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We study the stationary states of variants of the noisy voter model, subject to fluctuating parameters or external
environments. Specifically, we consider scenarios in which the herding-to-noise ratio switches randomly and
on different timescales between two values. We show that this can lead to a phase in which polarized and
heterogeneous states exist. Second, we analyze a population of noisy voters subject to groups of external
influencers, and show how multipeak stationary distributions emerge. Our work is based on a combination of
individual-based simulations, analytical approximations in terms of a piecewise-deterministic Markov processes
(PDMP), and on corrections to this process capturing intrinsic stochasticity in the linear-noise approximation.
We also propose a numerical scheme to obtain the stationary distribution of PDMPs with three environmental

states and linear velocity fields.
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I. INTRODUCTION

The voter model (VM) [1,2] is a model of interacting indi-
viduals, and can be used to describe, among other phenomena,
the competition of opinions in a population. In the simplest
setting, every agent in the population can have opinion A or
opinion B. The individuals form an interaction network: this
can be a complete graph, or the different agents can have lim-
ited sets of nearest neighbors. The interaction is an imitation
process: an agent is selected at random, and adopts the opinion
of a neighbor, selected randomly as well. Provided the inter-
action network consists of one single connected component,
this model has two absorbing states, in which all agents have
the same opinion (all A or all B). These states are referred to
as consensus states.

The voter model in this simple form was first proposed
by probabilists [2], and has found widespread applications,
including in the modeling of opinion dynamics, language
competition, and in population genetics [3-9]. The VM has
also generated significant interest in statistical physics, with
particular focus on its coarsening dynamics [10,11], field the-
oretic descriptions, and different types of phase transition and
universality [12,13].

So-called “noisy” voter models (nVM) are variations of the
original model. The term “noisy” is used to indicate that, in
addition to the imitation process, agents can also change opin-
ion state spontaneously. Models of this type have been used to
describe people choosing among restaurants, or ants selecting
one of two paths towards a source of food [14,15]. The nVM
has no absorbing states, and shows a finite-size phase transi-
tion [14,16,17]. When the noise is stronger than the herding
mechanism the steady-state distribution is unimodal and the
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system displays coexistence of the two opinions. If the noise
is below a threshold (set by the herding rate and the size
of the population), then the stationary distribution of agents
across the two opinions is bimodal. The system spends most
of its time near one of the consensus states, with occasional
switches from one side of phase space to the other

The models mentioned so far describe homogeneous popu-
lations in which all agents are subject to the same update rules.
In [18,19] agents that never change opinion were introduced.
These are referred to as zealots. The effect of zealots on the
VM is studied, for example, in [19-23]. Further applications
can be found in [24,25]. The presence of zealots can destroy
the symmetry of the steady-state distribution, and the popula-
tion can become biased towards the opinion of the majority of
zealots. Other, related mechanisms include the introduction of
mass media [26] or personal information [27].

The overall purpose of this work is to study the effects of
(i) time dependence of the imitation dynamics, and (ii) time-
dependent external influence on VMs.

More specifically, with regards to (i), we study variants
of the nVM in which the ratio of the noise and herding
rates switches randomly between two different values. There
are thus periods in which the ordering effect of herding is
strong compared to disordering effect of spontaneous opinion
changes, and other periods in which the disordering effects
dominate. In terms of statistical physics this falls into a class
of population dynamics subject to environmental fluctuations,
studied, for example, in [28-37]. We also note recent work
on VM in fluctuating environments [38] where a three-state
constrained VM under fluctuating influence is studied. Fur-
ther, we refer to [39] where the authors study a VM which
switches between phases with and without noise, respectively.
Reference [40] focuses on the effects of correlated external
perturbations on a voterlike model.

With regards to (ii), we introduce groups of agents who are
inert to the herding mechanism (akin to zealots), but who can
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switch opinion states randomly from time to time. We will
refer to these as influencers. This term is to be understood
broadly, in particular, we do not restrict the notion of influ-
encers to individual human actors. Instead, the term captures
different types of external influences on the population of
conventional VM agents, including media, advertising, social
networks, etc., or indeed new information, facts, or events
that arise and drive opinions in a population (e.g., a political
scandal that comes to light). One main feature of our model is
that the effects of influencers are not static, instead it fluctuates
in time.

The objective of this work is thus to understand how fluctu-
ations of the relative noisy rate or of external influences affect
the stationary distribution of the shares of agents holding the
different opinions. At the center of this is the question as to
how demographic noise (due to the finiteness of the popula-
tion), decision noise (random opinion changes), and external
randomness interact.

To address these questions, we use a number of different
approaches from statistical physics. In the limit of infinite
populations, and thus discarding demographic randomness,
the system reduces to a so-called piecewise-deterministic
Markov process (PDMP) [41-44]. The stationary distribution
of such a process can be obtained analytically for the case of
two environmental states (see, for example, [44]). As a by-
product of our work we develop a numerical scheme to obtain
the stationary state of models with three or more environmen-
tal states. Advancing the method of [31] we also compute
corrections to the infinite-population limit. This can be used
to approximate the stationary distribution of the system with
large but finite populations.

Separately, analytical progress is also possible in the adia-
batic limit of fast-switching environment [33]. The opposite
extreme, very slow environmental changes can also be ad-
dressed analytically.

The remainder of the paper is structured as follows. In
Sec. II we define the model, including in particular the dynam-
ics of the environment. Section III contains a description of
analytical approaches for very fast or very slow environmental
dynamics, and, separately, in the large-population limit. In
Sec. IV we study a VM with fluctuating noise parameter.
We obtain analytical results for fast and slow switching and
we present simulation results for intermediate environmental
timescales. Section V focuses on the model with fluctuating
influencers. We present our conclusions and brief outlook in
Sec. VL.

II. MODEL DEFINITIONS AND METHODS
A. Model definitions

We consider a finite population of N individuals. At any
given time, each individual can be in one of two states, which
we label as A and B. We write i for the number of individuals
in state A, and the number of individuals in state B is then
N —i.

The composition of the population evolves in continuous
time via reactions that each convert an individual of type A
into type B, or vice versa. An individual can change state
through three different mechanisms: (i) they can interact with

another individual and copy its state; (ii) they can change state
spontaneously; or (iii) they can interact with an influencer and
thus change opinion. The model operates on a fully connected
graph, that is, any one of the N individuals can copy the state
of any other individual in item (i). Similarly, the interaction
with the influencers is also all-to-all, in the sense that in
item (iii) any influencer can, in principle, affect any of the
N individuals in the population.

In order to model processes (i) and (ii) we follow the con-
ventions of existing literature on the nVM [14,17,21,45]. The
external influence [process (iii)] is represented by “forces”
driving the individuals towards one of the opinion states. We
model these forces as a group of size aN (with @ > 0 a model
parameter). We reiterate that influencers are not necessarily
to be thought of individuals, there is therefore no strict need
to limit N to integer values. Instead, o characterizes the total
strength of all influencers, relative to that of the N agents in the
population. Not all influencers need to act towards the same
state (A or B). Instead, at any one time a fraction z of the aN
influencers acts towards A, and a fraction 1 — z acts in the
direction of opinion B. Naturally, z is restricted to the interval
[0,1].

We assume that the fraction z fluctuates in time. More
precisely, and to allow for a compact notation, we think of the
population dynamics as subject to an external environment,
which can take states 0 =0, 1, ..., S — 1. This environment
determines the fraction z of influencers acting in the direction
of opinion A (that is, z is a function of o), and it can also affect
the noise rate in the dynamics. We will now describe this in
detail.

The per capita rates, in environment o, for an agent in state
A to change to state B and for the reverse process, respectively,
are given by

i) = +h[ N—i ozN(l—Za)]
b = e T GTON T Ut |

N i aNz,
Tp—ac (i) = do +h[(1+o¢)N+ (1+o¢)N:|' (1)

The quantity a, is the rate of spontaneous opinion changes.
We assume that this parameter can take different values in the
different environmental states, as indicated by the subscript .
The coefficient & is what is sometimes called a herding param-
eter, and indicates how easily individuals are influenced by the
opinions of other individuals, including external influencers.
From the above expressions it is clear that only the ratio of the
noise and the herding parameters is relevant for the stationary
state. We can therefore set # = 1 throughout. This amounts
to fixing the timescales of the processes in Eq. (1). For the
time being we will keep the value of & general, though, as this
allows us to track the origin of different terms in the dynamics.

