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Urban transport systems are gaining in importance, as an increasing share of the global population lives in
cities and mobility-based carbon emissions must be reduced to mitigate climate change and improve air quality
and citizens’ health. As a result, public transport systems are prone to congestion, raising the question of how
to optimize them to cope with this challenge. In this paper, we analyze the optimal design of urban transport
networks to minimize the average travel time in monocentric as well as in polycentric cities. We suggest an
elementary model for congestion and introduce a numerical method to determine the optimal shape among a set
of predefined geometries considering different models for the behavior of individual travelers. We map out the
optimal shape of fundamental network geometries with a focus on the impact of congestion.
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I. INTRODUCTION

The structure and design of optimal transportation net-
works plays an important role throughout different disciplines,
ranging from biological systems [1–3] to man-made networks
such as hydraulic networks [4,5], power grids [6], and urban
transportation systems [7,8]. The design of a transportation
network is governed by the task it is supposed to perform,
e.g., minimizing the dissipated power in electric networks,
minimizing the cost to build the network or minimizing the
averaged travel time.

Real-world supply and transportation networks display a
variety of shapes depending on their history, their task, and
their surroundings [9–11]. For example, in the case of urban
transport systems, the design of the network may depend on
the city size and the degree to which cities are historically
grown or centrally planned [12]. Although most of them have
grown over decades and were built in several small steps, one
observes several patterns which occur frequently in various
cities and have been analyzed using different topological in-
dicators [13–16]. Building an efficient urban transportation
network becomes increasingly important to reduce individ-
ual traffic which leads to congestion, high emission of green
house gases [17] and adverse effects on air quality and citi-
zens’ health [18].

Congestion is a central topic in traffic research and plan-
ning. Empiric and numerical studies of road traffic show how
vehicle velocities decrease with density up to a complete traf-
fic jam, which is commonly summarized in the fundamental
diagram of traffic flow [19,20]. Methods to manage or opti-
mize traffic flows in a given network are widely studied in
the literature, see, e.g., Ref. [21] for a review. Congestion
effects in public transportation networks have received an
increased interest in recent years [22], where it affects both
travel times [23] and the user comfort [24].
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A variety of models has been developed to analyze and
optimize the structure of transportation networks, including
traffic networks [25–27] as well as other types of technolog-
ical or biological networks [1–6]. Fundamental results have
been obtained for the elementary case of uncongested net-
works, but empirical studies reveal a growing importance of
congestion [28]. Empirical results on how congestion shapes
the shape of cities were presented in [11]. Abstract network
models that explore the impact of congestion on the optimal
structure were introduced in [29,30].

In this paper, we study the impact of congestion on the
optimal shape of transportation networks [26]. We focus on
three fundamental geometries that are frequently observed in
subway or tram networks. Exemplary real world networks
and the corresponding regularized geometries are shown in
Fig. 1: Starting with a regular star shape (e.g., Saint Petersburg
metro), we extend the network by allowing for two additional
geometrical features that occur frequently in subway or tram
networks: a cycle around the city center (e.g., Moscow, Paris)
and the branching of tracks in the outskirts (e.g., Hannover).
For each geometry, we then optimize the network structure
to minimize the travel time from the city to its center for
three radially symmetric models of the population densities
as sketched in Fig. 1(d). Finally, we map out the optimal
geometry as a function of the available resources and the
importance of congestion and analyze the transitions between
different optimal shapes. We note that further modes of trans-
portation exist in many cities which can provide additional
structural features. For instance, bus lines may provide cycle
lines instead of a metro.

Our work builds on a previous article by Aldous and
Barthelemy, which addressed the corresponding problem in
the absence of congestion [26]. We introduce a versatile nu-
merical method to determine travel time in the presence of
congestion and thus choose the best network. Furthermore,
we extend the investigation to polycentric cities and study two
central properties of supply networks: the occurrence of loops
or circle lines and the branching of tracks.
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FIG. 1. Structural patterns in urban transport networks. The geometries of public transport networks feature a large variety of structural
elements leading to very individual shapes. However, some elementary patterns can frequently be observed. In this paper, we discuss the
optimal shape of three of these fundamental patterns: (a) The shape of the Saint Petersburg metro is close to a star network where several
straight lines cross each other only in the city center. This topology can be idealized to a regular star with n isotropical branches of length
lb. (b) The Moscow metro network features in addition a loop track around the city center (red). In this paper, we thus secondly investigate a
regular star extended by a concentric loop with radius rl . (c) The Hannover tram network is a typical example for branching in the outskirts
of the city. To study this type of geometries, we thirdly consider a star network where each branch splits at a distance l1 from the city center
into two subbranches of length l2 which span an angle α. (d) We study the optimal geometries for three different radial symmetric population
density distributions: a homogeneous disk, a Gaussian density and an exponential density. Each red dot represents an inhabitant, which are
randomly distributed according to the respective density function. The black dot marks the city center. Map data based on OpenStreetMap [31].

II. METHODS

The central objective of this article is the structure of opti-
mal transportation networks: Given a limited budget, what is
the optimal shape of the network such that the overall travel
time is minimized? In the following, we will formalize this
optimization problem and introduce several key methods to
solve it.

A. Objective function

Consider a city that is modeled as a two-dimensional area,
such that each point in the city can be described by a vector in
the plane x = (x1, x2)� ∈ R2. We assume that the population
density in the city is described by the function ρ(x) and that
all inhabitants want to travel from their home place to other
places, which are described by a distribution of destinations
ρd (y|x). We may then calculate the average travel time τ for
all journeys in the whole city by integrating over the destina-
tion and population densities

τ =
∫

dx dy τ (x, y) ρ(x) ρd (y|x), (1)

where τ (x, y) is the travel time between two points x and y.
This expression for the average travel time τ is the central
objective to be minimized. The solution of this optimiza-
tion problem depends on the properties of the city [via the

functions ρ(x) and ρd (y|x)] as well as the methods of trans-
portation that determine τ (x, y). In particular, we assume that
the resources are limited, which is quantified by an upper
bound to the total network length L. Hence, we will evalu-
ate the optimal network geometry as a function of the total
network length L throughout this article.

