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Phononic band gap in random spring networks
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We investigate the relation between topological and vibrational properties of networked materials by ana-
lyzing, both numerically and analytically, the properties of a random spring network model. We establish a
pseudodispersion relation, which allows us to predict the existence of distinct transitions from extended to
localized vibrational modes in this class of materials. Consequently, we propose an alternative method to control
phonon and elastic wave propagation in disordered networks. In particular, the phonon band gap of our spring
network model can be enhanced by either increasing its average degree or decreasing its assortativity coefficient.
Applications to phonon band engineering and vibrational energy harvesting are briefly discussed.
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I. INTRODUCTION

As an interdisciplinary tool, network theory cuts through
the boundaries of information, life, social, and material sci-
ences. It spawned disruptive innovations and remarkable
new scientific discoveries [1–9]. In the past three decades,
much effort has gone into understanding phonon transport
in networked media. These include amorphous networks
[10,11], random spring networks [12], randomly bond-diluted
triangular lattices [13], cross-linked polymer chains [14],
and fiber composites [15], to name but a few. Unexpected
wave propagation phenomena have been reported when us-
ing such materials in frequency filters, waveguides, emitters,
shields, and topological insulators [16–23], with potential
applications in numerous technological contexts, such as non-
invasive diagnostics, medical imaging, and acoustic devices
[24–26].

As of today, it is well recognized that elastic wave prop-
agation in a network depends not only on the elastic moduli
of its components, but also on its overall stiffness [27,28]. For
instance, the acoustic characteristics of molecular chain net-
works change significantly by structural deformation [15,29].
However, earlier studies mainly focused on the relation be-
tween vibrational and mechanical properties of the networks,
but seldom investigated the role of their topological proper-
ties. This is because disorder in network structures breaks
translation invariance, a question that has long vexed physi-
cists.

The topology of a network is characterized by a number
of statistical parameters, such as average degree, assortativ-
ity coefficient, clustering coefficient, small-worldness, and
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closeness centrality [9,30–32]. Among such parameters, the
average degree and the assortativity coefficient are best suited
to characterize networked materials. For instance, the average
degree quantifies the density of molecular chain networks,
while the assortativity coefficient can be related with the node
connectivity in cross-carbon nanotubes [33–35]. Neverthe-
less, little is known so far about how these two parameters
impact the vibrational properties of networked materials and
thus their wave propagation properties. In this paper, we pro-
pose a random spring network model with tunable topological
parameters especially designed for this purpose. As a result,
we develop an effective method to control the phonon band
gap in disordered networks.

II. NETWORK MODEL

Our network model is constructed as follows. First, we
generate a two-dimensional (2D) regular square lattice with
N = n × n identical nodes of mass m. Each node can be
uniquely identified by either a couple of row-column indices,
(q, p), or by a single index j = (q − 1)n + p. An example of a
square lattice with n = 10 is displayed in Fig. 1(a). Secondly,
we randomly pick a node from an odd-numbered column and
an even-numbered row [denoted by a blue node in Figs. 1(b)–
1(d)], and then randomly connect it to one of its four nearest
neighbors at the catercorners. Upon repeating this process,
M new diagonal links are added to the original regular lat-
tice, thus creating a disordered network with average degree
〈k〉 = (1/N )

∑
j k j = 4 + 2M/N , where k j is the number of

links connected to node j (node degree). Repeated links are
discarded in the process. Two realizations of this procedure
obtained from the regular lattice of Fig. 1(a), respectively,
for M = 20 and 55, are shown in Figs. 1(b) and 1(c). Note
that for M = N , all blue nodes are connected with their cater-
corner neighbors, which results in the new regular topology of
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FIG. 1. Schematic illustration of spring networks: (a) square reg-
ular network with N = 10 × 10 nodes; [(b),(c)] random networks
with average degree, respectively, 〈k〉 = 4.4 and 5.1; (d) regular
Union-Jack network with 〈k〉 = 6. The node indices, 1, . . . , 10, are
ordered along the x and y axes as indicated by the arrows.

Fig. 1(d), known as the Union-Jack lattice [36], with average
degree 〈k〉 = 6.

To investigate the influence of network topology on its
vibrational properties, we assume that each link connecting
two neighboring nodes represents an elastic spring, and the in-
teraction among nodes only occurs through such springs. The
dynamics of the resulting elastic network is thus described by
the Hamiltonian [34,37]

H =
∑

j

p2
j

2m
+ 1

2

∑
⎡
⎣

k j∑
l=1

1

2
c jl (u j − ul )