The square brackets in the rates represent processes (i) and
(iii) described above. A focal individual chooses an interaction
partner either from the population of N agents, or from the set
of aN external influencers, and then adopts the opinion of this
interaction partner. A change of the composition of the popu-
lation occurs only if the interaction partners are in the opinion
state opposite to that of the focal individual. The expression
(1 + )N in the denominator in Eq. (1) is the total number
of possible interaction partners, hence, (N —i)/[(1 + «)N]
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is the probability that the interaction partner is an individ-
ual from the population and in opinion state B. Similarly,
aN(1 — z,)/[(1 + «)N] is the probability that the interaction
partner is an external influencer promoting opinion B.

The expressions in Eq. (1) are per capita rates. The total
rate of converting individuals of type B to type A (or vice
versa, respectively) in the population are then

7;:;— = (N - i)”B—)A,(r(i)y ’I;:,— = iT[A—)B,(r(i)~ (2)

These are the rates with which transitions i — i 4+ 1 and i —
i — 1 occur in the population if the environment is in state o.

It remains to specify the dynamics of the environmental
state. We assume that the environment undergoes a Markovian
process governed by rates Apy o (). The @y o (i) are the
elements of a stochastic matrix [with ) __, ts—o (i) = 1forall
o). We set s (i) = 0. In this work the rates jt,_., do not
depend on the state of the population, i. However, to develop
the general formalism we will allow for such a dependence in
principle whenever possible.

The parameter A controls the timescale of the environ-
mental dynamics relative to that of the changes within the
population. We thus refer to the scenario A — 0 as the “slow-
switching” limit, and to situations in which A — oo as “fast
switching.”

B. Master equation

We write P(i, o, t) for the probability to find the system in
state (i, o) at time ¢, that is, the probability to have i individ-
uals of opinion A in the population, and the environment in
state o. The time dependence of P is omitted below to make
the notation more compact. We then have the following master
equation:

%P(i, o) = (E - D[T, — 11P(i,0)
+(E = DITT, — 11PG, 0)

1Y Moo (DP(, 07) = oo (PG, )],

a

3)

where we have defined the raising operator E, acting on func-
tionsof i as E f(i) = f(i 4+ 1). Its inverse is E~! ie., we have

E7 f(i)=fG— D).

III. THEORETICAL ANALYSIS
A. Fast-switching limit

In the limit of very fast environmental switching (A — 00)
we can, for purposes of the dynamics in the population, as-
sume that the environmental process is at stationarity. We
write pZ(i) for this stationary distribution. This distribution
fulfills the relations

D ool (i) = toso P2 =0 €

forall o.

Following [32] the dynamics of the population in the fast-
switching limit is governed by effective rates

T =Y prOTE. )
For our system these effective rates are
T = h N —1),
i [a+ (1+oz)N+(1—|—oe)N]( L
— N—i Nh(1 -2
i P et L Ut (©)
(I+a)N  (1+a)N
where we have written
= pii)fa (). (7)

We have suppressed the potential i dependence of objects of
this type.

If model parameters are such that @ # O then there are
no absorbing states for this effective birth-death process. The
stationary distribution is given by (see, e.g., [20])

N
P — Hk:l Vik

[ N L =

L300 D Ve

where 7, =T, /T, ,.

®)

B. Slow-switching limit

In the slow-switching scenario, and assuming that the
switching rates U, are not functions of i, the stationary
distribution is given by the weighted sum of the stationary
distributions P*(i|o") for the system in fixed environments o €
{0, 1}. These distributions in turn are obtained from relations
analogous to those in Eq. (8), but for fixed environment, and

. . =+
therefore with rates Tlfy instead of 7';". We then have

P*(i) =) piP*(ilo). ©)

C. Rate equations and piecewise-deterministic Markov process

1. Piecewise-deterministic Markov process in the limit
of infinite populations

In the limit of an infinite population the stochasticity within
the population becomes irrelevant and a deterministic dynam-
ics emerges between switches of the environmental state. This
results in a piecewise-deterministic Markov process (PDMP)
(see, for example, [31] and references therein).

Writing ¢ = i/N and T*(i/N) = T, /N, and taking the
limit N — oo, the deterministic evolution between changes
of the environment is governed by

¢ =T"()—T, (9. (10)
For our model, this can be written as
¢ = v, (), (11)
with
ho
Vo (@) = a, (1 — 2¢) + 7 (zZo — @) (12)
+a
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As before, the environment o follows the process defined by
the rates Afly .

The different terms in Eq. (12), valid in fixed environment
o, can be interpreted as follows. The first term, a, (1 — 2¢),
drives the population towards a state with ¢ = %, i.e., equal
proportions of individuals in opinions A and B, respectively.
This term describes random opinion changes, with equal rate
from A to B or vice versa. If this was the only process in an
infinite population, then a state with ¢ = % would eventually
result in any fixed environment with a, > 0. The second term
on the right-hand side of Eq. (12) describes the effects of
the external influencers. The fraction of influencers promoting
opinion A is z,, and a fraction 1 — z, promotes opinion B.
The net result of these external forces is a drive towards the
state ¢ = z,. The strength of this pull is governed by the
herding parameter 7 and by the ratio «/(1 4+ «) describing
the strength of external influencers (of which there are aN)
among all partners a given individual can interact with (N
individuals in the population plus N external influencers).
If ha > (1 + a)a,, then the external forces dominate the
dynamics of the population, and the noise term proportional
to a, becomes irrelevant.

We further note that the interaction among individuals in
the population has no effect in the deterministic dynamics in
Eq. (12) [17,46]. This is a well-known characteristic of the
VM, and a consequence of the fact that, in an interaction of
two individuals of types A and B, respectively, the processes of
individual A copying opinion B is equally likely as the reverse.

As a final remark, we note that the dynamics in Eq. (12)
has a single attractive fixed point, given by

gy = S Tt (13)
7 2a, +hi%

We always have ¢ € [0, 1]. The fixed point ¢} is located at
extreme values O or 1 only if a, =0, « > 0, and z, € {0, 1}.
That is, for the unique fixed point to be at O or 1, there must not
be any spontaneous opinion changes, there must be a nonzero
set of influencers, and all influencers must act in the same
direction.

Further, most of our paper excludes cases in which two
different environmental states lead to the same fixed point, i.e.,
we assume that ¢ # ¢, for o # o’ and o, i # 0. Without
loss of generality we can then assume that the environmen-
tal states 0 =0, ...,5 — 1 are labeled such that ¢; < ¢; <

- < ¢5_,. The dynamics of the PDMP is then restricted to
the interval (¢g, ¢5_,), where ¢; is the leftmost fixed point,
and ¢3_, is the rightmost fixed point on the ¢ axis.

2. Stationary distribution

The PDMP defined in Sec. III C, governed by Egs. (11) and
the dynamics of the environmental process, can be described
by the following Liouville master equation for the probability
[1(¢, o) to find the system in state (¢, o ):

d 0]
i 16.0) = — 52 [0 (@)@, 0)]
1D oo ()P, )

— Moo (P)T1(@, 0)]. (14)

In slight abuse of notation we have written (t,_,, (¢) for the
transition rates of the environmental process if the population
is in state ¢.

The stationary state of the PDMP is
%l’[(qﬁ, o) = 0 for all ¢, o. In this state we have

defined by

0 I1 = A I1 !
5g Ve (@M@ )] = ;mg/%(@ (¢,0")

— Uo—o' (PTL(P, 0)]. 15)

3. Special case of two environmental states

If there are only two environmental states o € {0, 1}, then
the stationary state can be found explicitly [31,44], and takes
the form

[1(¢,0) = 8(9).

