk,i}k∈∂i\ j

�̃i
(�ti, {�tk,i, �ti,k}k∈∂i |λ

)
I[�ti, j = �ti]

∏
k∈∂i\ j

I[�ti,k = �ti]mk→i(�ti,k, �tk,i ), (21)

where the message mi→ j goes from the factor node �̃i to �̃ j

and

Zi→ j =
∑
�ti,

{�ti,k ,�tk,i}k∈∂i

�̃i
(�ti, {�tk,i, �ti,k}k∈∂i |λ

)
I[�ti, j = �ti]

×
∏

k∈∂i\ j

I[�ti,k = �ti]mk→i(�ti,k, �tk,i )

is the normalization constant. By imposing the indicator func-
tions and renaming the dummy variables we obtain the final
form,

mi→ j (�ti, �t j ) = 1

Zi→ j

∑
{�tk}k∈∂i\ j

�̃i
(�ti, {�tk}k∈∂i |λ

) ∏
k∈∂i\ j

mk→i(�tk, �ti ).

(22)

The messages are usually initialized randomly or uniformly
and then updated according to Eq. (22) until convergence if
they converge, or otherwise when they meet some stopping
criterion. In this paper, we will also consider an informed
initialization corresponding to the ground truth (that is of

course not available in practice) to check for first-order phase
transitions appearing in the problem. The marginals of each
variable are then computed [22] as

bi(�ti ) = 1

Zi

∑
{�tk}k∈∂i

�̃i
(�ti, {�tk}k∈∂i |λ

) ∏
k∈∂i

mk→i(�tk, �ti ), (23)

and from the fixed point one can also compute the log-
partition function as

log Z =
∑

i

log Zi −
∑
(i, j)

log Z(i, j), (24)

where

Zi =
∑

�ti

∑
{�tk}k∈∂i

�̃i
(�ti, {�tk}k∈∂i |λ

) ∏
k∈∂i

mk→i(�tk, �ti ), (25a)

Z(i, j) =
∑

�ti

∑
�t j

mi→ j (�ti, �t j )mj→i(�t j, �ti ). (25b)

The computational complexity of the brute-force calculation
of the marginals is O(T N p), and thus scales exponentially with
the system size and the number of possible transitions. Using
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the BP equations, one update of all the messages reduces
to O(E T (dmax−1)p) where E is the number of edges in the
interaction graph considered, and dmax is the maximum degree
of the nodes in the interaction graph. Now the computation
is no longer exponential in the number of variables, but still
exponential in the degree of the graph. Depending on the
particular spreading model, more efficient and smaller rep-
resentations of the time trajectories can be adopted to avoid
the exponential dependence on the degree. In Appendix A the
BP equations are explicitly written for the deterministic-SIR
model, where this simplification holds.

IV. BAYES-OPTIMAL PHASE DIAGRAMS

This section presents the results of applying the BP algo-
rithm, described in Sec. III, to the dSIR model on epidemic
inference problems. We use the definition of Nishimori iden-
tities, as provided in Sec. II, to investigate Bayes-optimality
for various observables. The setting of the inference problems
is:

Network. For simplicity, in the following, we will consider
a single ensemble of graphs: the random regular graphs of
degree d = 3, not varying in time (In Appendix B we re-
port some additional results suggesting that considering more
structured graphs does not influence considerably the perfor-
mance of the algorithm). Furthermore, we fix a homogeneous
probability of infection λ for each contact, equal for each edge
of the interaction graph, and constant in time.

Sources. The sources are chosen uniformly at random,
i.e., each individual could be infectious at time t = 0 with
probability δ. Thus, the δ parameter controls our simulations’
average fraction of sources.

Observations. We will focus on two different types of
observations, both typically used in the epidemic inference
problems setting:

Sensors. A fraction ρ of individuals, called sensors, are
chosen uniformly at random. These nodes reveal their
entire trajectory in time, which for the dSIR model
means just their time of infection ti. Such observations
were considered for instance in Refs. [11,24].

Snapshot. The state of all variables at a specific time
Tobs is known. We get information on whether the node
is still susceptible (S) or not (either I or R). Such
observations were considered for instance in

Refs. [12,25].
We will consider two observables, the overlap at time 0,

Ot=0, and the squared error, SE. For the first one, in the
numerical results, we compute the two following quantities

Ot=0 = 1

Nsim

Nsim∑
s=1

1

N

N∑
i=1

I
[
arg max

x
bt=0

i,s (x) = x∗,t=0
i,s

]
,

(26a)

MOt=0 = 1

Nsim

Nsim∑
s=1

1

N

N∑
i=1

max
x

bt=0
i,s (x), (26b)

where we wrote the sample mean explicitly introducing the
simulation index s and calling Nsim the total number of simu-
lations. The bt

i (x) is the BP estimation of Pi(xt
i |O) that can be

easily computed from the bi(�ti ). In the case of the squared
error, restricting ourselves to the dSIR model, we need to

consider just a single transition time ti for each node, and the
marginals bi are just one-dimensional vectors.

Analogous to the previous case, we compute

SE = 1

Nsim

Nsim∑
s=1

1

N

N∑
i=1

(∑
t

bi,s(t )t − t∗
i,s

)2

, (27a)

MSE = 1

Nsim

Nsim∑
s=1

1

N

N∑
i=1

∑
t ′

bi,s(t
′)

(∑
t

bi,s(t )t − t ′
)2

.

(27b)

Then, suppose we are in the Bayes-optimal case. In that case,
we must observe that (for Nsim sufficiently large) these two
couples of average values are equal up to their statistical error,
(Ot=0 = MOt=0) and (SE = MSE). In practice, in the follow-
ing, we show the results for the set of rescaled observables
(Õt=0, M̃Ot=0, RSE, RMSE) defined in Sec. II.