2

⎤
⎦, (1)

where u j represents the vertical displacement of node j from
its equilibrium position, k j is its degree, and c jl is the spring
constant of the link connecting nodes j and l . The motion
of any node j, with j = 1, . . . N , obeys the canonical equa-
tions [12,38]

u̇ j = ∂H

∂ p j
, ṗ j = − ∂H

∂u j
, (2)

with periodic network boundary conditions. We simulated
disordered networks of size N = 50 × 50, with nodes of mass
m = 1 and spring constants c jl = 1 for all links unless stated
otherwise. As is well known, the phononic properties of an
ideal crystal are characterized by the dispersion relations of its
eigenmodes. In sharp contrast, for random spring networks the
lack of translational symmetry implies the nonconservation of
the phonon modes, i.e., no standard dispersion relations. How-
ever, our numerical simulations point to ascending relations
between network eigenfrequencies, ω, and mode indices, λ,
which can be utilized as pseudodispersion relations. A similar
approach was proposed in the past to identify different types

FIG. 2. Examples of random spring network pseudodispersion
relations, ωλ: (a) eigenfrequency, ω, vs eigenmode index, λ, for
different 〈k〉 (see the legend); (b) cutoff frequency, ωmax = ωλ=2500,
vs 〈k〉; (c) phonon band gap, �ω, vs 〈k〉. Simulation data for random
spring networks with n = 50, m = 1, and cl j = 1.

of transitions from extended to localized vibrational states in
gradient systems [38].

III. RESULTS

In this work, we reformulated the node equations of mo-
tion, Eq. (2), in terms of the network adjacency matrix, and
we developed a pseudodispersion relation formalism, which
bridges network topology and the phonon spectrum, and thus
provides a theoretical basis to understand the vibrational
properties of disordered networks (see Appendix A 1). Fig-
ure 2(a) shows the eigenfrequency, ω, versus its eigenmode
index, λ, for random spring networks with different average
degrees, 〈k〉. We remark that the curve for 〈k〉 = 4.0 coin-
cides with the usual dispersion relation of the initial regular
square lattice. As clearly illustrated in Fig. 2, increasing 〈k〉
significantly impacts the network pseudodispersion relation,
especially at frequencies above ω = 2. Moreover, the eigen-
frequency spectrum develops a gap with lower bound ω = 2
and upper bound ω < 2.8, depending on 〈k〉. In particular,
for a given eigenmode index, λ, the larger the average degree
〈k〉, the larger is the corresponding eigenfrequency, ωλ. Ac-
cordingly, the maximum eigenfrequency (cutoff frequency),
ωmax = ωλ=2500, increases monotonically with 〈k〉, as shown
in Fig. 2(b).

The region around ω = 2, marked by a red box in Fig. 2(a),
has been expanded in the inset. One notices immediately that
all curves converge to one value, ω = 2, smoothly for λ →
1250− and with an abrupt drop for λ → 1250+, which proves
the existence of a band gap between λ = 1250 and 1251.
The width of such a gap, �ω = ωλ=1251 − ωλ=1250, is plotted
versus 〈k〉 in Fig. 2(c): as anticipated above, �ω too is a
monotonically increasing function of 〈k〉. This result suggests
a new strategy for tailoring the phonon band gap of disordered
networks, that is, by tuning the average degree of the network,
a strategy significantly different from traditional approaches,
which rely on changing the mechanical parameters of the
network (e.g, the node masses, elastic moduli, and the sub-
strate potentials) or applying external fields [39–41]. To better
appreciate the impact of the average degree on the network
band gap, we developed a mean-field scheme, whereby we
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FIG. 3. Eigenmode patterns, eω, for (a) ω = 0.6245, (b) ω =
1.5037, (c) ω = 1.8512, (d) ω = 2.4452, (e) ω = 2.9397, and (f)
ω = 3.1885. The network lattice rests in the x-y plane, and vertical
node displacements, e j , are oriented along the z axis [see Eq. (3)].
Simulation data for random spring networks with n = 50, m = 1,
cl j = 1, 〈k〉 = 5.2, and r = −0.25.

started from a Union-Jack lattice [of the kind displayed in
Fig. 1(d)] and tuned the coupling strength c′ corresponding to
the 2N diagonal links alone, by gradually increasing it from 0
to 1. By this procedure, we introduce a mean-field definition
of 〈k〉 = 2c′ + 4, which acts as a control parameter for the
transition between the regular network topologies with 〈k〉 =
4 [Fig. 1(a)] and 6 [Fig. 1(d)]. By solving the relevant node
equations of motion for n = 50, we obtained two dispersion
relations, respectively, for the acoustic (1 � λ � 1250) and
the optical branch (1251 � λ � 2500). Moreover, increasing
〈k〉 affects more appreciably the optical branch, thus pro-
ducing a widening band gap in the range ω ∈ [2, 2

√
2) (see

Appendix A 2 for details). This analytical description is con-
sistent with the simulation data of Fig. 2.