Cities and their spatial structures are complex systems
that are subjects to ongoing research [32]. In classical urban
economics, a fundamental approach to study cities is the
monocentric model [33,34], which assumes that most of the
economic activities are concentrated inside a small area in the
city center, the central business district (CBD). We therefore
focus the first part of the analysis on this fundamental city
model. In the second part, we generalise the analysis for
nonmonocentric cities as many cities reveal a decentralized
and more complex spatial organization [35–38].

Using the model of a monocentric city, we assume that
most travelers want to go to the CBD and travelers seeking
to reach other locations can be neglected. For simplicity, we
assume the CBD to be pointlike and located in the origin 0 of
the coordinate system. The distribution of densities then reads
ρd (y|x) = δ(y). Imposing ρd into Eq. (1), the average travel
time for a monocentric city becomes

τ =
∫

dx τ (x, 0) ρ(x). (2)

044302-2



OPTIMIZING THE GEOMETRY OF TRANSPORTATION … PHYSICAL REVIEW E 108, 044302 (2023)

Thus, it remains to minimize the average timelike distance to
center τ (x, 0) for each traveler.

B. The average travel time in multimodal traffic networks

The average travel time τ is essentially determined by
the available modes of transport and their velocities. In this
article, we assume that there are two modes of transports:
People can either walk or use a transportation network such
as a subway network. Typically, people will have to use both
modes of transport, first walking to the network, then traveling
along the network and then eventually walking again. Hence,
the traveling time τ (x, y) is the sum of the traveling time along
both modes which we will now discuss in detail.

First, people can walk in the plane between any two points
with a constant velocity vw, which we set to 1 in appropriate
units. Assuming that people can walk directly and that no
congestion applies here, the walking time between two points
x and y is simply given by ‖x − y‖/vw, where ‖ · ‖ denotes
the euclidean distance.

Second, people may choose a transportation network, for
example a subway network. This mode is typically faster than
walking but also longer. We assume that travelers seek to min-
imize the total travel time τ , which is obtained by summing up
the travel time along the path on the network.

In this article, we are especially interested in the impact of
congestion within the transportation network on the average
travel time τ and the optimal network structure. Congestion is
taken into account by assuming that the travel time τl along a
link l increases monotonically with the respective flow Fl . In
particular, we assume a linear relation

τl (Fl ) = (a + bFl )dl , (3)

where dl is the length of link l and b a congestion parameter
that is discussed in detail below. The parameter a = 1/v0

is the inverse of the free-flow velocity v0, i.e., the velocity
in the limit Fl → 0. For a subway network, a typical value
for a is a ≈ 1/8, assuming vw ≈ 5 km/h and v0 ≈ 40 km/h.
Throughout this article, we thus use a = 1/8.

The congestion parameter b describes how strongly the
flow Fl increases the physical or equivalent travel time along
a link l . It thus measures how susceptible the network is to
congestion induced delays. The impact of congestion vastly
differs between cities and times of the day (for example, rush
hour versus night). We thus keep b as a free parameter and
show results as a function of b ∈ [0, 4] in units of vw over
the flow density normalized by the city population. To get an
impression of the meaning of this parameter, consider Eq. (3):
The ratio a/b gives the amount of people that need to travel
along a single line to double the travel time. For a = 1/8 and
b = 4, we find that the travel time along a line is doubled when
approximately 3 % of the city population take this line.

Before we proceed, we briefly comment on the fundamen-
tals of the congestion model used in this study. Congestion
effects are intensively studied for road traffic, where different
functional relations τl (Fl ) have been used [39,40]. We can
interpret Eq. (3) as a generic Taylor expansion of these func-
tions up to linear order. In case of heavy congestion, the linear
function will cease to be a good approximation and must
be replaced by a more general function τl (Fl ). Furthermore,

heavy congestion in road traffic typically leads to dynamical
phenomena such that the assumption of a quasisteady flow is
no longer justified. Hence, our results rather apply to the case
of medium congestion.

Congestion is also important in public transportation net-
works [22], where it can affect routing decisions in two ways.
First, congestion can increase the physical travel times due
to denied boarding or irregular vehicle arrivals [23]. Second,
overcrowding reduces the comfort and thus the effective util-
ity of travelers, which may choose alternative routes or modes
of transportation [23,24]. A quantification of these effects is
more involved as in the case of physical traveling times; yet
several studies confirm the impact of congestion on route
choices in public transportation [41–43]. Notably, the effect
of discomfort has been quantified in terms of an equivalent
increase of travel times in empiric studies [44], using a linear
functional relationship as in Eq. (3).

Once we fixed the traffic flow model, it remains to deter-
mine for each traveler the stations where he enters and leaves
the network. In the main part of the manuscript we assume
a “lazy traveler” model, where each traveler uses the station
that is next to his starting point and destination, respectively,
to minimize the length of his walking path. Other routing
strategies are discussed and evaluated in Appendix A. We find
that the results are very similar such that we focus on one
strategy in the main text.

C. Numerical optimization

To solve the integral in Eq. (2) for complex city and net-
work shapes, we developed a versatile method that evaluates
the average travel time τ using a discretization of both the
network, the starting points and the destinations. In particular,
the solver proceeds as follows (cf. Fig. 2):

(1) Draw N starting points at random according to the
population density ρ(x).

(2) Place destinations according to the current model of
the city structure by drawing at random from the distribution
ρd (y|x).

(3) Add stations for entry and exit to a given network.
Place one station in the center [blue circle in Fig. 1(b)].
Proceed outward on the radial branches and place stations in
intervals of length �l . Add one additional station at the end of
the radial branches. If the network contains a loop or branches,
a station is added at each crossing point. Further stations are
added along a loop such that their mutual distances are equal
and as close to �l as possible.

(4) Routing: Compute the optimal path to the destination
for each starting point according to the corresponding routing
strategies. Travelers can only access or leave the network at a
station. Thus, we seek the station for each traveler where they
enter and leave the network.

(5) Compute the flow Fl and the resulting travel time τl (Fl )
for every segment l of the network, that is a connection
between neighboring stations. The flow Fl is directly propor-
tional to the number of travelers using this segment of the
network.

