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Nonequilibrium thermodynamic signatures of collective dynamical states
around chimera in a chemical reaction network
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Different dynamical states ranging from coherent, incoherent to chimera, multichimera, and related transitions
are addressed in a globally coupled nonlinear continuum chemical oscillator system by implementing a modi-
fied complex Ginzburg-Landau equation. Besides dynamical identifications of observed states using standard
qualitative metrics, we systematically acquire nonequilibrium thermodynamic characterizations of these states
obtained via coupling parameters. The nonconservative work profiles in collective dynamics qualitatively reflect
the time-integrated concentration of the activator, and the majority of the nonconservative work contributes to the
entropy production over the spatial dimension. It is illustrated that the evolution of spatial entropy production and
semigrand Gibbs free-energy profiles associated with each state are connected yet completely out of phase, and
these thermodynamic signatures are extensively elaborated to shed light on the exclusiveness and similarities
of these states. Moreover, a relationship between the proper nonequilibrium thermodynamic potential and the
variance of activator concentration is established by exhibiting both quantitative and qualitative similarities
between a Fano factor like entity, derived from the activator concentration, and the Kullback-Leibler divergence
associated with the transition from a nonequilibrium homogeneous state to an inhomogeneous state. Quantifying
the thermodynamic costs for collective dynamical states would aid in efficiently controlling, manipulating, and
sustaining such states to explore the real-world relevance and applications of these states.
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I. INTRODUCTION

Chimera [1,2], a subtle and counterintuitive spatiotemporal
pattern with spatial coexistence of coherent and incoher-
ent states, is one of the most debated topics in collective
dynamics of systems and is reported in diverse theoretical
frameworks [3–9] and experimental settings ranging from
optical configuration [10], nonlocally coupled photosensi-
tive Belousov-Zhabotinsky (BZ) chemical oscillators [11]
to network of mechanical oscillators [12] and laser array
[13,14]. Although initially chimeras were only attributed to
the phase dynamics of identical oscillator collection, findings
of amplitude-mediated [15–17] and amplitude chimeras [18]
expand their existence in more general situations. For the
chemical reaction systems, diverse chimeras have been illus-
trated in nonlocally coupled chemical oscillators [11,19–22].
Lately, chimera states based on the amplitude dynamics of
a simple prototypical continuum chemical oscillator system
have also been generated by implementing a global coupling
scheme [23]. Despite being a counterintuitive state, chimeras
are sought to be a natural link between the coherence and
incoherence state [24]. In the coupled nonlinear system of
identical oscillators, the transition from a coherent state to a
completely incoherent state or from cluster states to coherent
behavior can be mediated via the chimera state [25–27].

Until now, the main focus of the investigation and the
arguments related to chimera and associated transitions
or identifying different states along transitions are purely
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dynamics-oriented. In the context of global coupling, different
kinds of complex bifurcation scenarios associated with vari-
ous states in a coupled system, mechanisms of creation and
destruction of torus motion, chaos, or cluster states around the
chimera are studied in detail in previous studies [26,28]. How-
ever, finding the proper connection between thermodynamics
and dynamics of coupled systems within a nonequilibrium
environment is always elusive and crucial. Only very recently,
chimera state in a continuum chemical system is characterized
thermodynamically by leveraging the nonequilibrium ther-
modynamic framework of chemical reaction network (CRN)
[29,30] to reveal the guiding role of the information uncer-
tainty principle in the evolution of chimera energetics [23].
Nevertheless, this thermodynamic study is confined solely to
the chimera state only. Some recent developments have also
addressed the thermodynamic cost of the coherent biochem-
ical oscillations [31,32] within the stochastic thermodynamic
framework. In this current investigation, we aim to expand the
scope of this line of research to encompass more general sce-
narios by incorporating diverse generic states derived around
the chimera state within a coupled system and inspecting the
dynamic and thermodynamic signatures of these generic col-
lective states. The inclusion of transitions between different
dynamical states in this study, ranging from coherence and
incoherence to chimeras and cluster states, can aid in es-
tablishing a dynamic and thermodynamic connection among
these states, and thus broaden the understanding regarding
the emergence, stability, generalization, and exclusiveness of
those states and transitions within a coupled chemical system
across various settings. In addition, the transitions between the
coherent and incoherent states of collective systems are ubiq-
uitous phenomena [33–35], and a general understanding of
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the transition between coherent and incoherent states remains
a central issue in the study of coupled nonlinear systems. So a
systematic and complete thermodynamic study of parametric
transitions would shed light on the fundamental underlying
fingerprints and nature of those similar transitions.