To analyze in more detail the properties of the pseu-
dodispersion relations of Fig. 2(a), we computed the network
density of states for different values of 〈k〉. For disordered net-
works with 4 < 〈k〉 < 6, the numerical data reveal two sharp
peaks located at ω = 2 and 2.8 (see Fig. 6 in Appendix A 3).
For 〈k〉 → 6, the density of states between the two peaks
tends to vanish, consistently with the widening of the band
gap. Generally, sharp peaks in the density of states, often
referred to as Van Hove singularities, point to a transition
between different vibrational states. Therefore, we expect that
the eigenmodes with frequencies falling in the three domains,
ω < 2, 2 < ω < 2.8, and 2.8 < ω, may have qualitatively
distinct features. To clarify this point, we first generated a
single disordered network with average degree 〈k〉 = 5.2, and
we compared six of its eigenmode patterns, eω, in Fig. 3, three
with ω < 2, one with 2 < ω < 2.8, and two with ω > 2.8.
As a first difference, one sees by inspection that the three
vibrational modes with ω < 2, Figs. 3(a)–3(c), are extended,
whereas the three modes with ω > 2, Figs. 3(d)–3(f), are
localized, as most of the lattice nodes sit at rest.

For a more quantitative description of the relation between
disorder and mode localization, we then analyzed the eigen-

mode inverse participation ratio [38]

P−1
ω =

∑N
j=1 e4

ω, j( ∑N
j=1 e2

ω, j

)2 , (3)

with eω, j denoting the node j component of the eigenmode
eω. This ratio is of the order of 1/N for extended modes,
and grows to O(1) as the mode excitation is confined to
increasingly smaller lattice regions. The ω-dependence of
P−1

ω changes with increasing the network average degree in a
suggestive manner (see Fig. 7 in Appendix A 4): (i) ω < 2:
P−1

ω is always vanishingly small (no localized modes); (ii)
ω > 2.8: P−1

ω is large for 〈k〉 � 4 but very small for 〈k〉 �
6 (localized-to-extended mode transition); (iii) 2 < ω < 2.8:
P−1

ω is large in correspondence with the upper bound of the
phonon gap. These findings contradict the common notion that
mode localization due to impurities and defects only occurs in
crystals, and they prove that it can be produced and governed
in complex systems, too.

Another factor affecting the vibrational properties of a dis-
ordered network is its degree correlation. A positive (negative)
degree correlation refers to the tendency of links to connect
nodes with similar (different) degrees (see Appendix A 5).
The degree correlation of a network is quantified by its as-
sortativity coefficient [42]

r = 〈kl k j〉 − 〈(kl + k j )/2〉2

〈(
k2

l + k2
j

)/
2
〉 − 〈(kl + k j )/2〉2

, (4)

where kl and k j are the degrees of two connected nodes l and
j, and 〈· · · 〉 denotes the average over all links. Previous stud-
ies revealed that many networked systems, like the Internet
or certain proteomic and metabolic networks, may perform
distinct functions depending on their assortativity [42–44].
Moreover, both percolation phase transitions and heat con-
duction can be governed by tuning the degree correlation of
the underlying networks [35,42]. These earlier results suggest
that the vibrational properties of random spring networks may
also depend on their assortativity. To numerically investigate
the degree correlation effects, we varied the parameter r of
the simulated networks while keeping their average degrees
constant (see Appendix A 5 for numerical details).

In Fig. 4(a) we plotted three pseudodispersion relations
for a disordered spring network with fixed average degree,
〈k〉 = 4.8, but different values of the parameter r. For λ �
1250 all three curves tend to overlap, while for λ > 1250 they
appear to grow steeper with increasing r. To illustrate this
point, in the figure insets we expanded the regions around the
gap (red box) and the maxima (black box) of the dispersion
curves. One notices immediately that the vertical ordering
of the curves in the two insets is inverted, consistently with
the anticipated r-dependence of their steepness. Accordingly,
with increasing r the maximum phonon eigenfrequency, ωmax,
becomes larger, but the band gap, �ω, shrinks. The depen-
dence of ωmax and �ω on more values of r is displayed in
Figs. 4(b) and 4(c). We conclude that ωmax (�ω) does increase
(decrease) monotonically with raising the network degree
correlation. This conclusion is confirmed also by numerical
data obtained for an additional random spring network with
〈k〉 = 5.2; see Figs. 4(d)–4(f). We remark that the idea of tai-
loring the phonon band gap of a disordered network of given
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FIG. 4. Dependence of the pseudodispersion relation, ωλ, of a
random spring network on its assortativity coefficient, r: (a) ω vs λ

for 〈k〉 = 4.8 and different r (see the legend); [(b),(c)] ωmax and �ω

vs r for 〈k〉 = 4.8; [(d)–(f)] same as in [(a)–(c)] but for 〈k〉 = 5.2.
Simulation data for random spring networks with n = 50, m = 1, and
cl j = 1.

average degree by tuning its assortativity coefficient repre-
sents a fundamentally new strategy. It is realized by changing
the topology of the network rather than its mechanical
properties (including the link density) [41]. Furthermore, we
find that the assortativity coefficient plays a crucial role in reg-
ulating the localization of phonons. Specifically, we observed
that the localization intensity of high-frequency phonons de-
creases as the value of r increases (see Appendix A 8).