Two different initializations of the BP messages are used:
rnd. We let the BP algorithm converge at a fixed point in

the case of no observations. Then we use the resulting values
of the messages as the initial point,

inf. We let the BP algorithm converge at a fixed point where
the times of infection of all individuals are observed. Then we
use the resulting values of the messages as the initial point.

If the algorithm converges to the same fixed point for both
of the two initializations, then it indicates an absence of a
first-order phase transition and asymptotic optimality of the
obtained results, as in, e.g., Ref. [17]. Furthermore, checking
the validity of the Nishimori conditions that hold on average in
the large size limit provides another evidence that the BP algo-
rithm reached the Bayes-optimal marginals. In the following,
we will analyze phase diagrams of various inference settings
and for each point, we will check the two initializations and
the validity of the Nishimori conditions.

In Fig. 2 we illustrate such a check that is later done for
each point in the phase diagrams:

(i) In the left panels, we probe the Nishimori conditions
through the rescaled observables defined in Sec. II, namely
computing RSE − RMSE and Õt − M̃Ot on the single instances
and then averaging the values found. By doing this for dif-
ferent sizes N , we see how, as expected, increasing the size
decreases the variance of the differences and concentrates the
single-instance values to zero.

(ii) In the right panels, we track the BP algorithm through
its iterations for some random instances of the problem, ini-
tializing first the messages randomly and then repeating the
experiment initializing the messages informatively (see details
above). We can see how in each instance showed the two
initializations start converging exponentially to the same value
after just a dozen of iterations until the difference becomes of
the order of the tolerance imposed to check the convergence
of BP.

A. Phase diagrams for observations via sensors

1. Finding the sources

In this section, the performance in finding the sources of
infection on random regular graphs is analysed. The results
of rescaled overlap Õt=0 computed with the BP algorithm
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FIG. 2. Nishimori conditions and initializations difference. The setting is the following: we consider SI epidemics with sensors on an
ensemble of 3-RRGs with λ = 0.8 and δ = 0.1. In the left panels, we furthermore vary N in [103, 105] and ρ in [0,1], plotting the Nishimori
differences RSE − RMSE in the upper panel and Õt=0 − M̃Ot=0 in the lower panel, both computed with a rnd initialization. The averages are
done over 50 instances. Instead, in the right panels we fix N = 104 and ρ = 0.2 and we track BP through its iterations until convergence for six
randomly generated instances of the problem, for each starting both with rnd and inf initializations. Using as reference the observables defined
in Eqs. (15) and (9), we plot the difference between the two initializations, and we show that they lead, for each instance, to the same result.
The scale of the y-axis of these plots is set as symlog, meaning it is logarithmic outside the interval [−10−3, 10−3] around zero, in which it is
linear. The damping parameter η was fixed to 0.4 for all iterations (see Appendix A 2 a for details).

are shown in Fig. 3. The plots show the phase diagram of
the problem for different systems settings. We consider both
an SI model and a dSIR model with delay � = 1, and, as
stopping criteria of the simulation, when all the individuals are
infected and when there are no more infectious individuals,
respectively. Fixing λ = 0.4, 0.6, 0.8, we vary δ and ρ inside
an interesting interval.

In general, we can see that the system presents a transition
between a phase (at low δ and high ρ) where the inference is
successful, and we can find (most of) the sources, to another
one (at high δ and low ρ) where the inference is unfeasible
since we reach the performance of the random estimator.
Varying λ and � we observe several interesting phenomena:

(i) Decreasing the probability of transmission λ, starting
from λ = 0.8, we see that the zone we infer as the random
estimator remains more or less the same. At the same time,
the zone of perfect inference shirks. In particular, it moves
more and more to the right, and we need more and more
observations to achieve the same performance. Furthermore,
it is interesting to notice that this effect is visible, especially
at low values of the parameter δ, where the level lines (in
which the rescaled overlap has a fixed value) become more
and more equally distributed, which in other terms tells us
that the transition becomes less and less sharp. Instead, this
effect disappears when the fraction of sources increases and
the performance parameter becomes less dependent on the
value of λ.

(ii) The inference on the sources depends just slightly on
the parameter �. We notice that the two cases (on the lower
and upper panels of Fig. 3, respectively) are very similar,
especially for high values of the parameter δ.

(iii) There is a small region of parameters, at small values
of ρ and δ, where the BP equations struggle to converge, the
Nishimori identities are no longer respected, and we observe a
dependence of the results on the initialization of the BP mes-
sages. In this region, we can claim that the BP equations do
not solve the problems in a Bayes-optimal way. In Sec. V,
a detailed analysis of this and other regions where the BP
algorithm poorly perform is shown.

2. Inference on the times of infection

Another property we are interested in characterizing is the
ability to infer the single times of infection for each individual
in the network. Having defined the rescaled squared error in
Eq. (16), in Fig. 4 we show its behavior for the same set of
parameters of previous results. As we can see from the figure,
the behavior as a function of λ is qualitatively very similar
to the one shown in Fig. 3 for the overlap, even if the two
quantities describe two very different aspects of inference. In
this case, the MSE is influenced much less than the overlap
at time 0 by the same change in the infectivity parameter λ.
Furthermore, in contrast to the previous plot, now we see that
the parameter � plays a major role in determining the value
of the performance parameter: comparing the upper and lower
panels of Fig. 4, we see that, again especially for low values
of δ, is much easier (in terms of needed observations) to have
a high value of the performance parameter in the case of the
SI model compared to the dSIR model with � = 1.