N
—vp(¢)

I
(g, 1) = ——=g(¢), (16)

vi ()
Hi—o(u)
. (17
v () )} {an

We note that vo(¢p) <0 and vi(¢) > 0 for ¢ € (¢5, 7).
The constant A in Eq. (16) is determined by normalization

q;fg du[TI(u, 0) + T(u, )] = 1.

where ¢ € (¢7, ¢7), and

¢
o) = exp |:—k/ du(MOM(u)_'_

vo(u)

4. Systems with more than two environmental states

For systems with three or more environmental states we
do not know of any method to find the stationary distribution
of the resulting PDMP analytically. However, it is possible to
numerically integrate the system in Eq. (15).

To deal with singularities in Eq. (15) at the fixed points ¢
one can divide the interval 0 < ¢ < 1 into S — 1 subintervals
¢y <P <y (0 =0,...,5—2),and perform a numerical
integration in each of these intervals. One then needs to en-
sure continuity of all functions ', (¢p) = v, (¢)I1(¢, o) at the
boundaries. Further details can be found in Appendix A.

D. Leading-order effects of noise

The PDMP descriptions retain the environmental noise, but
discard all intrinsic stochasticity at fixed environmental state.
This approach is formally valid in the limit of infinite pop-
ulations N — oo. The effects of noise within the population
can be studied to leading order by an expansion of the master
equation (3) in powers of 1/N. This follows the lines of [31].

To leading order the expansion produces the PDMP, and to
subleading order a dynamics described by a set of “piecewise”
stochastic differential equations is obtained [31,32,33]. More
precisely, these are of the form X = v, (x) + /wy (x)/Nn(t),
where 7 is zero-average Gaussian white noise of unit ampli-
tude [i.e., (n()n(t")) = 8(t —t')]. The functions w, (x) are
given by [31]

we (x) = T,F(x) + T, (x). (18)

As before, the environmental state undergoes the Markov
process defined by the rates Aty o--
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As shown in [31], further progress can then be made using
a linear-noise approximation. To this end, one writes i/N =
¢ + N~1/2&, where ¢ is the trajectory of the PDMP for a given
realization of the environmental dynamics [i.e., q’) = v, (p)].
Expanding to linear order in £ one then finds

E(t) = V) (P)E + Vwe ()L (1) (19)

with white Gaussian noise ¢(¢t), and where v/ (¢)=
dvs(¢)/d¢. The stationary distribution of the original system
in Eq. (3) can be approximated by the expression

nw =Yy f de d§ [T1(¢, O)T(E|)S(x— ¢— N~'/26)].
(20)

Here, I1(¢, o) is the stationary distribution of the PDMP,

and TI(§|¢) = [275*(¢)]~"/> exp[—&7/[25*(9)]] is a Gaus-
sian distribution with mean zero and variance given by

1Y, T(ol¢)ws ()

2 _
SO =S el @)

2L

This relation was derived for systems with two environmental
states in [31], but holds more generally as described in more
detail in Appendix B.

IV. NOISY VOTER MODEL WITH SWITCHING
NOISE PARAMETER

A. Setup

In this section, we will examine the simple case of « = 0,
i.e., the system is not affected by any influencers. The rates in
environmental state o are then

N—1i\.
(ag +h N )l.

(22)

i
T+ = o h— N —1 , T_ =
i,0 <Cl + N)( l) i,0

Despite the absence of influencers the system operates within
a switching environment, as the noise parameter a, fluctu-
ates in time. We study the case of two environmental states
o = 0, 1. We label the states such that ay < a;. The rates for
the environmental switches in our analysis are assumed not
to depend on the population state i. Therefore, the stationary
distribution for the environmental state o will be simply

H1-0 * Ho—1

—_— = (23)
K10 + Ho—1 ! HU1—0 + Ho—1

Py =

Throughout our analysis we assume (o = t1—0, and con-
sequently we have pf = pf = 1.

We will first investigate the slow- and fast-switching limits.
The total rate for events in the population in environment
o is T\ + T, = agN + 2hi(N — i)/N, and therefore takes
values between a,N and (a, + h/2)N. The environment can
therefore be considered slow when A < ao/N. Similarly, the
environment is fast relative the population when A > N(a; +

h/2).

0.16

0.14 A

0.12 A

0.10 A

X 0.08 1
o

0.06 -

0.04

0.02 A

0.00 +— T T T T T

FIG. 1. Voter model with slow-switching noise rate. Stationary
distribution from simulations (symbols) and from theory [lines, from
Eq. (9)]. Model parameters are ay = 0.02, a; = 0.05, h =1, and
A = 0.02. In the inset, we highlight the new trimodal shape (N = 35).
Each distribution is from 10° entries sampled every 50 units of time,
after an initial transient of 1000 units of time.

B. Slow-switching limit

We show the stationary distribution in the slow-switching
limit in Fig. 1, comparing theoretical predictions with simula-
tion results for different values of the population size N.

We observe three different shapes. For small populations
(N =15 in the figure) the distribution is bimodal, with two
maxima at the consensus states. When the population is large
(N = 55) we find a unimodal shape, the population is mostly
in states in which both opinions coexist in similar proportions.

So far, this is similar to what one would expect in the
conventional two-state VM, namely, transition from a bimodal
shape in small populations to a unimodal shape in large
populations [17]. However, in the present model we find an
additional phase with trimodal distributions for intermediate
population sizes (N = 40 in Fig. 1). The distribution has two
maxima at the extremes, and an additional maximum in the
center. This state is characterized by alternating periods of
coexistence of both opinions and periods of polarization. This
is illustrated by the time series in Fig. 2. Broadly speaking,
this type of behavior represents a scenario in which public
opinion is characterized by a mixture of two views, but where
events may occur temporarily increasing the weight of herding
relative to that of noise, and thus polarizing opinions.

C. Fast-switching limit

In the limit of fast environmental switching we have effec-
tive transition rates

+

7 = (aen\wv—i. T =(a+r>—")i (a4
i_<a+ ]V)( —1), i_(a+ N >l 24)

This describes a conventional noisy VM [17], with noise pa-
rameter a and herding parameter /. The stationary distribution
is bimodal if N < h/a, and unimodal otherwise, as shown
in Fig. 3. The transition between these two regimes occurs
without an intermediate trimodal shape.
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1.0 1 V—V-w

0.8 1

0.61

0.4

i/N

0.2 1

0.0 A

1000 1500 2000 2500 3000 3500 4000
time

FIG. 2. Time series of the fraction of agents in state A from
a simulation of the voter model with switching noise parameter.
Shaded segments indicate high noise rate, and white background
low noise rate. Model parameters are ap = 0.001, a; = 0.1, h =1,
A =0.001, and N = 30.

D. Simulations for intermediate-switching rates

When the timescales for population and environmental
switches are comparable to each other, an analytical charac-
terization is not easily available. Nonetheless, we can conduct
simulations, varying the value of A to interpolate between
the slow-switching regime in Sec. IV B to fast switching in
Sec. IVC.

Figure 4 shows the resulting phase diagram in the (A, N)
plane, at fixed values of the remaining model parameters. For
slow switching (low values of A), the stationary distribution
exhibits three different shapes (bimodal, trimodal, and uni-
modal) as N increases. For faster environmental dynamics
(higher values of A), the trimodal shape disappears, resulting
in the well-known finite-size transition between unimodal and
bimodal states in a nVM with an effective noise constant.

0.141 N=15
0.12 - * N=40
N=55
0.10 A
< 0.08 A
o
0.06 -
0.04 -
0.02 4 W —M‘\
0.00 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X

FIG. 3. Voter model with fast-switching noise rate. Stationary
distribution from simulations (symbols), and from theory [lines,
Eq. (8), with noise parameter a = (ap + a;)/2]. Model parameters:
ap = 0.02,a; = 0.05, h = 1, and A = 100. Each distribution is from
5 x 10° samples; time between subsequent samples is At = 0.01,
after a transient of 500 units of time.

55

50

45

40 1

TRIMODAL

30
254
20
BIMODAL
15 ' ' ' '
0.01 0.1 1 10 100

A

FIG. 4. Phase diagram for the voter model with switching noise
parameter. The colored shading indicates the shape of the stationary
distribution as found in simulations. The red lines on the left and
right show the phase boundaries in the limits of slow switching [left,
found from evaluating the expression in Eq. (9)], and fast switching
[right, from Eq. (8)]. For each pair of values for N and A, we obtain
the stationary distribution P*(i) (i =0, ..., N). Using the expected
symmetry P*(i) = P*(N — i), we classify a distribution as unimodal
when P*(0) < P*(1), as trimodal when P*(0) > P*(1) and when
there is a local maximum in the interval [N/2 — 1, N/2 4 1], and
as bimodal otherwise. Model parameters are ay = 0.02, a; = 0.05,
h = 1. Time between subsequent samples is At = 1/X, and for each
distribution we take 10°—107 samples after a transient of 500 units of
time.