(6) Sum up the traveling times for each starting point to
obtain τ = τw + τs. While the average walking time τw equals
the Euclidean distance from each starting point to its access
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FIG. 2. Main steps of the simulation scheme. (a) The origin and
destination of each traveler (red diamonds) is drawn at random from
the distributions ρ(x) and ρd (y|x). (b) The network (black lines) is
initialized using one of the three geometries shown in Fig. 1 and
stations (blue disks) are placed along the network. (c) The traveler
chooses a path (red line) from origin to destination according to a
specified routing strategy. Finally the travel time is computed tak-
ing into account the effect of congestion, and summed up over all
travelers.

station of the network plus the distance from the exit station
to the destination in appropriate units. The average travel time
τs inside the network is the sum of the travel time τl for each
segment l of the network multiplied with the local flow Fl .

Further details of the numerical solver are described in Ap-
pendix C. Throughout the paper, we use �l = 0.05 r0, which
corresponds to a station distance �l ≈ 500 m for a city of size
r0 ≈ 10 km.

We note that all users individually compute an optimal
path. Traffic research generally distinguishes between user
equilibrium traffic and system optimal traffic, which do not
necessarily coincide [45]. Routing decisions in equilibrium
are generally affected by the decisions of all other travel-
ers, which is not included in the current simulation. It has
been checked for selected cases that this simplification does
not have a significant effect for the given elementary net-
work structures. The computation is substantially complicated
when stochastic fluctuations or traffic information is taken
into account [45,46]. Furthermore, we note that in real public
transportation networks stations are typically not placed at
a constant distance but locations are adapted to the demand.
The optimal placement of stations is beyond the scope of this
paper.

D. Population densities

As the optimal network shape depends on the distribution
of the population in the city, we performed the optimization

for three different radial symmetric population density func-
tions ρ(r) as shown in Fig. 1(d):

(1) compact homogeneous disk with a constant density up
to a distance r0 from the city center with ρhom(r) = ρ0 �(r0 −
r), where � denotes the Heaviside step function;

(2) Gaussian density with ρgauss(r) = ρ0 exp(−r2/r2
0 ),

where a small part of the population is located further away
from the city center; and

(3) exponential density with ρexp(r) = ρ0 exp(−r/r0),
which yields a widely spread population.

The prefactor ρ0 is chosen such that the overall population
is normalized to

∫
ρ(r) dr = 1. The factor r0 classifies the

typical scale of the city. Throughout this manuscript, we set
r0 = 1 and express all lengths in units of this parameter. For
real cities, the value of r0 typically lays in the order of a few
kilometres. We note that the exponential distribution is com-
monly regarded as the best model for the population density
of a city, based on both empiric investigations and theoretic
economic models [47].

E. Travel time without a network

To quantify the benefits of a transportation network, we
compare the average travel time to the case without any trans-
portation network.

In a monocentric city without a transportation network,
we have τ (x, 0) = ‖x‖/vw and the integral in Eq. (2) can be
evaluated in closed form for the three different models of the
population density

τ0 = 2π

∫ ∞

0
dr r2 ρ(r) =

⎧⎪⎨
⎪⎩

2
3 r0 homogeneous disk,
2r0 Gaussian,
π
2 r0 exponential.

(4)

The ratio τ̂ = τ/τ0 ∈ [0, 1] is the reduction of the average
travel time by the network and thus quantify its effectiveness.
We therefore use τ̂ as a measure of network performance
throughout this paper.

III. RESULTS

A. Optimal shape of a regular star network

We first analyze the optimal geometry of a regular star
network without loops and branching. The Saint Petersburg
metro is an example for such a network as visualized in
Fig. 1(a). The geometry is optimized by choosing the num-
ber of branches n such that, for fixed total length L of the
network and congestion parameter b, the averaged travel time
τ assumes its minimum. The results are plotted in Fig. 3 over
the network length L.

As expected, both the optimal number of branches
n	 [Figs. 3(a)–3(c)] and the corresponding branch length
l	
b = L/n	 [Figs. 3(d)–3(f)] increase with the amount of avail-

able resources L. The optimal length l	
b increases rapidly

at first and then saturates, where the saturation level differs
strongly for three models of the population density ρ(x). In
the homogeneous disk model, all travelers start at a distance
below r0 such that a track outside this radius will not be used.
Hence, the optimal length l	

b converges to r0 from below. In
the Gaussian model, the population density drops rapidly for
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FIG. 3. Impact of congestion on optimal star geometries. We plot
the optimal parameters for a regular star network [cf. Fig. 1(a)]
over the network length L for different values of the congestion
parameter b (color code): (a–c) The optimal number of branches
n	, (d–f) the corresponding branch length l	

b = L/n	, and (g–i) the
optimal averaged travel time τ 	. We use the “lazy traveler” model for
routing and compare three different models of the population density
[cf. Fig. 1(d)]. We find that the optimal branch length l∗

b saturates
depending on the population density model. Congestion favors more
and shorter branches over fewer and longer ones.

r > r0 such that l	
b saturates for values slightly above 1. In

the exponential model, the population density decreases much
slower. Hence, l	

b also saturates slower and at higher values. In
contrast the optimal number of branches n	 does not saturate
and grows almost proportionally with L. This implies that,
with limited resources, one should first invest in the elongation
of existing lines and only then invest into building new lines.
In the following, we will mostly restrict our analysis to one
population density for the sake of clarity.

When varying the congestion parameter b, we find that
n	 increases with b and, consequently, l	

b decreases. Since a
growing congestion adds a penalty for strong flows on single
branches, it is reasonable that in the presence of congestion
more and shorter branches are preferred over fewer longer
ones. Notably, congestion in real networks depends also on
the frequency and capacity of trains, which is assumed to be
constant in the current model.

B. Benefit-cost ratio for a regular star

In most applications, not only the optimal shape of the
network needs to be determined but the benefit-cost ratio must
also be evaluated to decide whether an investment is worth it.

FIG. 4. Cost benefit ratio for network expansion. The cost ben-
efit ratio g(L) = −dτ 	/dL for an optimal star generally network
decreases with the network length L. In the presence of congestion,
g(L) is smaller for short network, but decreases slower with increas-
ing L. Hence, extending the network becomes increasingly beneficial
with higher levels of congestion, i.e., g(L) increases with b, when the
network is already large (L 	 r0). We use the Gaussian population
density model and the “lazy traveler” model.

We assume that the construction costs are proportional to the
length L of the transportation network and define the benefit
as the reduction of the optimum averaged travel time τ 	. The
marginal

g(L) := −dτ 	

dL
(5)

then gives the benefit-cost ratio for enlarging the network. The
minimal averaged travel time τ 	 is plotted in Figs. 3(g)–3(i) in
units of the averaged travel time in absence of the network τ0.
The corresponding benefit-cost ratio (5) is shown in Fig. 4 for
the Gaussian population density.