Finally, we compared the phononic and wave propaga-
tion properties of a random spring network. We injected
sine-waves of different frequency, ω, through a source node
selected as follows: for waves of frequency corresponding to
the eigenfrequency of a localized phonon mode, we made
sure to choose a vibrating lattice node [see, e.g., the mode
patterns, eω, of Figs. 3(d)–3(f)]; for all other frequencies,
we picked a network node at random. Based on Eqs. (1)
and (2), the source node obeys the equation of motion, ü j =∑k j

l=1(ul − u j ) + us − u j , with us = A sin(ωt ), and, for sim-
plicity, A = 1. We implemented a fourth-order Runge-Kutta
algorithm with an integration step of �t = 0.01 to simulate
the wave propagation through the network. Extensive numer-
ical simulations confirm that the elastic wave propagation
properties of the network are consistent with the existence of
the predicted extended-to-localized phonon state transitions,
and the possibility of controlling the phonon band gap, �ω,
and the cutoff frequency, ωmax, by adjusting the topological
network parameters, 〈k〉 and r (see Appendix A 6).

IV. DISCUSSION AND CONCLUSION

In conclusion, we proposed and studied a random spring
network model especially designed to investigate the influence
of the average degree, 〈k〉, and the assortativity coefficient, r,
on the vibrational properties of a disordered network. By es-

tablishing a pseudodispersion relation formalism, we revealed
two remarkable properties. First, the pseudodispersion rela-
tion markedly depends on the network topological parameters,
〈k〉 and r. In particular, 〈k〉 is responsible for the extended-to-
localized state transitions of the phonon modes, which is not
sensitive to the change of r. Moreover, the cutoff frequency
of the phonon spectrum, ωmax, increases monotonically with
increasing 〈k〉 and r. Secondly, the model suggests a novel
method to govern the phonon band gap, �ω, in disordered net-
works, whereby the gap width can be enhanced (or reduced)
by increasing 〈k〉 (or r).

Most notably, these results are independent of the system
size, thus confirming that the cutoff frequency and the band
gap are primarily determined by the intrinsic characteristics
of the networks (see Fig. 14 in Appendix A 7). One might
object that 〈k〉 and r are just two of the many topological
characteristics defining the properties of a network. Indeed,
the impact of other topological characteristics (such as the
clustering coefficient, cycle coefficient, betweenness, and av-
erage shortest path) on the vibration properties of the network
is still unknown. However, such topological characteristics
also reflect on the network adjacency matrix [31,32], which
we explicitly linked to the network phononic band gap in
this work. The spectrum of the adjacency matrix is known
to provide information about various network phenomena,
such as disease spreading, stability and convergence of dif-
fusion processes, and the occurrence of extreme events and
synchronized states [45]. With this work, we showed how it
can also be used to control the vibration properties of ran-
dom elastic networks for new applications to acoustics and
phononics.

Due to its unexpected properties, our random spring net-
work model lends itself to all sorts of applications that require
the manipulation of phononic properties and elastic wave
propagation in disordered materials. We mention here two ex-
amples. The first example involves the tailoring of the phonon
bands. Earlier studies have shown that phonon band engi-
neering allows us to fabricate phononic crystals, whose band
gap is tunable by means of appropriate substrate potentials
and external fields [41]. However, our results indicate that the
phonon band gap and cutoff frequency of a random network
can also be manipulated by adjusting its connectivity density
and correlation. As already remarked above, by tuning the
network topology, a fraction of the phonon modes, initially
reflected outside the network, are now allowed to propagate
[see Figs. 16(a) and 16(b) in Appendix A 9]. This suggests
new avenues to customize the phonon properties of a net-
worked material. The second example involves the harvesting
of vibrational energy. An acoustic wave can be localized in
the cavity of a sonic crystal, where it can be tuned at reso-
nance (point defect mode). Utilizing this phenomenon, one
can convert vibrational energy into electric energy by placing
a piezoelectric probe into the cavity [46,47]. Similarly, we
could remove some nodes from a spring network to generate
a defect band in its phonon band gap, so that the impinging
acoustic waves get trapped and the piezoelectric probe can
harvest electric energy [see Fig. 16(c) in Appendix A 9]. Such
a mechanical-to-electric energy conversion method is appli-
cable to the design of intelligent textiles and wearable power
sources based on stretchable networked composites [48].
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APPENDIX

1. Calculation of the pseudodispersion
relation of a random spring network

We extend here the dispersion relation formalism for
regular elastic lattices to compute the pseudodispersion
relations of random spring networks. From the main

text, the network Hamiltonian reads [34,37] H = ∑
j

p2
j

2m +
1
2

∑
[
∑k j

l=1
1
2 c jl (u j − ul )2] [Eq. (1)], where u j represents the

vertical displacement of node j from its equilibrium position,
k j is the number of the links connecting the node (node de-
gree), and c jl is the spring constant of the link connecting
nodes j and l . The motion of any node j, with j = 1, . . . , N ,
obeys the canonical equations [12,38] u̇ j = ∂H