V. NOISY VOTER MODEL WITH SWITCHING
INFLUENCERS

In this section we focus on the impact of fluctuating groups
of influencers on the nVM. The state of the influencers plays
the role of the external environment. We assume that a, = a
and h, = 1 across environmental states. We begin by exam-
ining the two-state scenario, which allows us to obtain an
explicit solution for stationary distribution of the model. If
there are more than two environmental states, we resort to
numerical integration to solve Eq. (15).

A. Two states of the group of influencers

We consider a model with two environmental states and in
which all influencers form one group of total strength aN. At
any one time, they act coherently either in favor of opinion
A or of opinion B. As before we write o € {0, 1} for the two
environmental states, and Apo— 1 and Ap— o for the switching
rates. We have zp = 0 and z; = 1. The stationary state of the
environmental dynamics is given by Eq. (23).

1. Fast-switching limit

We first consider the fast-switching limit A — co. The
effective rates in Eq. (6) then become

! (14+ a)N ’ ! (I+a)N |~
(25)
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where we have introduced

t=gt 2 26
a —a+1+a, (26)
_ a(l —3)

= _ 27
a a—+ I+ (27)

with Z = pgzo + pjz1 [see also Eq. (7)].

We note that Eqgs. (25) are also valid for an arbitrary
number of environmental states [with the definition 7z =
> s Pi(i)zy, and solong as i = 1 and a, = a]. Equations (25)
are recognized as the transition rates of a potentially asymmet-
ric noisy voter model (asymmetry here refers to setups with
at #a).

Forz = % one has a symmetric noisy voter model with ef-
fective herding rate 1/(1 + ) and with noise parameter a* =
a” =a+ o/[2(1 4+ «)]. A finite-size transition between uni-
modal and bimodal states occurs in the nVM when the ratio of
noise parameter to herding parameter is 1/N [17,46,47]. This
leads to

1
T a(lta) fa2

Simulations results verifying this are shown in Fig. 5.

The total weight of influencers in the model is the equiva-
lent of N normal agents. For a given value of « this means
that the weight of influencers is less than that of a single nor-
mal agent when there are fewer than Ny = 1/« normal agents
(N < 1/a). In such situations one cannot think of influencers
as discrete agents.

We now briefly consider the asymmetric case 7 # % In this
case, the stationary distribution is no longer symmetric [i.e.,
the distribution will not fulfill P*(i) = P*(N — i) for all i]. We
therefore study the shape of the distribution near its left and
right ends of the domain separately. As parameters are varied,
the “slope” of the distribution near the left end changes when
P(i = 0) = P(i = 1). This is the case if and only ing =T,.
This in turn leads to

(28)

c

a(l + )N — 1)+ aIN —ZN + 1)] — % —0. (29)

For given a, «, and 7 we denote the physically relevant so-
lution of this equation by Nief‘. An analogous equation is

obtained from setting 7y = Ty_,:

a(l + Q)N — 1)+ a[ZN + 1) — 1] NT‘I —0. (30)

We denote the solution of this equation by NI¥™. The resulting
behavior of the asymmetric model is illustrated in Fig. 6(a). In
the example shown we have z = 0.85 so that influencers tend
to favor opinion A. In this setup one finds N < NZ¢". For
relatively small populations (N < N'*) the stationary distri-
bution is bimodal, but with a higher peak at x = 1 than at
x = 0. As N is increased, the left edge of the distribution (near
x = 0) first changes slope, and a distribution which is strictly
increasing in x results for N < N < N Finally, when
N > N the distribution is unimodal, but with its maximum
closer to x = 1 than to x = 0. Figure 6(b) shows the resulting
phase diagram in the (¢, N) plane, indicating the transitions
between a bimodal phase in small populations, a phase with a

3.0
(a) N=5
2.5 * N=54
N=104
2.0
X 1.51
o
W
0.5 1
0.0 1 : ' ' ' ' '
0.0 0.2 0.4 0.6 0.8 1.0
X
100 +
(b)
\ o N
80-“ -——= N;
1
\
\
60 1\1
\ UNIMODAL
=2

e ——

BIMODAL

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
[0

FIG. 5. Transition between bimodal and unimodal stationary dis-
tributions in the model with two external states and fast-switching
influencers. (a) Stationary distributions for different values of N
and @ = 0.02. For N = 5 the stationary distribution is bimodal; for
N = 54 and 104 it is unimodal. (b) Location of the phase transition
N,(a) as a function of the weight « of the influencers. The prediction
from Eq. (28) is shown as a solid line, markers are from simulations.
Below N.(«) the stationary distribution has a bimodal shape, above
it is unimodal. The dashed line shows N; = 1/«. Below this line
the total weight of influencers is less than that of one normal agent.
Model parameters are Apto.; = Ay -0 =50,z =1-20=0,a=
0.01. Time between subsequent samples is At = 0.1; we take 10°
samples after a transient of one unit of time.

strictly increasing functional shape for the stationary distribu-
tion at intermediate population sizes, and finally a unimodal
phase for large populations.

We end this section of the fast-switching limit with a brief
discussion of Ref. [40] where a related model is studied. In
this work the numbers of up and down zealots are drawn
randomly (with no temporal correlations) before each micro-
scopic update. In our setup the total number of influencers
is constant. This is closest to the case in which the numbers
of up and down zealots in [40] have the same variance as
one another, and in which these two random numbers are
fully anticorrelated. Increasing the number of influencers in
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FIG. 6. Model with asymmetric influencers in the fast-switching
limit. (a) Shows the shapes of the stationary distribution for x in a
model with two environmental states, Z = 0.85 and fast switching,
for different sizes of the population. Remaining model parameters are
a = 0.01, « = 0.02. Markers are from simulations, lines from the an-
alytical theory in the fast-switching limit. Time between subsequent
samples in simulations is At = 0.1; we take 10° samples after a
transient of one unit of time. (b) Shows N'*" and N¢" from Eqs. (29)
and (30), respectively (lines). Markers are from simulations. For
N < N* the distribution is bimodal and asymmetric, in the area
between the lines it is strictly increasing in x, and for N > N the
distribution has a unimodal asymmetric shape.

our model, or analogously the number of effective zealots in
[40], while keeping all other parameters fixed, leads to a more
unimodal stationary distribution, as illustrated in Figs. 5 and
6 of this paper, and in Fig. 1 of [40].

2. Limit of large populations

In the limit N — oo the internal noise in the population
becomes irrelevant, and a PDMP results. The velocities in the
two environments are given in Eq. (12). Using the expressions
in Sec. III C3 the stationary distribution for the model with
two environmental states can be obtained for any choice of
the rates Aug_s1 and Aui_.o. We here restrict the discussion to

*k *
o 1
3.0 ) T
H) —_— = 3
" () Theory N = P
251 i\ —— TheoryN < :
i Simulations [
] I:
2.0 p :
X154
&
1.0 4
0.5
0.0 -—— _ _ _ ' -
0.0 0.2 0.4 0.6 0.8 1.0
X
* *
d)o ¢1
3.0 r
=== Theory N=w
:(b)
254 —— TheoryN < o
Simulations
2.0
g 1.5 1
Q.
1.0 1
0.5
0.0 — . ' ' _ !
0.0 0.2 0.4 0.6 0.8 1.0
X
*k *
9o 1
3.0 T H
() === Theory N=
254 —— TheoryN <
Simulations
2.0
X
a