The great variability of the RSE between the case of dSIR
with � = 1 and � = ∞ (the SI model) shown in Fig. 4 leads
us to study in detail how the performances change, varying
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FIG. 3. Phase diagrams for source-finding via sensors. We show the rescaled overlap defined in Eq. (9) for 3-RRGs with N = 104,
computed at time t = 0. We juxtapose the SI model to the dSIR model with � = 1, and for both, we compare three different values of λ,
and we show how the performance parameter varies with the fraction of sensors ρ ∈ [0, 1] and the fraction of sources δ ∈ [2.5×10−3, 0.4].
The plots show the results for the case of random initialization since they are practically indistinguishable from the informed ones. For
all the points outside the grey rectangles, the Nishimori conditions were verified, and thus also M̃Ot=0 has the same behavior. Each
contour plot was obtained by fitting the value of the rescaled overlap over a 21×24 grid of data, averaging 25 simulations for each
point on the grid. In the regions at small values of δ and ρ enclosed in the grey rectangles, we observe that the BP equations no longer
converge, the Nishimori identities do not hold, and the results are no longer Bayes optimal. More insights about these regions are covered
in Sec. V.

the recovery time �. The results are shown in Fig. 10 in the
Appendix B.

B. Phase diagrams for observations via a snapshot

In this section, we present the phase diagrams of the
rescaled overlap and squared error for snapshot inference
problems. In this case, the state (susceptible or infected) of
all individuals at a given time of observation (Tobs) is probed.
To link with previous literature using snapshot observations
(see, for instance, Refs. [13,26]), in the following, we consider
tests that are not able to distinguish between infectious (I) and
recovered individuals (R), but just to signal that the time of
infection happened before the time of observation. In practice,
this observation excludes all values of ti � Tobs. Of course,
considering tests capable of distinguishing between the I and
the R states could improve the algorithm’s performance on
both tasks we considered in our work.

Furthermore, a second choice we made for the analysis was
to focus on the case of “backward inference,” neglecting the
study on the ability of our algorithm to infer what happens to
the system after we take the snapshot. In practice, this is done

simply by fixing the final time T (as defined in Appendix A)
to be equal to Tobs.

1. Mean overlap at time zero

Let us start, as before, with the task of inferring the sources
of epidemics, considering again for simplicity an ensemble
of 3-RRGs and comparing performances on the SI model to
the ones on the dSIR model with delay � = 1. Fixing three
different values of λ, we vary the fraction of sources δ and
the time of observation Tobs inside an interesting interval.
The results for the rescaled mean overlap, computed using
the BP algorithm and expressed by Eq. (9), are presented in
Fig. 5. Upon comparison with the results for sensors shown in
Fig. 3, it is evident that, in general, the inference is much more
challenging in the snapshot case. This is because snapshots
provide less information about the dynamics than the sensor
case, which reveals a finite fraction of nodes with precisely
known infection times.

The results in Fig. 5 show that increasing the observa-
tion time Tobs significantly reduces the algorithm’s ability
to retrieve sources. Moreover, it is possible to achieve a
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FIG. 4. Phase diagrams for inferring infection times via sensors. We show the rescaled squared error defined in Eq. (15) for 3-RRGs with
N = 104. We juxtapose the SI model to the dSIR model with � = 1. For both, we compare three different values of λ, showing how the
performance parameter varies with the fraction of sensors ρ ∈ [0, 1] and the fraction of sources δ ∈ [2.5×10−3, 0.4]. As described in Fig. 3,
we show the results of random initialization, and the grey region of each panel corresponds to the violation of the Nishimori condition and the
failure, in that region, of the BP equations to obtain Bayes-optimal results. The plots were obtained by fitting the value of the rescaled SE over
a 21×24 data grid, averaging over 25 simulations for each point on the grid.

better-than-random performance only when the observation
time is sufficiently small and δ is low.

As for the spreading parameter λ and the recovery de-
lay �, the qualitative behavior is similar to that observed
in the sensor case. Specifically, the inference of patient zero
depends only slightly on �, whereas the infectivity param-
eter has a more significant impact. For instance, at λ = 0.4,
even at small values of Tobs and δ, the task is extremely
challenging.

Similar to the case of observation via sensors, we identi-
fied a region in which BP has difficulty converging, and the
Nishimori conditions are not met. This region is marked in
a lighter color. Once again, this occurs for small values of
δ and coincides with the transition between as-random and
better-than-random performance. In this case, the transition
occurs when Tobs approaches the time T at which the epidemic
“stops” (see Sec. V for more information).

2. Mean-squared error on the times of infection

In the following, we analyze the performances to infer the
entire time trajectory of the individuals, measured in terms of
the rescaled mean-squared error RMSE, Eq. (15). The results
are presented in Fig. 6, where we consider both the SI model
and the dSIR model with � = 1.

Interestingly, we achieve much better performance in in-
ferring the time trajectory of the nodes than those obtained
for the source-finding task, with the same values of epidemic
parameters. Specifically, we can always find a region in which
RSE > 0.9 for λ � 0.4.

As one would expect, for the SI model, we see that, for any
arbitrary δ, increasing Tobs implies a decrease in performance.
This is explained by the fact that a snapshot done later in time
brings very little information on the epidemic compared to
snapshots performed earlier in time. The limit case is doing
the snapshot after the epidemic has stopped when all nodes are
infected, and we cannot do better than the random estimator,
resulting in RMSE = 0.