∂ p j
; ṗ j = − ∂H

∂u j

[Eq. (2)]. Substituting Eq. (1) into Eq. (2) yields

ü j = − ∂H

∂u j
= −∂

∑
j Vj (u j )

∂u j
=

k j∑
l=1

(ul − u j ). (A1)

where Vj (u j ) = ∑k j

l=1
1
2 c jl (u j − ul )2 represents the interac-

tion energy of node j with its neighbors. Expanding the
displacement uj in Eq. (A1) in terms of the eigenvector
components, eω, j , of the eigenmodes, eω,

u j =
∑

ω

Qωeω, j, (A2)

with Qω the time-dependent expansion coefficient Qω(t ) =
exp(−iωt ), Eq. (A1) can be separated as

−ω2eω = Teω. (A3)

Due to the assumed periodic network boundary conditions, for
c jl = 1 the elements of the N × N coupling matrix T can be
rewritten as

Tjl = Ajl − I jl , (A4)

where Tjl represents the elastic coupling of node j with its
neighboring node l , and Ajl are the elements of the network
adjacency matrix, defined as follows: if node j and l are
connected by a spring, then Ajl = 1, otherwise Ajl = 0. I is a
diagonal matrix with elements I jl = δ jl k j , where δ denotes the
Kronecker delta. The nontrivial N solutions for eigenmodes
eω and the eigenfrequencies ω in Eq. (A3) were computed by
numerically diagonalizing the matrix T .

2. Calculation of the pseudodispersion relation
by the mean-field approximation

We introduce here a mean-field technique to tune the aver-
age degree, 〈k〉, of our random network model between 4 and

6, without varying the number of diagonal links [49]. In fact,
we analyze a disordered network with reference to the corre-
sponding regular Union-Jack network by treating nodes with
degree 4 (red points) and 6 (blue points) separately. In this
section, we refer to the color code adopted in Fig. 1(b) of the
main text. If only the elastic interactions between neighboring
nodes are considered, the equations of motion for the blue and
red nodes are, respectively,

mül = c(4u j − 4ul ) + c′(4u j − 4ul ), (A5)

mü j = c(4ul − 4u j ), (A6)

where ul (u j) are the vertical displacements of the blue (red)
points from their equilibrium position, m is the mass of
the nodes, and c and c′ are the coupling constants corre-
sponding, respectively, to the vertical and horizontal (gray)
links and to the diagonal (green) links. Without loss of gen-
erality, we set m = 1, and c = 1 and c′ ∈ [0, 1]. We next
assume that Eqs. (A5) and (A6) have plane-wave solutions,
ul = A exp(iωt − dll ′q) and u j = B exp(iωt − d j j′q), where
dll ′ (d j j′ ) is the Manhattan distance between the lattice points l
and l ′ ( j and j′) [50], to obtain, by substitution into Eqs. (A5)
and (A6),

A[ω2 − (4 + 4c′)] + B(4 + 4c′) cos(q) = 0, (A7)

4A cos(q) + B(ω2 − 4) = 0. (A8)

To ensure that Eqs. (A7) and (A8) have solutions, ω must
satisfy the secular equation,

∣∣∣∣∣
ω2 − (4 + 4c′) (4 + 4c′) cos(q)

4 cos(q) (ω2 − 4)

∣∣∣∣∣ ≡ 0, (A9)

that is,

ω4 − (8 + 4c′)ω2 + (16 + 16c′) sin2(q) = 0. (A10)

The solution of Eq. (A10) yields the two distinct dispersion
relations, both periodic functions of q,

ω2
+ = 4 + 2c′ +

√
(4 + 2c′)2 − (16 + 16c′) sin2(q), (A11)

ω2
− = 4 + 2c′ −

√
(4 + 2c′)2 − (16 + 16c′) sin2(q), (A12)

plotted in Fig. 5(a). The maximum vibration frequency, ωmax,
and the band gap, �ω, depend apparently on c′. Under the
mean-field approximation, one easily obtains 〈k〉 = 2c′ + 4
and the 〈k〉-dependence of ωmax and �ω plotted in Figs. 5(b)
and 5(c). Both ωmax and �ω are monotonically increasing
functions of 〈k〉 with upper and lower bounds comparable with
those of the simulation curves in Figs. 2(b) and 2(c) of the
main text. Discrepancies between numerical simulation and
the mean-field approximation emerge when one looks at the
convexity of the curves ωmax and �ω versus 〈k〉.