X

FIG. 7. Stationary distribution of the model with influencers
switching between two states. The black dashed lines in each panel
are from Eq. (31) (PDMP limit), solid red lines are from the nu-
merical integration of Eq. (20), capturing leading-order corrections
to PDMP limit. The shaded histograms are from simulations of the
full model. In all panels a = 0.01, « = 0.5, N = 200, and o =
1o = 1. The switching rates are (a) A = 0.2, (b) A = A, =~ 0.35,
and (c¢) A = 0.7, where X, is obtained from Eq. (32). Time between
subsequent samples is At = 5, and for each distribution we take 10°
samples after a transient of 50 units of time.
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FIG. 8. Phase diagram for the model with two states for the
group of influencers. The dashed line is A. obtained in the PDMP
limit [Eq. (32)]. It separates a phase in which the stationary distri-
bution is bimodal (below the line) from the other phase in which
the distribution is unimodal (above the line). Green asterisks are
from simulations of the individual-based model with a = 0.01 and
N = 500. Blue dots indicate the phase boundary obtained from the
theory which takes into account leading-order corrections to the
PDMP [Eq. (20)]. Model parameters are 7 = 1, po1 = 10 = 1,
a=0.01.

the case o1 = (1—0 = 1, but keep the timescale separation
A general. We then find

T*(¢) = Cl(¢p — ) (P} — p)M/ 71, (31)

where C is a normalization constant, and where
o
Ae=2a+ ——. (32)
o

The fixed points ¢; and ¢} are obtained from Eq. (13). The
stationary distribution becomes singular at ¢ = ¢ and ¢ =
@7, respectively, for A < A..

An example is shown in Fig. 7. For A < X, the distribution
is bimodal as shown in Fig. 7(a). For A = X the distribution is
mostly flat [Fig. 7(b)], and for A > A, a unimodal state results
[Fig. 7(c)].

These results can be understood from the form of
the flow fields v, (¢) = a(l —2¢) + a(zo — ¢)/(1 + «) ob-
tained from Eq. (12). In each environment o, the variable
¢ thus moves towards the fixed point ¢} on a characteristic
timescale given by [2a + /(1 + «)]~!. The inverse of this
timescale sets the value A. for the switching rate, separat-
ing the unimodal and bimodal regimes. Thus, for A < X,
the environmental switching is slower than the relaxation of
the population in any fixed environment. This relaxation can
therefore proceed before the next switch occurs, and hence
probability accumulates near the fixed points. The distribution
of ¢ is bimodal, and if inspected at a given time, the popula-
tion is likely to be found near the consensus state favored by
the influencers in the environmental state at that time.

If on the other hand A > A, then the environment switches
quickly, before the population can approach either fixed point.
The system frequently reverses its direction of motion, and the
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FIG. 9. Stationary distributions for the model with three states
for the group of influencers. In each panel the dashed line repre-
sents the PDMP limit, and is obtained from a numerical solution
of Eq. (15). The solid lines are from the numerical integration of
Eq. (20), capturing leading-order corrections in 1/N. The shaded
histograms are from simulations of the full model. The dotted lines
are the values of ¢g, ¢, and ¢; found from Eq. (13). The envi-
ronmental switching rate is A = 0.2 in (a), A = A, =~ 0.35 in (b),
and A = 0.7 in (¢). In all panels a = 0.01, @ = 0.5, N = 200, zp =
0, 21 = 08, = 1, and Ho—s1 = U251 = 1 and M0 = U152 = %
Time between subsequent samples is At = 5; for each distribution
we take 10° samples, after a transient of 50 units of time.

044301-9



ANNALISA CALIGIURI AND TOBIAS GALLA

PHYSICAL REVIEW E 108, 044301 (2023)

-
ox
-

1 5 3 2

7 : H H :
: i i :
6 () ! -—- PDMP :
1 1 i :
] ! Fullimodel & i
5 A i 1 i ::' I
] 1 il a [
1 11 i A I
1 1 i a I:
—~ 41 1 1 i i I
1 1 1 ; :
x El 1 :i ::l H
Q. 3 A ! [H i I:
1 1 1 5 ol H
1 n [ i i
4 H i i ¥
24 d 17 i i I
I 1’ Y ! I
] 131 18 R ¥
14 P 5% ;e i
SN S NSO L
0 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X
* * * * *
Po o1 b3 b3 b2
2.00 . _ - . .
i (c Pm— : :
1] (c) : PDMP 5
: Full model :
1504 A : +
: J N 5 AN
1259 P LD RS ol
: I : A
) : A : R
X 1.00{ . : 2
[ : ;oo 5 PN
: )’ : : : k
0751 i : : : \
) 2 : 2 \
. 1 a . H \
0.50 1 : ol : : : \
P 5 E 5 ‘\ :
) : : : v
0.25 A :II : g : \
0.00 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X

R R S

3.0 -
: (b) i === PDMP :
254 : :
5 Full model
2.0 1 : ;
A : N
- i) ; A
X 1.5 FE X 5
1 1\ R
AT SN Ay
1.0 1 A izl o T
4 g
,_r” \\\~~
0.5 - :
0.0 -— ; ; ; ; ;
0.0 0.2 0.4 0.6 0.8 1.0
X
* * * * *
o o} b5 ?3 ox
3.0 - - -
(d) : ——— PDMP
2.5 : :
: Full model :
20- s
D e—omafimmn-.
= 1, : :
X 1.5 e : N
/ 5 \:
,: : 1
(4 : K
/ 3 3
1.0 A / : \\
/ : \
/ 5 \
/! H \
| :
0.5 / : ‘\
/ 5 \
g \
: / : : : \ :
- g . H ~ :
0.0 L— . . . . .
0.0 0.2 0.4 0.6 0.8 1.0
X

FIG. 10. Stationary distribution for the model with five environmental states. The dashed lines in each panel are from numerical simulations
of PDMP capturing the limit of infinite populations. Shaded histograms are from simulations of the full individual-based model with N = 200.
The environmental dynamics is as in Eq. (35). The switching rates in (a)—(d) are A = 0.1, A = A, & 0.35, A = 0.7, and 1 = 2, respectively.
Time between samples is At = 1 in (a)—~(c), and Ar = 0.2 for (d). We take 107 samples after a transient of 10 units of time.

most likely states of the variable ¢ are those in the interior of
the interval from O to 1. As a result, the stationary distribution
is peaked in the middle (unimodal). Both opinion states are
typically found in the population at any given time.

The resulting phase diagram is shown in Fig. 8. The system
is in the unimodal state above the phase line, and in the
bimodal state below the line.

3. Lowest-order correction to the PDMP

For the model with uy =1 and Z=0 we find from
Eq. 21)

’ h

s°(¢) = o(1 ¢)<(1 o + 1). (33)
This can be used to approximate the stationary distribution
following [31]. An illustration is shown in Fig. 7 where the
red lines show the resulting predictions for a model with
N = 200 agents. Intrinsic noise in the model with finite pop-
ulations smoothens the distribution compared to that in the

PDMP limit, but the main characteristics of being bimodal
or unimodal are preserved. Nevertheless, the finite size of the
population results in a notable alteration in the bimodal phase.
With intrinsic noise the regions x < ¢; and x > ¢} become
populated. These parts of phase space are not accessible by the
PDMP. Thus, intrinsic stochasticity enhances the polarization
of the population.

B. Three states of the group of influencers

In this section the group of influencers switches among
three states o = 0, 1, 2. As before, we assume that there is a
state in which all influencers support opinion B (z9 = 0), and
another in which all influencers favor opinion A (zp = 1). In
the intermediate state o = 1, we assume that a fraction § of
influencers supports A, and a fraction 1 — § acts in favor of B.
Thus, z; = §. Switches between these three states are taken to
occur in a Markov process as follows:

22
0l=1=2. (34)
22 s
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FIG. 11. Location of the maxima of the stationary distribution for
the model with five environmental states (Fig. 10). The figure shows
the location of maxima in the stationary distribution of the PDMP for
the model with five environmental states (Sec. V C 1). The markers
are from simulations of the PDMP, the lines indicate the fixed points
@5, ..., @5 Except for A, parameters are as in Fig. 10.

Thus, the environment switches out of state 0 and to state 1
with rate A, and similarly for switches 2 — 1. The total rate
of leaving state o = 1 is also A, split equally for transitions to
states 0 and 2, respectively.

We first discuss the model in the PDMP limit, that is, for
infinite populations, N — oo. The stationary state is then to
be obtained from Eq. (15). In the present setup this can be
reduced into a system of two coupled ordinary differential
equations (ODE) (see Appendix A) but we are unable to
obtain an analytical solution. However, as also explained in
Appendix A one can proceed numerically.