The dSIR model displays a different behavior, as is evident
by looking at the upper panels of Fig. 6. At fixed arbitrary δ

and increasing Tobs, we observe, in the beginning, a decrease
in performance (as in the SI model). But after reaching a
minimum, the RMSE increases. This is because for the dSIR
model, at the end of the epidemic, a fraction of the nodes
are recovered (R), and the rest are still susceptible (S). This
implies that by doing a snapshot after the epidemic is finished,
we still retain the information on who is still susceptible. This
explains why the value of RMSE does not go to zero as Tobs

increases. To explain the nonmonotonicity, we must look at
the definition of the RMSE in Eq. (16), where the MSE is
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FIG. 5. Phase diagrams for source-finding in the snapshot framework. We show the rescaled mean overlap defined in Eq. (10) for 3-
RRGs with N = 104, computed at time t = 0. We juxtapose the SI model to the dSIR model with � = 1 and for both, we compare three
different values of λ and we show how the performance parameter varies with the time of observation Tobs ∈ [1, 12] and the fraction of sources
δ ∈ [2.5×10−3, 0.4]. As for previous phase diagrams, we show just the case of random initialization. For all the points outside the grey
rectangles, the Nishimori conditions were verified, and thus also Õt=0 has the same behavior. Each contour plot was obtained by fitting the
value of the rescaled mean overlap over a 12×20 grid of data, doing 25 simulations for each point on the grid.

rescaled with the MSE(t̂RND), the random estimator. This last
observable gets worse as we increase Tobs because the possible
times of infections increase as well. The result is the observed
nonmonotonicity of the RMSE as a function of the time of
observations Tobs. As an illustration of this phenomenon, in
Fig. 11 in the Appendix B we fix λ = 0.6, and some values of
δ for which this behavior is clearly visible by looking at SE
and SE(t̂RND) for the case � = 1 and � = ∞.

Similar arguments allow us to explain the impact of the
infectivity parameter λ on the performance of BP. We can
notice that decreasing λ increases the number of susceptible
individuals at the end of the simulation. In turn, their times of
infection will be inferred perfectly thanks to the information
obtained from the snapshot.

V. REGIONS WITH FAILURE OF BAYES OPTIMALITY

The previous section presented the performance of the BP
algorithm in two different settings of inference. We showed
large regions of parameters where the BP equations converge
and satisfy the Nishimori conditions. We thus conjecture that
in these regions, the solutions found by the BP equations are
very close to the Bayes-optimal performance.

It should be noted that observing such behavior at relatively
small sizes is rather surprising. The mathematical arguments

about the exactness of BP rely on the fact that loops in the
graph are longer than the correlation length. But since the
length of the loops only grows logarithmically with size, this
condition seems unreasonable to graphs of size as we treat
in our experiments. Yet, we observe that BP converges and
the Nishimori conditions are satisfied. Similar surprisingly
small finite-size effects have been observed in many previous
works using BP. Sometimes already at the size of several
thousand, we see behavior that is very close to the predicted
thermodynamic limit. It is not clear why this is so.

As pointed out in Sec. IV, we observed narrow regions
of parameters (marked in clear color in the phase diagrams)
where the BP equations do not converge, and the Nishimori
conditions are no longer satisfied. For the two observation
scenarios considered, the sensor and snapshot ones, we ob-
serve that the regions where BP fails are always at small
values of δ (the fractions of sources) and during the transition
from regions where inference is impossible, i.e., the optimal
solutions found by BP equals those of the random estimator,
and regions where a close to perfect recovery of the missing
information is achieved. As an example, we will focus on the
case of snapshot observations, even though a similar behavior
can be observed for sensors.

We investigate these regions closely and conclude that
what is observed is not a sign of a critical region (where one
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FIG. 6. Phase diagrams for the inference of infection times in the snapshot framework. We show the rescaled mean-squared error defined
in Eq. (16) for 3-RRGs with N = 104. We juxtapose the SI model to the dSIR model with � = 1 and for both, we compare three different
values of λ and we show how the performance parameter varies with the time of observation Tobs ∈ [1, 12] and the fraction of sources δ ∈
[2.5×10−3, 0.4]. As for previous phase diagrams, we show just the case of random initialization. For all the points outside the grey rectangles,
the Nishimori conditions were verified, and thus also RSE has the same behavior. Each contour plot was obtained by fitting the value of the
rescaled MSE over a 12×20 grid of data, doing 25 simulations for each point on the grid.

would get a diverging length scale) and, thus, must be a finite-
size effect. However, for the sizes we can simulate, this trouble
does not go away. The existence of this region should perhaps
not be surprising; what should be surprising is the region
presented previously, where even for very moderate sizes, the
thermodynamic limit is already effectively reached. We did
not identify anything crisp, but we do hope that pointing to
the existence of a region where BP should be asymptotically
optimal but for the considered rather large sizes it is not will
help to shed some light on the fact that BP is often able to
perform well and converge even when the loops are still very
short.

In Fig. 7, we investigate the inference from a snapshot
at a certain time Tobs, and then we infer the infection times
before Tobs, disregarding the subsequent epidemic evolution.
We consider different values of λ ∈ [0.5, 1] and we rescale
the snapshot time as

Tobs(λ) = Tobs(1)

λ
, (28)

to ensure that we observe (on average) the same “epidemic
time,” i.e., keeping roughly constant the fraction of suscepti-
ble nodes at the time of observation. The left panel of Fig. 7
shows the values of the RMSE varying λ and δ. The central and
right panels, where we investigate the Nishimori conditions

and the number of iterations needed for BP to converge, show
that during the transition regions of the RMSE, the algorithm
struggles to converge, and the Nishimori conditions are no
longer satisfied.