For small networks, we find a high benefit-cost ratio while
this value decreases approximately exponentially with grow-
ing networks, i.e., the longer the network, the less benefit we
get from adding a unit length to the network. Considering
congestion, we find that, with L fixed, τ 	 grows with the
congestion parameter b as a consequence of the reduction of
speed within the network due to congestion. Therefore, the
benefit-cost ratio g(L) is lowered in the presence of congestion
for short networks. In the case of long networks, however, we
find that the benefit-cost ratio is increased by b. Nevertheless,
the total benefit, i.e., the value of τ 	, is always lower for
stronger congestion [cf. Figs. 3(g)–3(i)]. Thus, when building
a network from scratch, the presence of congestion always
lowers the benefit for a given investment. However, if an
existing network should be enlarged, then congestion might
even increase the benefit for a given investment.

C. Optimal loop radius

In the next step, we investigate a modification of the simple
star network by adding a loop track around the city center as
sketched in Fig. 1(b), which is commonly observed in real
public transportation networks such as the Moscow metro,
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FIG. 5. Transition from nonloopy to loopy transportation networks is discontinuous. We plot the optimal parameters for a star with a
concentric loop [cf. Fig. 1(b)] over the network length L for different values of the congestion parameter b using the Gaussian population
density. the number of branches n is kept fixed in the optimization. (a) The optimal loop radius r	

l jumps at a critical network length Lcrit

from zero (no loop) to a finite value. (b) Correspondingly, the optimal branch length l	
b is also discontinuous at this point. (c) The critical

parameter Lcrit is also discontinuous when varying the congestion parameter b: For a critical value bLc of the congestion parameter Lcrit jumps
from a finite value to zero. (d) When considering the saturation values of r	

l in the limit of large networks, denoted by R	
l , we also find a

sharp transition from a “low-congestion” to a “high-congestion” phase around a critical congestion parameter bR	
l
. In this case, however, the

transition is much smoother compared to the transitions in panels (a–c). (e) When plotting the averaged travel time τ over the loop radius rl ,
we find an explanation for the discontinuity of r	

l : Increasing L flattens the τ (rl ) curve until at the critical length Lcrit , the minimum of the curve
flushes from rl = 0 to a finite value. (f) While bR	

l
scales linearly with the number of branches n, we find bLc ∝ n2.5.

the Paris metro and the Cologne tram network. We use the
numerical approach introduced in the Sec. II to determine the
averaged travel time τ . A regular star network with a loop is
parametrized by two quantities: the number of branches n and
the radius of the loop rl . Given the total length of the network
L, the branch length lb is then determined by

L = nlb + 2πrl ⇒ lb = L − 2πrl

n
. (6)

To find the optimal values of the geometrical parameters n	

and r	
l , we have scanned the parameter space and selected the

values which minimize τ . As before, we analyze the results
in dependence of the available resources L and the congestion
parameter b.

The first important finding is that a pure star network is
always superior to a loopy network for given resources L
and a monocentric city. When optimizing over both n and rl ,
we always find the optimal loop radius r	

l = 0. This result
is a direct consequence of the specific optimization prob-
lem considered in this paper: All travelers want to go to the
city center, such that loopy lines oriented orthogonal to this

direction are not present in an optimal network. Many real
public transportation networks do however feature loops to
facilitate travel between other positions than the city center, cf.
Sec. III E.

Nevertheless, when considering n to be fixed we find for
certain parameters a finite value for the optimal loop radius.
Thus, if the number of branches n is fixed, then there are
parameter settings where including a loop into the network
becomes beneficial. Such a situation can occur in practical ap-
plications where the geographical situation or the structure of
the city might bias the choice of n but also where a star shaped
network is already present and space for further branches is
not available. Then the question arises if the budget should
be fully invested to extend the existing branches or if a loop
should be established.

We now further investigate this scenario and fix n = 4 in
the following. Furthermore, we focus on the Gaussian popula-
tion density and the “lazy traveler” model, as all other models
yield qualitatively similar results. The optimal loop radius r	

l
as well as the corresponding branch length l	

b in this case are
plotted in Figs. 5(a) and 5(b).
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Most importantly, we find a discontinuous transition for the
optimal network shape. For short networks L < Lcrit , the opti-
mal structure is again a pure star with r	

l = 0. As L increases
above a critical value Lcrit , the loopy network becomes supe-
rior and the optimal value r	

l becomes nonzero. Remarkably,
the transition is discontinuous in the sense that the optimal pa-
rameter r	

l jumps at Lcrit—i.e., the loop comes into being with
a nonzero radius. Correspondingly, the optimal branch length
l	
b jumps around Lcrit to a lower value as parts of the resources

are now needed for the loop. For L > Lcrit , the optimal radius
r	

l increases with L to some extent and then saturates at a value
Rl := limL→∞ r	

l . We note that such a discontinuous transition
was already observed by Aldous and Barthelemy [26] and
rigorously established for a different type of optimal networks
by Kaiser et al. [6].

The discontinuity can be explained by plotting the aver-
aged travel time τ (rl ) as a function of the loop radius rl . For
n = 4 and b = 1 fixed, Fig. 5(e) visualizes these curves for
different network lengths L around the critical network length,
which is in this case Lcrit ≈ 4 r0. For L < Lcrit , the curves τ (rl )
are strictly monotonically increasing such that the minimum is
always located at rl = 0. At L = Lcrit , the curve becomes flat
around rl = 0. For L > Lcrit , the curves τ (rl ) have a negative
slope around rl = 0 and a new minimum emerges for positive
values of rl .

The saturation loop radius Rl and the critical network
length Lcrit are further investigated in Figs. 5(c) and 5(d).
Both quantities depend on the number of branches n and the
congestion parameter b. In both cases, we can distinguish a
low- and a high-congestion phase with relatively stable values
and very sharp transitions from one phase to the other. In
the low-congestion phase, the saturated loop radius satisfies
Rl ≈ r0. That is, the loop is established in the outskirts of
the city if the available resources permit. We conclude that
the prime function of the loop is to collect travelers from
locations in the outskirts far away from the radial branches.
In the high-congestion regime, the loop is established much
closer to the city center (Rl is much smaller than r0), pointing
to a very different function of the loop.