Here, we generate different spatiotemporal states in a
generic continuum chemical oscillator system where we im-
pose the effective coupling at the level of amplitude dynamics.
Different spatiotemporal states are obtained by controlling
the coupling parameters of the system, while the internal
parameters of an individual chemical oscillator are kept at
fixed values. The chemical oscillators are at the Hopf insta-
bility regimes, and hence, in the absence of global coupling,
individual Brusselator oscillators can be described by the
complex Ginzburg Landau equation (CGLE) [36,37], a uni-
versal form applicable to a wide range of reaction-diffusion
systems near the onset of the instability. Now, in the pres-
ence of nonlinear global coupling, the Brusselator CGLE is
extended to a modified CGLE (MCGLE) [38,39] which is
then enacted to encapsulate the amplitude of the collective
dynamics. To facilitate a connection between the dynamics of
a globally coupled chemical system and its nonequilibrium
thermodynamic depiction, we have here adopted a similar
ansatz as in Ref. [23]. Our ansatz posits that the concentra-
tion fields of the spatiotemporal states can be acquired by
combining the numerical solution of the MCGLE into the
linear stability description of the reaction-diffusion system
(RDS). After deriving different spatiotemporal patterns of the
coupled system, especially by presenting a transition between
coherence and incoherence patterns mediated via chimera or
similar states, we intend to ask some pivotal questions from a
thermodynamic viewpoint: How much energetic and entropic
costs do we need to pay in sustaining those states? How are
different collective dynamic states at distinct coupling pa-
rameters thermodynamically connected? How can we identify
these transitions in the collective dynamics from thermody-
namic characterizations? To answer these questions, we have
systematically quantified the central entities of the nonequilib-
rium thermodynamics corresponding to those spatiotemporal
states. Moreover, we have uncovered some intriguing re-
semblances between essential dynamic and thermodynamic
quantities, irrespective of the collective states and these sim-
ilarities can hold significant relevance in the context of the
connection between the dynamics and thermodynamics of
coupled systems.

The layout of the paper is as follows. First, we present the
concentration dynamics and relevant amplitude equation of
the globally coupled Brusselator system in Sec. II. In the next
section, elements of the nonequilibrium thermodynamics are
properly formulated. Results and discussion are provided in
Sec. IV. Finally, we conclude the work in Sec. V.

II. CONCENTRATION DYNAMICS OF GLOBALLY
COUPLED SYSTEM

A. Brusselator dynamics

Brusselator [40,41], a prototypical model for investigating
oscillatory and cooperative behaviors in chemical and biolog-
ical systems, is considered for demonstrating the transition

between coherence and incoherence mediated via chimera
or other similar states. The following chemical reactions de-
scribe the Brusselator model:

ρ = 1: A
k1�

k−1

X,

ρ = 2: B + X
k2�

k−2

Y + D,

ρ = 3: 2X + Y
k3�

k−3

3X,

ρ = 4: X
k4�

k−4

E ,

(1)

with ρ being the reaction step label. From this Brusselator
chemical reaction network (CRN), we construct the stoichio-
metric matrix,

Sσ
ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1 R2 R3 R4

X 1 −1 1 −1

Y 0 1 −1 0

A −1 0 0 0

B 0 −1 0 0

D 0 1 0 0

E 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

The species in this reaction network are separated into two dis-
joint sets: {X,Y } ∈ I of intermediate species having dynamic
concentration, and {A, B, D, E} ∈ C of chemostatted species
with a constant homogeneous concentration. The concentra-
tion dynamics of the species, σ of the CRN evolves according
to a general rate equation,

żσ =
∑

ρ

Sσ
ρ jρ + δC

σ JC, (3)

with zσ being the concentration of the σ species, jρ being the
net flux for the ρ reaction step, δC

σ being the Kronecker δ and
JC being the external flux related to the chemostatted species
only.