Figure 8 shows a finite-size effect study of the noncon-
vergence region, again in the snapshot case. The values of
the observation time Tobs, the infectivity parameter λ, and
the fraction of sources δ are chosen to observe the transition
where close to perfect inference is possible to regions where
we obtain the same results of a random estimator. First, we
observe that the values of the observable RMSE (first row of
Fig. 8) basically do not change with N , the number of nodes
considered. The curve at N = 104 and N = 105 are almost
indistinguishable, comforting the choice of N = 104 as the
primary size used to characterize the phase space of the infer-
ence problems analysed. The small values of δ chosen allow
us to observe, during the transition on the RMSE values, that
the BP equations stop to converge, the second row of Fig. 8.
Observing the violation of the Nishimori conditions, the third
row of Fig. 8, we can note that the regions where they are
violated shrink very mildly. This fact confirms our hypothesis
that the nonconverge of the BP equations and the violation
of the Nishimori conditions may be due to finite-size effects
problems; nevertheless, the improvement of the Nishimori
condition is very slow with N , making the BP equation not
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FIG. 7. Failure of the Nishimori conditions. Example of inference for snapshot observations in a region of parameters where Bayes
optimality fails. The plots were generated using an ensemble of 3-regular random graphs (3-RRGs) with N = 104 and varying values of λ

and δ. We consider an SI model where the snapshot time is fixed at Tobs = 9/λ. In the left panel, we show the performance of BP through the
rescaled MSE defined in equation (16). The central panel probes the Nishimori conditions by studying how δRSE ≡ RSE − RMSE behaves in the
same range of parameters. The right panel shows the number of iterations for BP to converge. We set the maximum number of iterations to
2×104, so that the bright points indicate instances where BP did not converge. Each point was averaged over ten instances.

Bayes optimal in practical ranges of system sizes. For in-
stance, this is the case of the very-well known patient-zero
problem, where only one source infection is supposed to start
the diffusion process.

We also investigate whether the observed issue cannot be
a sign of proximity to a critical point. In Fig. 9, we con-
sider again the SI model with snapshot observations, fixing
λ = 0.5 and δ = 0.005 and considering values of Tobs around
the problematic region, which in this case is observed to be
around Tobs = 14. In the presence of a critical point, one

should observe what in statistical physics is called “critical
slowing down,” i.e., a power-law increase in convergence time
when approaching the critical point. Since the algorithm does
not converge in our case, we track the two initializations
separately. We study the iteration time for both initializations
to reach approximately the same value. Figure 9 shows the
RMSE values in the intervals from Tobs = 12, where we take
the snapshot early enough to make a good inference, and
Tobs = 17, where conversely we do it late enough to have no
added information with respect to a random estimator. The

FIG. 8. Finite-size scaling. The plots were generated simulating an SI model on 3-regular random graphs (3-RRGs) of varying size, using
snapshots at times Tobs as observations and starting BP with uninformed messages. The fraction of source nodes varies δ = 0.01, 0.02, 0.03.
The first row shows the values of RMSE computed with the BP equations and averaged over 20 instances. The plots in the second row display
the number of iterations to reach convergence, with a maximum of allowed iterations of 2×104. The plots in the third row show the difference
RSE − RMSE, which certifies the violation of the Nishimori conditions when different from zero. We observe that the region of violation of the
Nishimori condition may shrink very slowly with the system size.

044308-12



BAYES-OPTIMAL INFERENCE FOR SPREADING … PHYSICAL REVIEW E 108, 044308 (2023)

FIG. 9. Absence of critical slowing down. The plots were generated using an ensemble of 3-regular random graphs (3-RRGs) with N =
104, λ = 0.5, and δ = 0.005. We consider an SI model where the snapshot time is changed in each panel between Tobs = 12 (top left) and
Tobs = 17 (bottom right). For every panel, we examine three instances of the problem generated randomly, and we monitor the rescaled
mean-squared error (16) during the BP iterations. We compare the results of the same realizations when we initialize the messages, whether
informed or not. The damping parameter in the BP algorithm was fixed to η = 0.4.

time needed for the two initialization to have similar values
does not present a significant change. The same behavior can
be observed by looking directly at the difference between BP
messages, as shown in Fig. 12 in Appendix B.

Finally, after reaching the point where the two initializa-
tions predict almost the same observable value, both oscillate.
The effect is present even with random updates of the BP
equations and several different values of the damping param-
eter; see Appendix A for details about the damping parameter
definition.

VI. CONCLUSIONS

In this paper, we present a detailed analysis of the per-
formance of the belief propagation algorithm for spreading
models defined on random networks. Compared to previous
work on this topic, we have focused here on investigating
whether such an algorithm is Bayes optimal, and on the
possible presence of phase transitions in the relative phase
diagrams. This is done by analyzing the convergence of BP
from both the random and informed initial conditions, looking
for first-order phase transitions. We find no such phase tran-
sitions. However, we analyze consistency conditions known
as Nishimori conditions in the domain of disordered systems,
which allowed us to heuristically investigate Bayes optimality
in our simulations. When these conditions are satisfied, we
conjecture that belief propagation asymptotically achieves the
Bayes-optimal performance. We have provided phase dia-
grams both for the classical task of finding the sources of
an epidemic (given different types of information) and for
characterizing the entire trajectory of the nodes’ state.