We further investigate the transition points between the
low- and the high-congestion phase. We define the critical
congestion parameters bLc and bR	

l
as the points were the neg-

ative slopes of Lcrit (b) and R	
l (b), respectively, assume their

maximum. Remarkably, the critical values do not agree and
show a different scaling behavior with the number of branches
n. We find a linear scaling for bR	

l
∝ n and a nonlinear scaling

bLc ∝ n2.5 with the number of branches n shown in Fig. 5(f).
The linear scaling of bR	

l
is a consequence of the choice of

units. While we define the population of the entire city as a
unit of traveler, the total population within the catchment area
of a single branch is just 1/n of the city population. Thus, the
flow on a branch scales with 1/n and therefore the impact of
congestion does, too. As a consequence, the critical value of
the congestion parameters should scale with n. The reason for
the nonlinear scaling of bLc is subject to further research.

D. Branching

As a second extension to the simple star network, we
consider a splitting of the branches at a distance l1 from the

center [cf. Fig. 1(c)]. Such a pattern allows the network to
better reach the outskirts by saving costs through the sharing
of tracks close to the city center, where neighboring branches
are close to each other. The network shape in this case is
characterized by three parameters: the number of branches n,
the length of the inner branch l1, and the angle α between the
split branches. The length of the outer branches is then given
by

l2 = L − nl1
2n

. (7)

The optimal parameter values are again determined using the
numerical method introduced in Sec. II and a scan of the
parameter space.

When optimizing over n, we again find the optimal geome-
try to be always a regular star. As in the preceding section, we
thus consider the scenario of a fixed number n. We conduct
the discussion here for n = 5 and the homogeneous popula-
tion density. Given a certain amount of resources L we now
have the decision whether to enlarge or split the branches to
better cover the outskirts of a city. Keeping n fixed, we can
distinguish three optimal shapes:

(1) n star: for small networks with L < L1, the optimal
length of the outer branches l	

2 is zero, i.e., the optimal shape
is a regular star with n branches,

(2) Branching: for intermediate networks with
L1 < L < L2, we find both l	

1 and l	
2 to be nonzero, i.e.,

the optimal geometry contains branching,
(3) 2n star: for large networks L > L2, the length of the

inner branch l	
1 diminishes and the angle spanned by the

branches becomes α = 360◦/2n, i.e., the optimal network
corresponds to a regular star with 2n branches.

The optimal geometry parameters l	
1 , l	

2 and α are plotted
in Figs. 6(a)–6(c) over the network length L for different
values of the congestion parameter b. The corresponding op-
timal shape for each combination of L and b is visualized in
Fig. 6(d). In contrast to the loopy case (cf. Fig. 5), we observe
smooth transitions from one shape to another in the branching
case: When passing the critical network length L1, the outer
branch length l	

2 starts growing linearly with L without any
significant jumps. Similarly, l	

1 linearly diminishes when ap-
proaching L2. Thus, both phase transitions are continuous in
this geometry.

Considering the phase diagram in Fig. 6(d), we find that
both critical values L1 and L2 decrease with growing con-
gestion parameter b until they both vanish, L1 = L2 = 0, for
b ≈ 2.5. Beyond these values of b, the regular star with n = 10
branches is always superior to both other shapes. This be-
havior is consistent with our previous results on regular star
networks. For large values of b, it is more important to dis-
tribute travelers onto many lines to mitigate congestion than
to supply the outskirts of the city. Hence, congestion favors
more and shorter branches over fewer longer ones.

We further quantify the dependence of the critical network
lengths L1 and L2 on the choice of n. Empirically, we find that
the impact of b scales with n−4/3 while for b fixed, both L1 and
L2 scale linearly with n. We thus deduce the scaling laws

L1(n, b) ≈ (n − 2)L̃1(b/n4/3),

L2(n, b) ≈ (2n − 1)L̃2(b/n4/3),
(8)
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FIG. 6. Transitions in optimal branching topologies are continuous. We plot the optimal parameters for a star with branching [cf. Fig. 1(c)]
over the network length L for different values of the congestion parameter b using the homogeneous population density and fixing the number
of branches to n = 5. (a, b) Contrary to the loopy topology (cf. Fig. 5), we observe continuous transitions from one shape to another as both
the optimal inner branch length l	

1 and the optimal outer branch length l	
2 are smooth functions of L. (c) For long networks, the optimal opening

angle α	 spanned by the outer branches converges to 360◦/2n as l	
1 goes to zero, i.e., the branching topology passes into a regular star with

2n branches. (d) The phase diagram for the optimal shape at each point in the L–b plane reveals the impact of congestion: the stronger b, the
smaller the critical network lengths at with the optimal geometry switches from one shape to another. We can spot a critical value of b ≈ 2.5
above which the regular star with n = 10 branches is optimal for all L. When comparing this geometry with the loopy case, we find branching
to be always superior to the loop.

with univariate functions L̃1,2. Indeed, plotting L1/(n − 2) and
L2/(2n − 1) as a function of b/n4/3 the function largely col-
lapse to L̃1,2 as shown in Fig. 7. The reason for this empirically
found scaling is subject to further research.

Considering the optimal angle α	 between the outer
branches plotted in Fig. 6(c), we find that for small l2, the
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FIG. 7. Impact of congestion on the critical network length L1,2.
The numerical functions L1(n, b) and L2(n, b) largely collapse when
they are plotted vs b/n4/3 and rescaled by (n − 2) and (2n − 1),
respectively. We thus conclude the scaling laws given in Eq. (8).

angle starts at a large value and smoothly decreases to α̃	 =
360◦/2n for l1 → 0. Thus, the longer the outer branches, the
closer they should lay together, but in any case the angle
between them should be larger or equal to the angle of neigh-
boring branches in a 2n star.