3. Density of states for random spring networks
with different average degrees

To examine in detail the 〈k〉-dependence of the pseudodis-
persions plotted in Fig. 2(a) of the main text, we computed the
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（a）
（b）

（c）

FIG. 5. Phonon band structure of random spring networks
in the mean-field approximation: (a) phonon dispersion relation;
[(b),(c)] ωmax and �ω vs 〈k〉. Data for networks with n = 50, m = 1,
c = 1, and c′ ∈ [0, 1].

density of the phonon states [38],

g(ω) = lim
�ω→0

�n

�ω
. (A13)

In Fig. 6 we display a few g(ω) curves for different values
of 〈k〉. [They can be regarded as the inverse of the derivative
of the corresponding curves in Fig. 2(a) of the main text.]
One notices immediately that g(ω) exhibits only one peak
for 〈k〉 = 4 (regular square lattice) [Fig. 6(a)] and two peaks
for 〈k〉 > 4 (random spring networks) [Figs. 6(b)–6(d)]. Note
that the two peaks do not move with increasing 〈k〉; they are
always centered, respectively, at ω = 2 and 2.8, in agreement
with the analytical predictions of Fig. 5(a).

4. Eigenmode inverse participation ratio
for different average degrees

The dependence of the eigenmode inverse participation
ratio, P−1

ω , versus the mode eigenfrequency, ω, for random

FIG. 6. Phonon density of states (DOS), g(ω), for differ-
ent network topologies: (a) regular square lattice with 〈k〉 = 4;
[(b),(c)] random spring networks with 〈k〉 = 4.4 and 5.2; (d) reg-
ular Union-Jack network with 〈k〉 = 6. Simulation data for spring
networks with n = 50, m = 1, and cl j = 1.

FIG. 7. Eigenmode inverse participation ratio of random spring
networks vs the eigenfrequency, ω, for different 〈k〉: (a) 〈k〉 = 4,
(b) 〈k〉 = 4.4, (c) 〈k〉 = 4.8, (d) 〈k〉 = 5.2, (e) 〈k〉 = 5.4, (f) 〈k〉 =
5.6, (g) 〈k〉 = 5.8, and (h) 〈k〉 = 6.0. Simulation data for spring
networks with n = 50, m = 1, and cl j = 1.

spring networks of increasing average degree, illustrated in
Fig. 7, proves the existence of a transition between ex-
tended and localized modes due to disorder. The two g(ω)
singularities at ω = 2 and 2.8, shown in Fig. 6, divide the
eigenfrequency domain into three distinct regions, namely
ω < 2, 2 < ω < 2.8, and ω > 2.8 (marked by red vertical
dashed lines in Fig. 7). As 〈k〉 increases, we notice that P−1

ω for
ω < 2 remains close to zero, which means that all vibrational
modes are extended, that is, all network nodes oscillate. For
2 < ω < 2.8, P−1

ω tends to grow with increasing 〈k〉, which
implies that the vibrational modes in this frequency region
change from extended to localized. On the contrary, for ω >

2.8, P−1
ω tends to vanish with increasing 〈k〉, which signals the

opposite transition from localized to extended modes.
It should be emphasized that in the region 2 < ω < 2.8,

with increasing 〈k〉, the peak of P−1
ω moves from ω = 2 toward

ω = 2.8 (Fig. 7), while the number of eigenmodes diminishes
continuously until they totally disappear (Fig. 6). The combi-
nation of these two effects results in the onset of the phonon
band gap and its continuous widening. This mechanism is
consistent with the simulation data discussed in Fig. 2(c) of
the main text.

5. Degree correlation of random spring networks

The degree correlation of a network can be quantified

by its assortativity coefficient [42] r = 〈kl k j〉−〈(kl +k j )/2〉2

〈(k2
l +k2

j )/2〉−〈(kl +k j )/2〉2

[Eq. (4)], where kl and k j are the degrees of two connected
nodes, l and j, and 〈· · · 〉 denotes the average over all links.
Network configurations with different r are shown in Fig. 8;
they have been obtained from the same initial random spring
network with N = 100 and 〈k〉 = 4.8. In the assortative case,
r = 0.15, most of the large-degree nodes with k > 7 (red
circles) are paired with each other. On the contrary, in the
disassortative case, r = −0.2, most large-degree nodes with
k > 7 are parted away from each other. It is apparent that the
assortative network has the more inhomogeneous structure.

To investigate the effect of the degree correlation on the
vibrational properties of a random spring network, we must
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(a) (c) (e)

(b) (d) (f)

FIG. 8. Regulation of the network assortativity coefficient r.
(a) and (b) Snapshots of two random spring networks with r =
0.15 and −0.2, respectively. [(c)–(f)] Approximate upper and lower
r values corresponding to the average network degrees 〈k〉 = 4.8
[(c),(d)] and 〈k〉 = 5.2 [(e),(f)], respectively, with M denoting the
number of iterations.

tune r while keeping the network average degree 〈k〉 constant
[42]. To this purpose, we adopted the following iteration pro-
cedure: First, we calculated the assortativity coefficient of a
starting network configuration, r0, through Eq. (4); second, we
randomly broke up a diagonal link (i.e., a green link according
to the color code of Fig. 1 of the main text), and replaced it by
a link connecting another couple of catercorner nodes; finally,
we determined whether the assortativity coefficient of the new
network configuration, r′, came closer to the target value of
the coefficient, r, than to its initial value, r0. If it did, we
then utilized an annealing algorithm [51,52] with probability
threshold set at p = 0.01. If a randomly generated number
was greater than p, we retained the above operation; other-
wise, we discarded it. This approach significantly increases
the algorithm’s likelihood of escaping local optimal values,
and it enhances the chances of discovering the global optimal
value. We repeated the above procedure until |r′ − r| < 0.01.
Using this method, we obtained that the approximate upper
and lower assortativity of networks with average degrees is
〈k〉 = 4.8 and 5.2, displayed in Figs. 8(c)–8(f).