Furthermore, we dedicate the last section to describe our
efforts in understanding the algorithm’s behavior in the par-
ticular regime when the failure of the Nishimori conditions
and the lack of convergence tells us we are not Bayes optimal.
Although not reaching a firm conclusion, we feel confident
in ruling out the hypothesis of the presence of some kind
of phase transition, and we attribute this kind of behavior
to finite-size effects leading to spurious correlations in the
graphs that would disappear very slowly (e.g., logarithmi-
cally) with the system size.
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APPENDIX A: BPEPI

1. BP implementation for the dSIR model

The dynamical process of a generic dSIR model can be
described using a single time of infection {ti}N

i=1 for each
variable, where ti ∈ {−1, 0, 1, . . . , T − 1, T } such that:

(i) t = −1 is the (fictitious) time in which the sources get
infected,

(ii) t = 0 is the first “simulation time,” i.e., the first time
in which the rest of the individuals can get the infection from
the sources,

(iii) t = T − 1 is the last simulation time, i.e., the last time
an individual can get the infection from a neighbor,

(iv) t = T is the (fictitious) time in which, conventionally,
all the individuals that have not been infected until (and at)
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time t = T − 1, get infected. Notice that these nodes are still
susceptible at time T , thus this does not affect observables
computed at t = T .

It is not hard to see that the model just defined can be
described with the formalism introduced in Sec. II. We define
the probability of the susceptible node i not to be infected

at time s as pSS (s, {tk}k∈∂i ) = ∏
k∈∂i

[1 − λki(s − tk )I(s > tk )],
and in the following, we will focus on the case in which the
probability to be a source of the epidemic is uniform among
the individuals, such that P(ti = −1) = δ ∀ i. The factor of the
posterior probability entering in the BP equations (22) can be
written as

�̃i
(
ti, {tk}k∈∂i |λ

) =
(

(1 − δ)
ti−1∏
s=0

pSS
(
s, {tk}k∈∂i

)[
1 − pSS

(
ti, {tk}k∈∂i

)]
I[−1 < ti < T ]

+ (1 − δ)
T −1∏
s=0

pSS
(
s, {tk}k∈∂i

)
I[ti = T ] + δI[ti = −1]

)
P(Oi|ti ). (A1)

The first term in the square brackets represents the probability of the node i to be infected at time ti by one or more of its
neighbors, while the second term is the probability to remain susceptible during the whole epidemic process, and the third one
is the probability to be a source of the epidemic. Inserting the above factor in Eq. (22) we observe easily that the sum over the
times of infections of neighbors can be factorized, and we now show that the time complexity of the algorithm is reduced to
O(E ∗ dmaxT 2), thus no more exponential in the maximum degree of the interaction network and only quadratic in the maximum
time T .

In this Appendix, we go into the details of the belief propagation equations, explaining how the code [21] is implemented for
the deterministic-SIR model.

Let us start by considering again the factor contribution (A1) and noticing that we can rewrite the product

ti−1∏
s=0

pSS
(
s, {tk}k∈∂i

)[
1 − pSS

(
ti, {tk}k∈∂i

)]
as ∏

k∈∂i

ti−1∏
s=0

[1 − λki(s − tk )]θ (s−tk ) −
∏
k∈∂i

ti∏
s=0

[1 − λki(s − tk )]θ (s−tk ). (A2)

Then, putting it back into Eq. (22), we get, apart from normalization,

mi→ j (ti, t j ) ∝ (1 − δ)P(Oi|ti )I[−1 < ti < T ]

×
⎡⎣(

ti−1∏
s=0

[1 − λ ji(s − t j )]
θ (s−t j )

) ∏
k∈∂i\ j

T∑
tk=−1

[(
ti−1∏
s=0

[1 − λki(s − tk )]θ (s−tk )

)
mk→i(tk, ti )

]

−
(

ti∏
s=0

[1 − λ ji(s − t j )]
θ (s−t j )

) ∏
k∈∂i\ j

T∑
tk=−1

[(
ti∏

s=0

[1 − λki(s − tk )]θ (s−tk )

)
mk→i(tk, ti )

]⎤⎦
+ (1 − δ)I[ti = T ]P(Oi|ti = T )

(
T −1∏
s=0

[1 − λ ji(s − t j )]
θ (s−t j )

) ∏
k∈∂i\ j

T∑
tk=−1

(
T −1∏
s=0

[1 − λki(s − tk )]θ (s−tk )

)

× mk→i(tk, T ) + δI[ti = −1]P(Oi|ti = −1)
∏

k∈∂i\ j

T∑
tk=−1

mk→i(tk, ti = −1). (A3)

2. Practical implementation

We define the following matrices for each directed edge i, j:


1
ji(t j, ti ) ≡

ti−1∏
s=0

[1 − λ ji(s − t j )]
θ (s−t j ),


0
ji(t j, ti ) ≡

ti∏
s=0

[1 − λ ji(s − t j )]
θ (s−t j ),
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where one can easily see that 
0
i j (ti, t j ) = 
1

i j (ti, t j )[1 − λ ji(ti − t j )]θ (ti−t j ). The messages read

mi→ j (ti, t j ) ∝ (1 − δ)P(Oi|ti )I[−1 < ti < T ] ×
⎛⎝
1

ji(t j, ti )
∏

k∈∂i\ j

T∑
tk=−1


1
ki(tk, ti )mk→i(tk, ti )

− 
0
ji(t j, ti )

∏
k∈∂i\ j

T∑
tk=−1


0
ki(tk, ti )mk→i(tk, ti )

⎞⎠ + (1 − δ)I[ti = T ]P(Oi|ti = T )
1
ji(t j, T )

×
∏

k∈∂i\ j

T∑
tk=−1


1
ki(tk, T )mk→i(tk, T ) + δI[ti = −1]P(Oi|ti = −1)