The Brusselator CRN described above obeys the following
rate equation,

ẋ = k1a − (k2b + k4 + k−1)x + (k−2d + k3x2)y

− k−3x3 + k−4e,

ẏ = k2bx − k−2dy + k−3x3 − k3x2y, (4)

with x = [X ], y = [Y ], a = [A], b = [B], d = [D], e = [E ]
denoting concentrations of species. Equation (4) yields

steady-state of the system as x0 = k1a+k−4e
k−1+k4

, y0 = (k2b+k−3x2
0 )x0

k−2d+k3x2
0

.

B. Hopf instability in the Brusselator

Now implementing the linear stability analysis around
the steady state (x0, y0), the critical value of the con-
trol parameter for the onset of Hopf instability is derived

as bcH = k4
k2

+ k2
1 k3

k2k4
2 a2, under the assumption of a much

higher forward reaction rate than the reverse ones, i.e.,
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kρ � k−ρ . The corresponding critical frequency of the os-

cillation is fcH =
√

k2
1 k3

k4
a, and critical eigenvector reads

UcH = (1 + i
a

√
k4
k3

1
k1

, −(1 + k4
3

k3k1
2

1
a2 )

T
. In the presence of

self-diffusion, the Brusselator dynamics in Eq. (4) can be rep-
resented as a reaction-diffusion system (RDS) in one spatial
dimension r ∈ [0, l] as

ẋ = k1a − (k2b + k4 + k−1)x + (k−2d + k3x2)

× y − k−3x3 + k−4e + D11xrr,

ẏ = k2bx − k−2dy + k−3x3 − k3x2y + D22yrr, (5)

where D11 and D22 are the constant self-diffusion coefficients
of intermediate species X and Y , respectively. The RDS of the
Brusselator assumes the critical value of the control parameter

b for the Hopf instability as bctw = k4
k2

+ k2
1 k3

k2k4
2 a2 + (D11+D22 )

k2
q2.

q is the wave number that obeys q = 2nπ
l for periodic bound-

ary conditions in the finite domain, l with n being an integer.
However, to simplify our investigation, we have considered
the wave number to be q = 0.

C. Modified amplitude equation for globally coupled system

We can capture concentration dynamics of the nonlinear
RDS by incorporating a complex entity, amplitude, with the
standard linearized description of the system. The amplitude
near the onset of the Hopf instability is derived from the
CGLE. The normal form of the CGLE [36,37] in a spatially
extended system is

∂Z

∂t
= λZ − (1 − iβ ) | Z |2 Z + (1 + iα)∂2

r Z, (6)

with Z being the complex amplitude field and λ, β, and
α being coefficients containing the RDS parameters. Given
the universal form of CGLE, these coefficients aid in encap-
sulating the unique traits of a specific system. Coefficients
α and β of the normal form of CGLE are determined by
Krylov-Bogolyubov (KB) averaging method [42,43]. For the
Brusselator model, the coefficients of the CGLE are α =

(D22−D11 )
(D11+D22 ) , β = p2

p1

1
3a , and λ = b−1−a2

2 with the ratio of cor-

rection factors, p1

p2
being 4−7a2+4a4

(2+a2 ) . The parameter 
 in the
coefficient, α of CGLE is acquired from KB method as, 
 =
a, with a being the concentration of chemostatted species,
A. Thus, we have explicitly defined the coefficients of the
CGLE in terms of the parameters of the Brusselator model,
establishing a direct connection between the CGLE and the
Brusselator model.

Now for the coupled continuum system with the global
coupling at the level of the amplitude, the amplitude equation,
CGLE in Eq. (6) modifies into the MCGLE,

∂Z

∂t
= λZ − (1 − iβ ) | Z |2 Z + (1 + iα)∂2

r Z

− (λ + iν)〈Z〉 + (1 − iβ )〈| Z |2 Z〉, (7)

with 〈...〉 denoting the spatial average. The MCGLE in Eq. (7)
has the first three terms in common with the CGLE in Eq. (6),
and the additional last two terms on the right of MCGLE
represent the nonlinear global coupling with the inclusion of
a new coefficient, ν. This nonlinear global coupling scheme