It is useful to note that the presence of three environmental
states does not affect the relaxation timescale in any fixed
environment. This is due to our assumption a, = a in all three
states. Therefore, A, continues to be given by the expression
in Eq. (32).

Results are shown in Fig. 9. We first focus on the black
dashed lines showing the stationary distribution in the PDMP
limit. When environmental switching is slower than the re-
laxation in the population [A < A, shown in Fig. 9(a)] the
distribution has three sharp singularities, positioned at the
fixed-point values ¢, ¢;, and ¢3 obtained from Eq. (13) (we
attribute minor numerical deviations to discretization effects).
For A > A., on the other hand [Fig. 9(c)], the distribution is
asymmetrically unimodal with peak at ¢}. In Fig. 9(b), where
A = A, the distribution also has a single maximum at ¢ = ¢7.
In contrast with Fig. 9(c) though, the stationary density in the
PDMP limit (black dashed line) remains nonzero at ¢ = ¢;
and ¢;, respectively. In Fig. 9(c) the density tends to zero at
the boundaries.

In Fig. 9 we also show results from the theory capturing
the leading-order corrections in 1/N (solid lines). As seen,
intrinsic noise does not manifestly change the overall structure
of the stationary distribution. Its main effect is to smoothen
the singularities, and as expected there is now a nonzero
probability of finding the system in the intervals i/N € [0, ¢;]

and i/N € [¢;, 1], respectively. These intervals are (by con-
struction) unattainable by the PDMP.

C. Multiple states for groups of influencers

We now focus on systems in which there are more than
three states for the environment of influencers. The numerical
solution of Eq. (15) then becomes more complex, and we
hence focus on direct simulations of the original individual-
based model, and of the limiting PDMP, respectively.

1. Five environmental states

We first focus on a generalization of the system in Eq. (34)
to five environmental states:

A A2 A2 A2
0=1—=2=—3—4. (35

A2 A2 A2 )
We set z, =0 /4 for 0 =0, 1,...,4. Thus, in state 0 =0

all influencers promote opinion B, and for o = 4 the external
force is fully in direction of opinion A. State 1 is partially
biased towards B, in state o = 2 there is no net force by the
influencers in either direction, and o = 3 represents a state
with partial bias towards opinion A.

In Fig. 10 we show stationary distributions from simula-
tions of the full model for N = 200 and with different choices
of the switching rate A (shaded histograms). We also show
the stationary distributions from simulations of the PDMP
(dashed lines).

In Fig. 10(a) we choose A < A, i.e., the population relaxes
faster than the time between switches of the environment. We
observe five singularities in the stationary distribution of the
PDMP, located at the different ¢;. As before, intrinsic noise
smoothens these peaks. Figure 10(b) shows the case A = A.;
we then find three peaks in the stationary distribution of the
PDMP. These maxima are also discernible in the stationary
distribution of the full model, but the intrinsic noise smears
the distribution out, so that the maxima are less pronounced.
Increasing the rate of influencer switching further [Fig. 10(c)],
the number of maxima reduces to two, and finally in Fig. 10(d)
the stationary state becomes unimodal.

The positions of the maxima are shown in Fig. 11 for dif-
ferent values of the switching rate A. For small A there are five
maxima, located at the ¢ . For intermediate-switching rates,
only three maxima remain, located at their initial positions

1 &5, ¢5. Next, the maximum at ¢; disappears. Finally, the
transition to only only maximum at large values of A on the
other hand occurs by gradual approach and eventual fusion of
the two remaining maxima.

2. Independent influencers

Next, we consider the case of independent influencers. The
influencers are all taken to have the same strength, and each
influencer can act in favor of opinion A or of opinion B. In
the example in Fig. 12 there are wN = 20 influencers, and
hence S = aN + 1 environmental stateso =0,1,...,5 — 1.
In state o there are o influencers favoring A, and S — 1 — o
influencers promoting B. Thus, z, = o /(S — 1).

In state o there are o influencers who can switch to pro-
moting B instead of A, and S — 1 — ¢ influencers who can
change from favoring B to favoring A. Thus, the rate of
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FIG. 12. Stationary distribution for the model with independent influencers. The influencers follow the process in Eq. (36). We use z, =
o/(@N)witho =0, ..., aN, withaN = 20. Dashed lines in each panel are from numerical simulations of the PDMP, the shaded histogram is
from simulations (N = 200). Model parameters are a = 0.01, ¢ = 0.1. Environmental switching rate is (a) A = 0.05, (b) A, = 0.11,(c) A =1,
and (d) A = 20. Time between subsequent samples is 20 units of time in (a) and (b), 2 units in (c), and 0.2 units of time in (d). For each
distributions we take 107 samples after a transient of duration 100/A.

transitioning from state o to state ¢ — 1 is proportional to population of the same size (N = 200) as in Fig. 10 we find in
o, and that of transitioning from o to o + 1 is proportional Fig. 12 that the stationary distribution is unimodal throughout.

toS—1—0. Weset g o1 =0/(S—1) and po_or1 = This is a consequence of the fact that the maxima of the
1 — o /(S — 1). Keeping in mind the overall multiplying factor =~ PDMP for slow switching [Fig. 12(a)] are found relatively
A, the environmental dynamics can then be summarized as closely to each other. Intrinsic noise therefore “washes out”

this structure much more easily than in Fig. 10(a), where the

AM1—2z9) Al=z5-1) Al=z,) Al—z5-2) .
. o . S—1. (36) maxima for the PDMP are more separated.
Az1 Ao AZgt1 AzZs—
Effectively, this means that each one of the /N individual 3. Details of the influencer dynamics matter
influencers changes state with rate 4/(S — 1). We note that To characterize the relation between the distributions in
the division by § — 1 is immaterial as any constant factors can Figs. 12 and 10 further, we study an intermediate scenario.
be absorbed into the overall multiplier A. As in Fig. 12 we allow for /N + 1 = 21 states of the envi-

The result.ing stati(?nary distril?utions in Fig.. 12 §how SOMe  onment, and we use z, = o /(S — 1). However, influencers
of the behavior seen in the previous example in Fig. 10. For 5 jonger switch states independently from one another, but
slow environmental switching the distribution has multiple j,qtead the environmental state is governed by a process more
maxima in the PDMP approximation. The number of extrema akin to that in Eq. (35). Specifically, we focus on
decreases with increasing switching rate of the environment,

and ultimately only one single maximum remains [Figs. 12(c) 0 N | Mz A2 aN — 1 A2 aN 37)
and 12(d)]. Carrying out simulations of the full model for a 32 a2 o2 U
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FIG. 13. Stationary distribution for the model with environmental dynamics as in Eq. (37). Dashed lines are from numerical simulations of
PDMP process, shaded histograms are from simulations of the full model (N = 200). In all the panels a = 0.01, « = 0.1. The environmental
switching rates are (a) A = 0.05, (b) A = A, = 0.11, (¢c) A = 1, and (d) L =20. We use z, = o /(aN) witho =0, ..., aN, where aN = 20.
Time between subsequent samples 20 units of time in (a) and (b), 2 units of time in (c), and 0.2 units of time in (d). For each distribution we

take 107 samples after a transient of length 100/A.

The stationary distribution for the model with independent
influencers (Fig. 12) was found to be unimodal throughout for
the parameters we tested, and the corresponding PDMP has
a unimodal envelope, modulated by local maxima for slow
switching.

In contrast, if the environmental dynamics is as given in
Eq. (37) the envelope of the stationary distribution of the
PDMP is more flat at least for slow and intermediate envi-
ronmental switching rates [Figs. 13(a)-13(c)]. We again find
a modulation and the resulting maxima. The stationary distri-
bution of the full model (i.e., including intrinsic noise) also
has a broader shape than that in Fig. 12.

These differences in outcome can only be attributed to
the differences in the environmental process [Eq. (36) vs
Eq. (37)]. In the former case the environment has a proclivity
to move from the more extreme states (those near ¢ = 0 and
aN, respectively) towards the more balanced states (those
with values of o close to wN/2). As a consequence, the
stationary distribution of the environmental process will be
concentrated on the balanced states. In contrast, the dynamics
in Eq. (37) results in a lower tendency for the influencers
to populate the more balanced states. As result of that, in

turn, the stationary distribution for the population of voters
becomes more broad.