∏
k∈∂i\ j

T∑
tk=−1

mk→i(tk, ti = −1), (A4)

which can also be rewritten as

mi→ j (ti, t j ) ∝ (1 − δ)I[−1 < ti < T ]P(Oi|ti ) ×
⎛⎝
1

ji(t j, ti )
∏

k∈∂i\ j

γ 1
ki(ti ) − 
0

ji(t j, ti )
∏

k∈∂i\ j

γ 0
ki(ti )

⎞⎠ + (1 − δ)I[ti = T ]

× P(Oi|ti = T )
1
ji(t j, T )

∏
k∈∂i\ j

γ 1
ki(T ) + δI[ti = −1]P(Oi|ti = −1)

∏
k∈∂i\ j

T∑
tk=−1

mk→i(tk, ti = −1), (A5)

where we have defined the quantities:

γ 1
ki(ti ) ≡

T∑
tk=−1


1
k,i(tk, ti )mk→i(tk, ti ),

γ 0
ki(ti ) ≡

T∑
tk=−1


0
k,i(tk, ti )mk→i(tk, ti ).

The marginals for the infection times ti can be obtained, after
fixing as j one neighbor of i, through the following equation:

bi(ti ) ∝
T∑

t j=−1

mi→ j (ti, t j )mj→i(t j, ti ). (A6)

The belief propagation algorithm is implemented in Python
and can be found in Ref. [21]. Additionally, in Ref. [27], there
is the code to reproduce every figure in the paper.

a. Damping

To improve the convergence of the belief propagation al-
gorithm, as the one following from Eq. (A4), a damping
updating scheme is typically used. In practical terms, the new
messages are a linear combination of the old and new ones. In
mathematical terms, writing as mn the message at iteration n,
we use

mn+1 = ηmn + (1 − η) fBP(mn), (A7)

where we write as fBP(mn) the right-hand side of Eq. (A4),
and the parameter η is introduced to control the intensity of
the damping.

If not specified otherwise, in the simulations in the main
text, then the damping was set to 0 for the first 200 iterations,
to 0.2 for the next 200, and then 0.4 until the end.

b. Notes about implementation

The messages can be stored in a NumPy tensor of shape
2|E |×(T + 2)×(T + 2), as well as 
0 and 
1 that can be

precomputed from the beginning. These data are stored in a
Python class called FactorGraph. We implement a class called
SparseTensor that represents the tensor of shape 2|E |×T ×T ,
and includes a transparent mapping between the pair of nodes
(i, j) and the corresponding labeled edge.

Efficient implementation of Eq. (A5). For each node i we
update, at the same time, all messages that come out. We start
by computing the following quantities:

(i) γ 1
ki(ti ) and γ 0

ki(ti ) for all k ∈ ∂i ,
(ii) γ 1

i (ti ) = ∏
k∈∂i γ

1
ki(ti ) and γ 0

i (ti ) = ∏
k∈∂i γ

0
ki(ti ) .

Calling M̂i j the matrix containing the message mi→ j (ti, t j )
for each ti and t j , the update is described by the following
matrix equation:

M̂i j[1 : T + 1, :] = (1 − δ)Oi · [

̂1

ji[:, 1 : T + 1] · γ 1
i

· (
γ 1

ji

)−1 − 
̂0
ji[:, 1 : T + 1] · γ 0

i

· (
γ 0

ji

)−1]
,

M̂i j[T + 1, :] = (1 − δ)Oi(T )
̂1
ji[:, T + 1] · γ 1

i (T )

γ 1
ji(T )

,

M̂i j[0, :] = δ Oi(−1)
∏

k∈∂i\ j

T∑
tk=−1

M̂ki[tk, 0].

The · are element-wise products, which are handled using the
indexing rule of NumPy [28]. Oi, γ

1/0
i , and γ

1/0
i j are (T + 2)-

dimensional vectors. M̂i j , 
̂1
i j , and 
̂0

i j are (T + 2)×(T + 2)
matrices, where the first entry is ti and the second one is t j .

APPENDIX B: ADDITIONAL IMAGES

1. Inference of the final time

We can consider the case of what happens when we try to
infer the state of the system at final time T , which is trivial for
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FIG. 10. Inference of the state at the final time as a function of
�. The plots were generated using an ensemble of 3-regular random
graphs (3-RRGs), fixing λ = 0.25 and δ = 0.04 for the spreading.
Furthermore, we consider sensor observations, with a fraction of
observed nodes ρ = 0.2. We compare the overlap (5) at t = T com-
puted with x̂MMO,T and with x̂RND,T varying � in a dSIR model. The
dashed red line represents the average fraction of susceptible nodes at
t = T . The inset plot represents the behavior of the rescaled overlap
defined in Eq. (9) for the same range of parameters. We verified that
the Nishimori conditions were satisfied for all the points displayed in
the plots and that the informed initialization led to the same result as
the uninformed one.

the SI model since all nodes are infected, but become more
interesting for the dSIR model, where a fraction of nodes
remains susceptible at the end of the epidemic. We consider
the dSIR model with delay parameter �.

In Fig. 10 the ability of the algorithm to infer the state of
the system at the final time T is shown. The average value of
the fraction of susceptible nodes at the end of the epidemic
is represented as the dashed red line in the figure, and we
see that, as expected, as we increase � we go back to the
SI model, where we perform similar to the random estimator.
If, instead, we take a lower value of �, then we can have
less trivial situations, with the hardest one being the case
in which the fraction of susceptible nodes fS (T ) ≈ 1/2, in
which the random estimator performs worse. Nevertheless, it
is interesting to notice that this is also the regime where the
algorithm performs best, as can be seen from the inset plot in
Fig. 10, in which the behavior of the rescaled overlap with �

is displayed.