E. Optimizing transportation networks in polycentric cities

Many cities reveal complex spatial structures, that are
shaped by a variety of parameters. In particular, growing
cities typically experience a transition from a monocentric
to a polycentric structure, which is strongly related to the
limitation of traffic networks [37]. New subcenters or central
business districts (CBDs) emerge at a certain distance, often
where radial and peripheral highways cross each other (see,
e.g., Ref. [36])

Here, we generalise our analysis using a model for poly-
centric cities. Besides the CBD in the city center, Nc additional
activity centers are isotropically distributed around the CBD
at a distance Rc. In this model, we thus have 1 + Nc possible
destinations for each traveler. We assume, that every traveler
still wants to go to exactly one destination, which can be
thought of, for instance, as the location of his working place.
The precise mapping of each traveler’s origin and destina-
tion depends on a variety of factors and is subject to current
research [38]. Here, we assume the well established gravity
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FIG. 8. Destination mapping using the gravity model. In a city
with a population density that decays exponentially with the distance
from the city center, each inhabitant is mapped to exactly one des-
tination using the gravity model given in Eq. (9). Destinations are
visualized as diamonds of different color. Each inhabitant is shown
as a dot colored according to his destination.

model [48], where the probability ρd (y|x) of a traveler living
at x getting mapped to a destination at y is proportional to the
inverse of their Euclidean distance

ρd (y|x) ∝ 1

||x − y|| . (9)

In Fig. 8, the mapping is visualized for a city with an expo-
nential population density and Nc = 6 subcenters at a distance
Rc = r0 from the center.

We now investigate the impact of additional subcenters
on the optimal loop radius compared to the monocentric city
discussed in Sec. III C. We keep the number of subcenters
Nc = 6 fixed but vary their distance from the city center. The
symmetry of this city suggests to implement a network with
n = Nc = 6 branches that are placed such that each branch
points into the direction of a subcenter. We thus focus the
discussion on a star-shaped network with six branches plus
a single loop around the city center. In particular, we consider
the optimal loop radius r∗

l for different values of Rc Fig. (9a).
We note that the monocentric case is equivalent to Rc = 0. To
keep the analysis clear, we here discuss only the uncongested
scenario b = 0.

We find that a pure star network is the best choice if the
available resources are sparse, that is, if the total network
length L is below a critical value Lcrit . Remarkably, the critical
value Lcrit for the emergence of a loop is largely independent
of the position of the subcenters Rc as long as they exist
(Rc > 0).

If L is increased beyond Lcrit , the optimal loop radius r∗
l

rapidly increases to match the position of the subcenters Rc.
This finding is intuitive as travelers can now use the loop
track and exit the network directly at a respective subcenter.
In the numerical results, we thus find a plateau where r∗

l = Rc.
For even higher value of L, the loops leaves the subcenters
and r∗

l increases beyond Rc before it finally saturates. In this
regime, the loop track provides an improved accessibility to

(a) (b)

FIG. 9. Optimal loop radius in a polycentric city. Assuming a
city with Nc = 6 subcenters at a distance Rc from the city center,
we optimize the parameters of a network with n = 6 radial branches
and one loop. (a) The optimal loop radius r	

l is plotted over the total
network length L for different values of Rc. The gray area marks the
parameter range that would correspond to a disconnected network
where the network branches do not reach the loop, i.e., where rl > lb.
(b) The corresponding optimal branch length l	

b is plotted over the
network length L. We assume an exponential population density and
the “lazy traveler” model.

the network for travelers from the outskirts of the city. The
benefits of this effect outweighs the benefits of the direct
access to the subcenters.

IV. DISCUSSION

In this article, we have analyzed the optimal shape of
transportation networks for multimodal urban traffic in the
presence of congestion. We have focused on three elementary
network structures to quantify fundamental characteristics of
optimal networks and the role of congestion. In the case where
all travelers travel to the city center, a regular star network is
always superior to a network with loops or branches in terms
of overall travel time. However, this strict result only holds if
the number of branches n can be freely adapted as the network
is extended. In practice, multiple geographic constraints exists
and the question arises whether one should rather invest into
simple line extensions, branches or an additional loop track.
Our results show that the answer to this question strongly
depends on the available resources and the importance of
congestion.

Our detailed analysis of loopy and branching networks has
led to four main results:

(i) The optimal shape of a loopy network is subject to
discontinuous transitions. That is, the optimal loop radius r	

l
varies discontinuously, jumping from zero to a finite value, as
the amount of available resources L is increased. Remarkably,
strong congestion can qualitatively alter this scenario and even
suppress the discontinuity.

(ii) In contrast, the optimal shape of a branching network
varies smoothly with the amount of available resources L.
In fact, the optimal shape evolves from no branching to fi-
nite branching to complete branching continuously as L is
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increased. Complete branching is always beneficial when the
congestion is dominant.

(iii) Given that we focus on traveling to the city center,
branching networks are always superior to loopy networks.

(iv) Finally, congestion generally favors more and shorter
branches over fewer longer ones. That is, it becomes more
important to distribute the travelers on many lines to mitigate
congestion than to reach the outskirts.

In the future, these general findings should be tested in
more realistic simulation studies. An empirical analysis of the
15 largest metro lines worldwide [13] has revealed a universal
structural pattern including a core and quasi-one-dimensional
lines extending to the periphery. The core is often—but not
always—bounded by a cycle line and branching occurs in
many but not all periphery lines.

We believe that the value of our approach lies not only in
the general results, but also in the developed methodology. We
have introduced a model for congested multimodal transporta-
tion systems, extending prior studies such as Ref. [26]. To
account for the mathematical complexity of the optimization
problem, we have developed a versatile numerical simulation
framework, which can easily be adapted to a wide range of
network geometries as well as different population densities,
routing strategies and congestion models. A distinguished
feature of our simulation model is that it includes the actual
routing strategies of individual travelers. In the current study,
we did not find a significant impact of the different strategies
on the optimal network shape. However, when considering
more complex scenarios, the routing behavior might gain
importance. In the case of concurrent congested transport
networks, where other modes of transport such as street traffic
are present, congested networks have been shown to be prone
to paradoxical behavior, where an extension of infrastructure
actually increases congestion [49]. The proposed simulation
model can be readily extended to investigate such phenomena
and to include other nonlinear congestion models.
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APPENDIX A: ROUTING STRATEGIES

The travel time τ from a starting to a terminal point is
determined by the chosen path. In general, travelers seek to
minimize τ , but different constraints apply leading to slightly
different routing strategies listed below. In all cases we as-
sume that the traveler has no actual information about the
load of the network. Hence, routing decisions are based on
the travel times for Fl = 0.

(1) Fast traveler model: The traveler aims to minimize his
individual travel time. He is free to move in the plane and
chooses the entry/exit stations such that the sum of the travel
times for walking and network travel assumes a minimum.