6. Elastic wave propagation

In this section, we compare the simulation results of elastic
wave propagation in random spring networks and the rele-
vant phonon band characterization based on numerical (see
Figs. 2 and 4 of the main text) and analytical predictions
(pseudodispersion relations in the mean-field approximation;
see Appendix A 2).

(i) Extended to localized mode transitions. Figure 9 shows
the propagation transients of sine-waves of different frequen-
cies at t = 104 for a network with 〈k〉 = 4.4. From Fig. 2
of the main text and Fig. 7, we know that ω = 1.0935 and
2.5890 fall in the range of the extended modes, ω = 2.9269
is in the range of the localized modes, while ω = 3.6 is larger
than the cutoff frequency, ωmax = 3.0712. On the other hand,
all network nodes are excited in Figs. 9(a), 9(b) only a few
in Fig. 9(c), and none in Fig. 9(d). The results of our nu-
merical simulation for wave propagation in a random spring

FIG. 9. Propagation transients of sine-waves at time t = 104

for different frequencies: (a) ω = 1.0935, (b) ω = 2.5890, (c) ω =
2.9269, and (d) ω = 3.6. Simulation data for random spring networks
with n = 50, m = 1, cl j = 1, and 〈k〉 = 4.4; node displacements are
oriented along the z axis (see color chart on the side).

network are thus consistent with the analytical result reported
in Fig. 2(b) of the main text.

(ii) Phonon band gap, �ω, versus the average degree, 〈k〉.
Figure 10 shows the propagation transients of a sine-wave of
frequency ω = 2.0943 for two networks, respectively, with
〈k〉 = 4.0 and 5.2. From Fig. 2(c) of the main text and Fig. 7,
we know that ω = 2.0943 falls in the range of the extended
modes for 〈k〉 = 4.0, but in band gap for 〈k〉 = 5.2. One
verifies that all network nodes are excited in panel (a), but
none in panel (b). This confirms that the phonon band gap,
�ω, in disordered networks can be widened by increasing the
average degree, 〈k〉.

(iii) Phonon band gap, �ω, versus the assortativity co-
efficient, r. Figure 11 shows the propagation transients of
sine-waves in networks with different assortativity coeffi-
cients: (a),(b) ω = 2.0862 and 〈k〉 = 4.8; (c),(d) ω = 2.1398
and 〈k〉 = 5.2. According to the theoretical results in Fig. 4(c)
of the main text, ω = 2.0862 in Figs. 11(a) and 11(b) falls in
the band gap for r = −0.3, and in the range of the localized
modes for r = −0.05. On the other hand, all nodes are at
rest in Fig. 11(a) and only a few are excited in Fig. 11(b).
Moreover, for the network with 〈k〉 = 5.2, Figs. 11(c) and

FIG. 10. Propagation transients of a sine-wave of frequency ω =
2.0943 at time t = 104 in random spring networks with (a) 〈k〉 = 4.0
and (b) 〈k〉 = 5.2. Simulation data for random spring networks with
n = 50, m = 1, and cl j = 1; node displacements are oriented along
the z axis (see color chart on the side).
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FIG. 11. [(a),(b)] Propagation transients of a sine-wave of fre-
quency ω = 2.0862 at t = 104 in a random network with 〈k〉 = 4.8
and (a) r = −0.3, (b) r = −0.05. [(c),(d)] Same as in [(a),(b)] but for
ω = 2.1398, 〈k〉 = 5.2, and (c) r = −0.4, (d) r = −0.2. Simulation
data for random spring networks with n = 50, m = 1, and cl j = 1;
node displacements are oriented along the z axis (see color chart on
the side).

11(d), the frequency ω = 2.1398 is in the band gap for r =
−0.4, and in the range of the localized modes for r = −0.2.
Again, no network nodes are excited in Fig. 11(c), and only
a few in Fig. 11(d). In conclusion, simulations for networks
with different values of 〈k〉 confirm that the phonon band
gap, �ω, of disordered networks shrinks upon increasing the
assortativity coefficient, r, for a fixed value of 〈k〉.