2. Rescaled squared error for snapshot observations
in the dSIR model

In this section, we present an example to explain the behav-
ior described in Sec. IV B 2 where the results of the rescaled
squared error for snapshot observations were presented. In
particular, concerning Fig. 6, we additionally fix λ = 0.6, but
the same behavior is visible for every value of the infectivity
parameter. We then compare what happens for the SI model
(� = ∞) and for the dSIR model with � = 1, looking sepa-
rately at the SE computed with the optimal estimator and with
the random estimator. Let us start by looking at the SI model
case, displayed in the right panels of Fig. 11. We can see that
both observables, when increasing Tobs, reach some plateau
at some value which depends on the fraction of sources δ.
Since the value of the plateau is the same for both estimators,

FIG. 11. Compendium of Fig. 6. Remaining in the same framework as Fig. 6, we fix λ = 0.6 and study both the SI model and the dSIR
model with delay � = 1. For both scenarios, in the upper panel, we plot the squared error (11) as a function of the snapshot time, and in the
lower panel we do the same for the squared error computed with the random estimator defined in Sec. II.
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FIG. 12. Absence of critical slowing down in the convergence of the BP messages. The plots were generated using an ensemble of 3-regular
random graphs (3-RRGs) with N = 104, λ = 0.5 and δ = 0.005. We consider observations via a snapshot on an SI model, where the snapshot
time is changed in each panel between Tobs = 12 (top left), and Tobs = 17 (bottom right). For each panel, we examine three instances of the
problem generated randomly, and we monitor the squared error defined in Eq. (B1) during the BP iterations. The damping parameter η was
fixed to 0.4 for all iterations. We observe that the BP messages of two initializations quickly converge to almost the same values in every case,
without a critical slowing down in the nonconvergence region, where the oscillations are observed.

it means that for high values of Tobs the rescaled squared error
defined in Eq. (15) will go to zero eventually.

Conversely, for the dSIR model, we see that the same
behavior is valid for the SE computed with the optimal esti-
mator but not for the one using the random estimator. Indeed,
as discussed in the main text, the latter estimator performs
quadratically worse when increasing Tobs in the case of a frac-
tion of nodes remaining susceptible at the end of the epidemic.
This, in turn, makes the rescaled squared error (15) grow when
increasing Tobs, even if the SE is constant, and finally leads to
the nonmonotonic behaviours showed in Fig. 6.

3. Squared error between BP messages

In this section, we show how the absence of the critical
slowing down on the convergence of the BP equations that we
have presented in Fig. 9 can be also seen directly by looking
at the BP messages. Specifically, we generate an instance of
the problem, i.e., we fix the graph, the sources, the epidemic
process, and the observations, and then we run the BP equa-
tions with rnd and inf initialization of the messages. Then, at
each iteration time, we compare the two sets of messages by
computing the following observable:

SEmess = 1

2|E |(T + 2)2

∑
{i→ j}

T∑
ti=−1

T∑
t j=−1

[
minf

i→ j (ti, t j )

− mrnd
i→ j (ti, t j )

]2
, (B1)

where the first sum is done over all the ordered pairs in the
graph. The results for the setting of Fig. 9 are presented in

Fig. 12. One can clearly see that the behavior for the first
few dozen iterations is the same, with the squared error going
quickly to zero, whatever the value of Tobs. Then, we see that
while for high and low values of Tobs the squared error remains
low and the algorithm converges, for intermediate values at
some point it becomes bigger again, and we can see the
typical oscillations that characterize the non-Bayes-optimal
regime.

4. Comparison with other graphs ensembles

In this section, we alter the underlying graph structure
through which our process propagates to check the results’
robustness. We explore two variations with respect to the
framework previously examined in the main text, i.e., random
regular graphs with a degree of d = 3. The first variation
considers the Erdos-Renyi graph ensemble [29], where the
nodes are randomly connected, with probability p.

Second, we modify the average node degree d . In the
context of Erdos-Renyi graphs, we set p to d

N−1 to match the
same average degree as that of random regular graphs. This
ensures that, in both scenarios, the average number of edges
in the graph will be the same, dN/2 on average.

The Erdos-Renyi graphs, with N p > 1, will almost surely
have a unique giant component containing a finite fraction of
the vertices, and no other component will contain more than
O(log N ) vertices [29]. In our framework, being interested
in how a process spreads on the graph, we neglect all the
disconnected components (in which the spreading is trivial)
and consider only the graph’s giant component. The results of
this study are presented in Fig. 13, in which we fix a particular
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FIG. 13. Comparison between Erdos-Renyi graphs and Random Regular graphs. The plots were generated using both an ensemble of
regular random graphs (RRG) and random Erdos-Renyi graphs (ER). For both, we consider two values of average degree d = 3, 5 (as explained
in the text). We furthermore fix λ = 0.8 and δ = 0.1 for the spreading in such a way to be always in the Bayes-optimal setting. Moreover, we
consider sensor observations with a fraction of observed nodes ρ varying between 0 and 1. We look at how the overlap (9) at t = 0 and the
RSE defined in Eq. (15) behave when we change the type of graph ensemble considered. In general, we see that the performance parameters
depend only slightly on the choice of the ensemble, except the RSE, which seems always to decrease when considering higher average degrees
d , for both RRGs and ER graphs.

value of the parameters λ and δ in such a way to always
be in the Bayes-optimal region, and we vary the fraction of
observed nodes ρ in a sensors framework. At fixed d , we
observe slight changes in the algorithm’s performances on

RRGs or ER graphs in the inference problems considered.
Instead, the change of the average degree d seems to affect
both graph ensembles, generally decreasing the algorithm’s
performance when one increases d .
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