(2) Lazy traveler model: The lazy traveler aims to mini-
mize the walking time. Hence, he always uses the entry/exit

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25
0

0.05

0.1

0.15

0 5 10 15 20 25

τ
/
τ 0

L/r0

g
( L

)
τ 0

/
r 0

L/r0

0

1

2

3

4

b

(a) (b)

FIG. 10. Comparison of different routing strategies. We plot
(a) the optimal travel time and and (b) the cost-benefit ratio for
different routing strategies: Results for the “lazy traveler” and the
“fast traveler” are visually indistinguishable (dashed lines). Optimal
travel times in the “polar grid model” are slightly higher. Results are
shown for the Gaussian density.

stations that are nearest to his starting or terminal point,
respectively.

(3) Polar grid model: We finally consider a model where
travelers can only use a polar street grid. In this case, travelers
will first walk inward on a radial path until they reach the ra-
dial distance of the closest access point to the network. Then,
they follow the spherical path to this point to enter the net-
work. Using this assumption, we give an analytical expression
for the average travel time in a regular star shaped network
in Appendix B. This model allows for a closed analytic ex-
pression for the average travel time for certain geometries; see
Appendix B.

We find that the results for the “lazy traveler” and the
“fast traveler” are virtually indistinguishable. The “polar grid
model” includes stricter constraints such that the average op-
timal averaged travel time τ 	 is slightly larger and decreases
slower with the network length L. [Fig. 10(a)]. Similarly, the
cost-benefit ration g(L) is smaller for L → 0, and decreases
slower with L as for the other routing strategies. As the polar
grid has been introduced to enable analytic computations, we
focus on the lazy traveler model for all numerical simulations.

APPENDIX B: ANALYTICAL SOLUTION FOR TRAVEL
TIME IN CONGESTED STAR NETWORKS

In this Appendix, we derive analytical expressions for the
averaged travel time τ in a city with a subway network of
length L in the shape of a regular star with n branches using
the “polar grid” routing strategy.

So consider a star network with n branches of length
lb = L/n as depicted in Fig. 1(a). The main step in the solution
of the optimization problem is the computation of τ (x, 0)
given a radially symmetric population density ρ(r). We as-
sume that the network is accessible everywhere, i.e., we do not
discretise this network as in the numerical approach. Further-
more, we assume that each traveler takes the shortest possible
way toward the network following a radial or spherical path.

In the following, we denote the starting point as x =
(x1, x2) in cartesian coordinates or by the radius r and the
azimuth θ in polar coordinates. Furthermore, we can exploit
the symmetry of the problem and consider only a single
branch at θ = 0 and travelers starting in the interval θ ∈
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[−θn/2,+θn/2] with θn = 2π/n. Then the travel time of a
single traveler is written as

τ (x, 0) = dw(x)

vw

+
∫ ds (x)

0

dr

v0(r)
.

The first two quantities, dw and vw denote the distance and
velocity, respectively, that is spent walking which are used to
calculate the time needed to go from x to the closest point on
the network, where the traveler enters the subway. The second
term gives the time spent within the public transportation
network to drive from the access point at the radial coordi-
nate ds(x) to the center along the branch. Using vw = 1 and
v0(r) = (a + bF (r))−1, this becomes

τ (x, 0) = dw(x) + a ds(x) + b
∫ ds (x)

0
dr F (r). (B1)

The flow F (r) on a branch at radial position r is proportional
to the population living in the considered sector at a radial
distance above v. Hence, we obtain the local flow on the
branch by integrating over the population density of the area
in which all travelers contribute to the flow at radius ds

F (r) =
∫ θn/2

−θn/2
dθ ′

∫ ∞

r
dr′r′ρ(r′) = θn

∫ ∞

r
dr′ r′ρ(r′).

(B2)

To proceed further, we have to separate the population into
two parts starting at a radius r smaller or larger than the branch
length lb. A traveler starting at a point with r � lb will go
spherically to the next branch of the transportation network
such that dw = |θ |r and ds = r. Integrating over all starting
points with r � lb yields the contribution

τ1 =
∫ lb

0
dr r

∫ θn/2

−θn/2
dθ τ (x, 0) ρ(r)

= θn

∫ lb

0
dr r ρ(r)

[( π

2n
+ a

)
r

+θnb
∫ r

0
dr′

∫ ∞

r′
dr′′ r′′ ρ(r′′)

]
(B3)

to the total traveling time. A traveler starting further outward
at a radius r > lb will first go inward radially until the traveler
is on the same radial position as the outer end of the trans-
portation network, and then proceed spherically to the branch.
Hence, dw = (r − lb) + |θ |lb and ds = lb and we obtain the
second contribution to the total traveling time,

τ2 =
∫ ∞

lb

dr r
∫ θn/2

−θn/2
dθ τ (x, 0) ρ(r)

= θn

∫ ∞

lb

dr r ρ(r)

[
r +

( π

2n
− 1 + a

)
lb

+ θnb
∫ lb

0
dr′

∫ ∞

r′
dr′′ r′′ ρ(r′′)

]
. (B4)

The total traveling time is then obtained by summing both
contributions τ = n(τ1 + τ2). Solving the integrals for all

three population densities finally yields

τ̂hom(L̂, n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − 3
2 (1 − a) L̂

n + 3
2

(
π
2 + b

)
L̂
n2 + 1−a

2
L̂3

n3

−(
π
4 + b

)
L̂3

n4 + 3b
10

L̂5

n6

, L̂ � n

a + (
π
2 + 4b

5

)
1
n , L̂ > n

τ̂Gauss(L̂, n) = 1 +
( π

2n
+ a − 1

)
erf

(
L̂

n

)

+ b√
2n

erf

(√
2L̂

n

)
,

τ̂exp(L̂, n) =
(

π

2n
+ a + 5

8

b

n

)

−
( π

2n
+ a − 1

)(
1 + L̂

2n

)
e−L̂/n

− b

n

(
L̂2

4n2
+ 3

4

L̂

n
− 5

8

)
e−2L̂/n,

where L̂ = L/r0 is the network length in units of the typical
city size r0. The optimal value of the parameter n	 which min-
imizes τ and the corresponding l	

b = L/n	 is then computed
numerically.

APPENDIX C: NUMERICAL SOLVER
FOR CONGESTED FLOW NETWORKS

In this Appendix, we provide additional details on the
numerical solver which computes the averaged travel time
τ in the city for a given parameterized network geometry.
It determines the optimal parameters for the given network
geometry by scanning the parameter space.