VI. CONCLUSIONS

In summary, we have analyzed variants of the noisy voter
model with two opinion states subject to an external envi-
ronment, which switches between discrete states following a
random process. Specifically, we considered a switching ratio
of herding-to-noise rates, and, separately, fluctuating external
groups of “influencers” acting on the population of voters.

We find that the model with switching herding-to noise
ratio can be reduced to a standard nVM in the limit of very
fast environments. One then observes the familiar finite-size
transition between a unimodal stationary state for large pop-
ulations and a bimodal state for small populations. When
the environmental process is much slower than the relaxation
timescale of the voters an additional trimodal phase is found
for intermediate population sizes. There are then periods in
which the population of voters is polarized (this occurs when
herding is strong). At other times (when herding is weak) both
opinions coexist.
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When influencers switch between two symmetric states (at
constant herding and noise rates) we also find a transition
between unimodal and bimodal states. In the limit of fast in-
fluencers the resulting phase diagram [Fig. 5(b)] can again be
understood via a mapping to a conventional nVM with an ef-
fective noise rate. For very large populations the transition can
alternatively be studied in terms of a piecewise-deterministic
Markov process and corrections to it. The transition between
unimodal and bimodal phases can then, for example, be ob-
served as a function of the strength of influencers and the
environmental switching rate (Fig. 8). If the two states of the
influencers are not symmetric, we find an additional phase in
which the stationary distribution is monotonic (Fig. 6).

If there are more than two states for the external influencers
the complexity of the stationary distribution of opinions also
increases. For large populations (PDMP limit) we find sta-
tionary states with multiple sharp peaks when the influencer
switching is slow. For higher switching rates the number of
maxima generally reduces, and for very fast switching only
a single peak remains, corresponding to coexistence of the
two opinions. Intrinsic noise in finite populations washes out
the sharp peaks seen for the PDMP, but the general trend
tends to remain; there are multiple peaks for the distribution
of opinions when the environment is slow, and gradually
fewer peaks as influencers change states more often. We have
demonstrated that the precise shape of the resulting stationary
state and the location of the peaks depend on the detailed
mechanics of the influencer process.

Our work thus contributes to a research program of con-
tinuously extending the basic mechanics of the voter model.
In particular, it is aligned with other recent work on variants
of the voter model with fluctuating environments [38,39].
While the basic voter model can be understood as a crude
and stylized characterization of opinion dynamics, systematic
statistical mechanics analyses and the addition of parameters
and features has also contributed to our understanding of
stochastic processes at large. For example, the study of the
initial voter model has led to a “generalized voter” universality
class [12,13].

Here, we connect existing work on the noisy voter model
with literature on individual-based systems in switching en-
vironments. We use established methods (such as the PDMP
formalism) and more recent developments (linear-noise ap-
proximation for models with switching environments [31]) to
characterize the stationary states of VMSs subject to extrinsic
fluctuations. In turn, our work is also a contribution to extend-
ing these methods. For example, there is no known method
to calculate the stationary states of piecewise-deterministic
Markov processes with more than two environmental states.
As a by-product of our work, we have presented a numerical
scheme. This is not a replacement for an analytical solution,
but it removes the need to carry out numerical simulations of
the PDMP, at least in some circumstances.

Naturally, there is more work to do. The question of an
analytical characterization of stationary distributions for mul-
tistate PDMPs remains, and the voter model (with its linear
velocity fields) is a natural candidate for further study. Failing
this, we wonder if the numerical method we have proposed for
the model with three environmental states can be streamlined
and implemented effectively for environments with more than

three states. In terms of individual-based modeling of opinion
dynamics (in the widest sense), a number of extensions of
the model seem possible. For example, both the agents and
the influencers could be placed on a network, presumably the
location or connectivity of the influencers would then become
relevant. A further line of future work concerns the extension
to models with more than two opinion states. Finally, allow-
ing for continuous external environments also appears to be
worthwhile.
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APPENDIX A: ALGORITHM TO DETERMINE THE
STATIONARY STATE OF A PDMP WITH THREE
ENVIRONMENTAL STATES

In this Appendix we provide details of the algorithm used
to solve Eq. (15) when the environment undergoes transitions
between three states.

1. General theory

Focusing on the PDMP framework with S environmental
states we follow [31] and introduce currents

Jo (¢) = T1(¢, 0)v5 ()

¢
- / 1Y TP, Mty o — TG, 0oy 1dg'.
% 5
(Al)
The quantity J, (¢) represents the net probability flux into or
out of the interval (¢, ¢) and environmental state o. This is
illustrated in Fig. 14; the dotted box at the bottom left of the
figure highlights the interval (¢, ¢) at fixed environmental
state o = 0. The quantity Jy(¢) is the flux out of this interval,
due to either deterministic motion [following vy(¢)] or to
switches of the environment. Further details can be found in
[31].
The continuity equation for probability can be expressed as

0 I1(¢, 0) = —04J5 ().

In the stationary state we therefore have

(A2)

%(H*(d), )Vs ()

— &Y [ (¢, Mttyso — (@, 0o y] = 0. (A3)
n
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o 1 5

FIG. 14. Physical interpretation of the currents in Eq. (A1) for a
three-state environmental switching as in Sec. V B.

In the following calculations, we always focus on the sta-
tionary state. To keep the notation compact we will omit the
asterisk. Stationary implies that the total current vanishes, i.e.,

PRACIER (A4)
for all ¢. Defining
I'o(¢) = (¢, 0)vs(9), (A5)
and using Eq. (A1) this results in
(A6)

> Ta(@)=0.

For any one system, we can therefore pick a particular
environmental state 7, and express [';(¢) in terms of the

Lo(@), 0 #1,

Fe(@) ==Y To($).
o#T

We can then reduce Eq. (A3) to the following set of S — 1
equations for the I', with o # 1:

A Z MHo—n
n

Mn—o Hroo
- ; F"@)(vn«p) B vf(qs)) =0 A9

(AT)

d Ly ()
—T,
a6 Pt e

2. Three states

We now consider the case of three environmental states
(see Sec. VB), and in particular Eq. (34). After elimination
of 'y, we can write Eq. (AS8) as

d
—TI(¢) = A@D)(¢),
49 L'(¢) = A@)L(9)
with ' (¢) = [[o(¢), T'2(¢)]”, where the superscript indicates
transposition.
The 2 x 2 matrix A is given by

(A9)

AR 1
AP) = —A—(z(d)‘ 9 % 12(4)1__3) 1 >, (A10)
¢ 2(p7—¢) 2(p7 =) 53—

o=2 — L -
c=0 ® « e —

forward integration
%o ot b
0 1 2

FIG. 15. Illustration of the numerical algorithm used to obtain
the stationary distribution of the PDMP for the model with three
environmental states (Appendix A 3). The flow in environment ¢ =
0 is directed towards ¢; (filled circle on the left). In environment
o =1 the deterministic flow is towards the internal fixed point ¢
(filled circle in the center), and in environment o = 2 the system
flows towards ¢3, shown as a filled circle on the right. Using the
fact that 'y +I'y + I, =0, we eliminate I'; (grayed out in the
figure). Equations (A9) are then forward integrated on the interval
(¢5, @7), starting from an initial condition at ¢} + A¢ (green di-
amonds) to obtain final values at ¢ — A¢ (triangles). A similar
backward integration is performed starting from ¢; — A¢ (purple
and pink diamonds), ending at ¢; 4+ A¢ (triangles). As explained
in the text, we impose that the numerical solution approximates the
conditions [y(¢p] — A¢) = I'o(¢] + A¢) (green downward trian-
gles), I', (9] — A¢) = T'2 (¢} + A¢) (purple upward triangles), and
Iy (7 — Ag) = I'o(¢] + Ag) (orange squares).

backward integration

where ¢ is the fixed point of the limiting deterministic dy-
namics for fixed environment o [see Eq. (13)]. The quantity A,
is given in Eq. (32). The matrix A encodes the dynamics of an
infinite population combined with a switching environment.
We note the singularities at ¢, ¢}, and ¢5.