(iv) Cutoff frequency, ωmax, versus the average degree, 〈k〉.
Figure 12 shows the propagation transients of a sine-wave
of frequency ω = 3.393 in two networks, respectively, with
〈k〉 = 4.2 and 5.8. According to the theoretical results in
Fig. 2(b) of the main text and Fig. 7, ω = 3.393 lies above
the cutoff frequency for 〈k〉 = 4.2, but in the localized mode
range for 〈k〉 = 5.8. Correspondingly, no network nodes are
excited in Fig. 12(a), but most of them are in Fig. 12(b), which
confirms that the cutoff frequency, ωmax, is an increasing func-
tion of average degree, 〈k〉.

(v) Cutoff frequency, ωmax, versus the assortativity co-
efficient, r. Figure 13 shows the propagation transients of
sine-waves in networks with different assortativity coeffi-
cients: (a),(b) ω = 3.2662 and 〈k〉 = 4.8; (c),(d) ω = 3.3171

FIG. 12. Propagation transients of a sine-wave of frequency ω =
3.393 at time t = 104 in random spring networks with (a) 〈k〉 = 4.2
and (b) 〈k〉 = 5.8. Simulation data for random spring networks with
n = 50, m = 1, and cl j = 1; node displacements are oriented along
the z axis (see color chart on the side).

FIG. 13. [(a),(b)] Propagation transients of a sine-wave of fre-
quency ω = 3.2662 at t = 104 in a random network with 〈k〉 = 4.8
and (a) r = −0.3, (b) r = −0.05. [(c),(d)] Same as in [(a),(b)] but for
ω = 3.3171, 〈k〉 = 5.2, and (c) r = −0.4, (d) r = −0.2. Simulation
data for random spring networks with n = 50, m = 1, and cl j = 1;
node displacements are oriented along the z axis (see color chart on
the side).

and 〈k〉 = 5.2. According to the theoretical results in Fig. 4(b)
of the main text and Fig. 7, ω = 3.2662 in Figs. 13(a) and
13(b) lies above the band gap for r = −0.3, and in the range
of the localized modes for r = −0.05. On the other hand, all
nodes are at rest in Fig. 13(a) and only a few are excited
in Fig. 13(b). Moreover, for the network with 〈k〉 = 5.2,
Figs. 13(c) and 13(d), the frequency ω = 3.3171 falls within
the band gap for r = −0.4, and in the range of the localized
modes for r = −0.2. Again, no network nodes are excited in
Fig. 13(c), and only a few in Fig. 13(d). These results prove
that the cutoff frequency, ωmax, of a network of given 〈k〉 can
be raised by increasing the assortativity coefficient, r.

FIG. 14. Dependence of the network spectral properties on its
size, N . (a) ω vs λ for N = 30 × 30 and different 〈k〉. (b) ω vs λ for
N = 70 × 70 and different 〈k〉. (c) �ω vs 〈k〉 for different N . Aver-
ages were taken over 20 network realizations with fixed 〈k〉. (d) ω vs
λ for N = 30 × 30 and different r. (e) ω vs λ for N = 70 × 70 and
different r. (f) �ω vs r for different N . Averages were taken over 20
network realizations with fixed r.
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FIG. 15. Eigenmode inverse participation ratio of random spring
networks vs the eigenfrequency, ω, for different r: (a) r = −0.40,
(b) r = −0.35, (c) r = −0.30, and (d) r = −0.25. Simulation data
for spring networks with n = 50, m = 1, and cl j = 1.

7. Pseudodispersion relation and phononic band gap
for different system sizes

Figure 14 shows the pseudodispersion relation, ω(λ), and
the phononic band gap, �ω, versus the network average
degree, 〈k〉, and assortativity coefficient, r, for different
system sizes. Our results indicate that the width of �ω slightly
decreases with increasing the system size, while other param-
eters remain unchanged, thus confirming that the band gap
is primarily determined by the intrinsic characteristics of the
networks.

8. Eigenmode inverse participation ratio of random spring
networks for different assortativity coefficient r

The dependence of the eigenmode inverse participation
ratio, P−1

ω , versus the mode eigenfrequency, ω, for random

(a)

(b)

(c)

FIG. 16. [(a),(b)] Tailoring of the network phonon bands. The
plane waves (red waves) with frequency falling inside the band gap or
above the cutoff frequency are reflected at the interface (blue waves)
after being injected into the network [panel (a)]. After adjusting the
topological structure of the network, its phonon band is modified so
as to allow previously reflected waves to propagate through [panel
(b)]. (c) Vibrational energy harvesting. A point defect is created
inside a random spring network, and a phonon mode localized around
it resonates. The defect mode vibration energy can be converted into
electrical energy by placing a piezoelectric probe in contact with the
defect.

spring networks of increasing average degree, is illustrated in
Fig. 15. The results demonstrate that as the assortativity coef-
ficient r increases, the localization intensity of high-frequency
phonons progressively weakens.

9. Applications

Due to its intriguing properties, our random spring network
model has found applications in various fields that involve
the manipulation of phononic properties and elastic wave
propagation in disordered materials. By leveraging the unique
properties of disordered networks, we can advance various
technologies and contribute to the development of innovative
materials and devices [as shown in Fig. 16].
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