The algorithm can be split into two parts: First, the city
needs to be initialized. Second, for each point in the parameter
space, the network needs to be initialized and routing takes
place. In the following sections we will discuss these steps.
Note, that this algorithm requires fully connected networks.

1. Step 1: Initialization of the city

In our model, some structures of the city do not depend on
the specific implementation of the transportation network, so
that we only need to initialize them once in the beginning and
reuse these structures throughout the scan in the second part.

Namely, these structures comprise the starting point of
each traveler as well as his destination, which are initialized
within the following steps:

(1) Draw starting points. In a first step, we need to gener-
ate a population density distributed according to an arbitrary
population density ρ(x1, x2). We mimic the exact population
density by placing N travelers in the plane using equally dis-
tributed random numbers. To obtain an accurate distribution of
the population, we divide the plane into a grid of sufficiently
small and equally sized cells and assume the population den-
sity to be constant within a single cell. Then, each cell is
associated to a bin in a lookup table, where bin width is
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FIG. 11. Comparison of destination mapping models. Each diamond corresponds to a destination. Travelers are visualized as dots in the
color of the destination they are mapped to. (a) For β = 0, travelers are randomly mapped to a destination, independent of their starting point.
(b) Using a gravity model with β = 1, we observe an agglomeration of travelers close by a destination while still a significant amount of
inhabitants need to travel to other parts of the city. (c) In the limit β → ∞, we obtain extreme segregation where in each part of the city, all
travelers are mapped to the closest destination.

proportional to population density ρ evaluated at the center
of the cell. Once the lookup table is set up, we draw for each
traveler three equally distributed random numbers to deter-
mine his starting point: The first random number determines
via the lookup table the cell, within which the starting point
is located. The second and third number define the position
within this cell.

(2) Draw destinations. In a second step, the destinations
are installed in the city. The number and distribution of
them strongly depends on the underlying model for the city
structure. We thus keep our solver flexible at this point to
allow investigations for various models. We only assume that
according to a model of choice, a set of D destinations is
generated. Several travelers can be mapped to the same des-
tination, so that D can be chosen independently from the
number of travelers N .

In this manuscript, we use a toy model with one destination
in the city center surrounded by Nc subcenters located isotrop-
ically at a distance Rc around the city center. This fundamental
model allows both studying a monocentric city (Nc = 0) and
polycentric cities (Nc, Rc > 0). Note, that the solver easily
can be extended to locate the destinations according to an
arbitrary destination density ρd (y1, y2|x1, x2) in the same way
as it draws the starting points.

(3) Map starting points and destinations. Once all starting
points and destinations are located, it remains to map each
traveler having an individual starting point to a destination.
We assume, that the probability, that a traveler with starting
point �x is mapped to a destination located at �y, decreases with
the Euclidean distance || · || as

ρd (x|y) ∝ 1

||x − y||β . (C1)

This approach allows to study destinations mapping ranging
from completely random mapping for β = 0 to a closest des-
tination mapping for β → ∞. The value of β might depend

again on the underlying models and parameters of the city,
such as the ability of inhabitants to choose their starting
points. In this manuscript, we consider β = 1 corresponding
to the established gravity model [48].

After performing these three steps, we thus have a set of
travelers, each having a starting point and a destination. In
Fig. 11, this situation is visualized for a city with an exponen-
tial population density ρ(x) ∝ e−‖x‖/r0 and a city with Nc = 6
subcenters at a distance Rc = 0.5 r0 from the city center, vi-
sualized as diamonds. Travelers are mapped to a destination
using different values for β and visualized as dots colored in
the color of its destination.

2. Step 2: Initialization of the network

Once the travelers are mapped to a starting point and a
destination, we need to provide a set of possible travel modes
that the traveler can chose from to commute between both
points. In this manuscript, we assume the travelers only have
the choice between:

(1) Walking. Between any points in the plane, travelers can
walk on any path with a constant velocity vw = 1. Thus, the
first possibility for a traveler to reach his destination is to
walk along the straight line that connects his starting point
and destination.

(2) Walking and using the transportation network. Besides
walking, there is a transport network, that allows traveling
along the network edges at a higher velocity, that might differ
between different edges and depend on the local flow due to
congestion. Thus, the second possibility is to walk at speed
vw to an access point of the network, traveling inside the
network to an other access point, and finally walking again
the remaining distance to the destination.

The transportation network is modeled by a set of nodes
which corresponds to stations where travelers can enter the
subway. The nodes are distributed in the plane accord-
ing to the given network geometry with a distance �l to
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neighboring stations along the network branches. In this
paper, we set �l = 0.05r0 which corresponds to a station
distance of �l ≈ 500 m when considering a city with r0 ≈
10 km. Note that in some cases, the distance between neigh-
boring stations might differ from this value, e.g., to place
the last station at the end of a branch. Each station s gets in
addition to its position a list of inflow-destination pairs which
count for each destination the number of travelers entering the
network at this station.

The edges of the network connect the nodes according to
the given network geometry. For each edge of network (r, s)
connecting two stations r and s we have a flow Frs such that
the travel time along this segment reads

τrs = (a + bFrs) drs, (C2)

where drs is the distance of r and s along the network.

3. Step 3: Routing

Once we have initialized both the endpoints of each travel-
ers path and the network, we need in the next step to find for
each traveler the best route to travel to his destination. There

are many different routing strategies that could be applied
to define the best route for an individual traveler, depending
on the travelers preferences, access to information and other
parameters. Here, we consider three routing strategies as de-
scribed in Appendix A. Most numerical results are shown for
the “lazy traveler” model, for which routing consists of two
steps:

(1) Find closest stations. For each starting point and for
each destination, we determine the closest station in the net-
work. Once we mapped each location to a closest station, we
can compute for each station in the network the number of
travelers that would enter the network here, as well as their
target station, that is the closest station to their destination.

(2) Choose path inside the network. Once the entry and
exit station are known for each traveler, the shortest path
within the network can be computed using a standard shortest-
path algorithm.

Once the routing procedure is done, it remains to compute
the number of travelers for every segment (r, s) of the network
to obtain Fr,s and τr,s. Finally, we compute the travel time
for each traveler, which is then averaged over all travelers to
obtain τ .
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