3. Algorithm

We now outline the algorithm we use to solve Eq. (A9) in
the domain ¢ € (¢, ¢3). A graphical illustration can be found
in Fig. 15. The boundary conditions for the solution will be
detailed below.

Due to the singularity of A at the internal fixed point
¢ = ¢}, we divide the domain into two intervals (¢g, ¢7)
and (o7, ¢ ), and first obtain separate solutions on these two
subdomains. These are then combined using the boundary
conditions.

To numerically integrate Eq. (A9) we discretize the ¢
axis into elements of size A¢. Choosing initial conditions
Co(eg + Ag) = ap and I'y(¢p§ + A¢) = a,, we can then for-
ward integrate Eq. (A9) to obtain I'(¢g + 2A¢), L'(¢; +
3A¢),...,[(¢] — A¢). This numerical solution will depend
on the choice of ag and a;.

Similarly (but independently) we choose final conditions
Fo(¢p; — Ap) =by and T'y(¢p; — A¢) = b, near the right
edge of the domain (¢, ¢3). We then backward integrate
Eq. (A9), to find T(¢3 — 2A¢), L(¢5 — 3A¢), ... [(¢} +
A¢). This numerical solution in turn will depend on the
choice of by and b,.

We now need to determine the right choice for the bound-
ary conditions agy, a;, and by, b,. We do this using the
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following properties of the stationary distribution:

(i) Overall normalization. Noting that Eq. (A9) is lin-
ear in [, a multiplication of all of ag, a,, by, b, with a
constant factor will simply rescale the solution. We also re-
call that I'y = —(I'g + ;) so that I'; undergoes the same
rescaling. The I', in turn determine the stationary distribu-
tion I[1(¢, o) [via Eq. (A5)]. Overall normalization requires
>, [d¢Tl(¢,0) = 1. This can be used to fix one of the
coefficients ag, az, by, b>.

(ii) Continuity of I'g and I'y at the interior fixed point ¢7.
The velocity fields vy(¢) and v,(¢) show no singularity at ¢ =
¢7. We thus expect I'g and I, to be continuous at ¢}. Within
the discretization this translates into

Fo(¢f — Ap) = To(¢7 + Ag),
Fa(¢7 — Ag) = Ta(¢] + Ad),

up to corrections of order A¢g.

(iii) No-flux condition at ¢ in environment o = 1. In en-
vironment o = 1 the flow field is directed towards ¢}, both
from below and from above. This means that

Fi(¢] —A¢9) 20, Ti(¢]+ A¢) < 0.

At the same time, the relation I'y = —(I'g + ') and the
conditions in (All) imply that I'\(¢] — A¢) =I'1(¢] +
A¢). Together with (A12) this means I'; (¢] £ A¢) = 0, and
therefore I'o(¢p] £ Ag) = —I'2 (¢} == A¢). Using again the
conditions in (Al1l) this can be written compactly as one
single condition I'g(¢] — A¢) = —I'2(¢} + A¢), again to be
understood as subject to corrections of order A¢.

In order to impose these conditions we use a
gradient-descent algorithm. Specifically, we find the
coefficients a,, bg, and b, such that the function
ITa(¢7 — Ag) — Ta(@f + Ad)| + [To(¢ — Ag) — To(ei +
AP)| + T'1(9] — Ap) + Ta(d] + A¢g)| is minimized. The
last step is then to adjust the remaining coefficient @y such
that the probability distribution is normalized [item (i) above].

The principles of the algorithm are summarized in Fig. 15.

(Al1)

(A12)

APPENDIX B: EXTENSION FOR MORE THAN TWO
ENVIRONMENTS OF LOWEST-ORDER APPROXIMATION

In this Appendix, we will provide an explicit derivation of
Eq. (21). This builds on Ref. [31], where a similar calculation
is carried out for systems with two environmental states. For
the purposes of this Appendix, we assume that the environ-
mental switching is independent of the state of population,
i.e., the wy,_ do not depend on i.

In the limit of large but finite population size N the master
equation (3) can be expanded in powers of 1/N following, for
example, [31,32]. Writing x = i/N, and retaining leading and
subleading orders one obtains an equation of the type

dl‘[ =1L I A I1 !
T, 0) = LT, o) + Z[,U«a'—m (x,a")

o

_Ma%a’n(x’ U)], (Bl)
with Fokker-Planck operators
2wy (x)
L, = —0yVs -, B2
(x) Vo () + = (B2)

where

wy(x) =a+ 1 [a(z5 + (1 —2z5)x) +2x(1 — x)]. (B3)

+ o

Writing x(¢t) = ¢(t) + % one then finds to leading order
in the expansion

d(t) = vy ().

Additionally making the linear-noise approximation (LNA)
[48] subleading corrections evolve in time as follows (see
[31,32] for details):

E(t) = v, ($)E + Vs (d)n(1), (B5)

where 7(¢) is Gaussian white noise of zero mean and unit
amplitude. This is a Langevin equation, to be interpreted in
the Ito sense. We note that the environment o retains its time
dependence (via the switching process). Within this expansion
and the LNA, the joint distribution for ¢, £ and o, I1(¢, &, 0)
evolves in time as follows:

atn(¢’ E’ o, t) = _U:y((b)aé[én(d)a S’ o, t)]

(B4)

~ Al O, £, 0.0+ 2220206, £, 0,10)
+ D Mo TH$, €0, 1) = oy TS, &, 0, 1)]. (B6)

n#o
Focusing on the stationary distribution IT*(¢, &, o), and
writing I1*(¢, &, 0) = [1*(€|¢, 0)[1*(¢p, o), we find after
summing over environmental states

> {a¢[vg<¢>n<¢, o)(Elgp, 0)]

o

+ v, ($)I1(¢, 0) 3 [ETI(E |9, 0)]

wo (@)
2

We have omitted the asterisks to keep the notation compact.
We stress that Eq. (B7) and all remaining relations in this
section refer to the stationary state.

We follow [31] again, and make the assumption that in-
stantaneous fluctuations about the PDMP trajectory do not
depend on the environmental state, i.e., [1(§]¢, o) = T1(§|¢).
We then have

a¢[n<s|¢><2 v (P, a))}

+ [Z v, ()T1(9, a)i| 3 [ETI(E|9)]

— (¢, 0)

O [T, 0)]} =0. (B7

(B8)

-y [n«b, o)“’“z("”}ag[n(w)] —0.

We further know that ) v, (¢)I1(¢p, o) =0, and [1(¢p, 0) =
IT(o|¢)1(¢). Equation (B8) can thus be re-written as

0=">[v,(#)(c]$)] ()3 [ETI(5|¢)]

o

Wy (@)
2

-3 [H(GI¢)H(¢) }ag[méw, (B9)

044301-16



NOISY VOTER MODELS IN SWITCHING ENVIRONMENTS

PHYSICAL REVIEW E 108, 044301 (2023)

and subsequently as

D vy ($)1(o]p)]o [ETT(E|)]

[

-3 [H(a|¢>)“"’2(¢)}a§[n(s|¢)] =0.  (BIO)

Equation (B10) is a stationary Fokker-Planck equation. Its
solution is a Gaussian distribution

2 / I
MElp) = A exp (7 é ”HEZ) ¢>(“()I°T$)) (B11)

with A a normalization constant. This distribution has mean 0
and variance

3, M@ ld)ws (@)

2 _
YO=T% w@mnele)

(B12)

We note that this object is intrinsically non-negative in our
model, given that v/ (¢) < 0 forall ¢ and o. Using IT(o|¢) =
[1(¢p, 0)/T1(¢) in the numerator and in the denominator of
Eq. (B12), and canceling the common factor I1(¢) we find

Y, (@, ) ($)
23, v (@), 0)

For linear flow as in our model, v, (¢) = A.(¢p, — @), we can
further simplify and find the final result

2, (@, 0)w, ()

20, (¢, 0)
The distributions I1(¢, o) are known analytically in the case
of two environmental states [see Eq. (16)]. For the model
with three environmental states we use the numerical method
described in Appendix A 3.

s2(p) = (B13)

s2(p) = (B14)
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