yields an oscillatory mean field when we take the spatial
average over Eq. (7). The oscillatory mean field is 〈Z〉 =
Z0 = η exp(−iνt ) with η and ν being the amplitude and the
frequency of the oscillation, respectively. A discrete counter-
part of this continuum system can be realized by resorting to
a globally coupled Stuart Landau oscillator system without
diffusive coupling [16]. The nonlinear global coupling de-
scribed here can be envisioned as an external force acting on
each Brusselator. This force could potentially originate from
chemical reactions outside the Brusselator chemical reaction
network or some external input connected to the individual
Brusselator. Any changes in the dynamics of external in-
puts influence the entire system instantly. We assume that
we can fully control the dynamics of the external input.
Considering arbitrary external inputs to generate coupling,
the explicit functional forms of these coupling parameters
are not provided here. Instead, we have supplied values of
these parameters in this study. From Eq. (7), we get the

threshold value of the η as ηc =
√

λ
2 , below which uniform

oscillation becomes unstable irrespective of other parameters.
More importantly, λ in the above expression is the coefficient
of Brusselator CGLE, and it contains the parameters of the
Brusselator model, namely, a and b. Consequently, coupling
parameter, η, is determined by the Brusselator model’s pa-
rameters, reinforcing the connection between our globally
coupled amplitude equation and the Brusselator system. We
can view η as the coupling strength of the system. In this
context, it is to note that previous studies of globally coupled
complex Ginzburg Landau equation [44,45] have the coupling
strength as a multiplicative factor of the coupling term. In con-
trast, η does not appear explicitly in the MCGLE considered
here. Furthermore, for amplitude-mediated states in MCGLE,
weak-coupling approximation does not require [15–17].

D. Concentration fields of intermediate species

In this article, Eq. (7) is solved numerically by the pseu-
dospectral method incorporated with an exponential time
stepping algorithm [46]. We then combine the amplitude field
obtained from the MCGLE simulation with the standard lin-
earized description of the single nonlinear system to acquire
the collective concentration dynamics of intermediate species,
zI of the Brusselator system,

zI H = zI 0 + ZMUcH exp(i fcHt ) + c.c. (8)

Here ZM is the numerically acquired amplitude field from
Eq. (7), and zI 0 is steady-state values of two intermediate
species.

III. ELEMENTS OF NONEQUILIBRIUM
THERMODYNAMICS

Forces regarding reactions, diffusion, and the nature of
chemostatted species distribution generate fluxes in the sys-
tem. The presence of forces and fluxes enables energy and
entropy flow within the nonequilibrium system. In this investi-
gation, the solvent of the dilute solution is viewed as a special
chemostatted species that plays the role of a thermal reservoir
by keeping the system at isothermal and isobaric conditions.
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A. Entropy production rate

In this study, fluxes of CRN follow the mass action law,

j±ρ = k±ρ

∏
σ z

vσ
±ρ

σ with + and − label denoting the for-
ward and backward reaction, respectively, and vσ

±ρ is the
number of the species σ . The force in the CRN is reaction
affinity [47], fρ = −∑

σ Sσ
ρ μσ with Sσ

ρ = vσ
−ρ − vσ

+ρ being
the stoichiometric coefficient of species and μσ = μo

σ + ln zσ

z0
being the nonequilibrium chemical potential. Additionally,
z0 is the solvent concentration, and μo

σ is standard-state
chemical potential. The local detailed balance condition
reads ln k+ρ

k−ρ
= −∑

σ Sσ
ρ μo

σ . Thus, the reaction affinities are

quantified in terms of the reaction fluxes as fρ = ln j+ρ

j−ρ
. Even-

tually, utilizing flux-force form, the entropy production rate
(EPR) along the whole chemical reaction pathways reads
[48], dR

dt = 1
T

∫
dr

∑
ρ ( j+ρ − j−ρ ) ln j+ρ

j−ρ
with T being the

constant absolute temperature set by solvent. Further, dif-
fusion of the internal species can also contribute to the
total entropy production rate, and it can be expressed as
dD

dt = 1
T

∫
dr

[
D11

‖ ∂x
∂r ‖2

x + D22
‖ ∂y

∂r ‖2

y

]
. By integrating over

temporal dimension instead, we easily get the spatial (local)
entropy production corresponding to the reaction and diffu-
sion, ∂R

∂r and ∂D
∂r , respectively, from the EPR expressions.

This total entropy production is always positive by the second
law of thermodynamics.

B. Semigrand Gibbs free energy

For a proper energetic description of the nonequilibrium
CRN, it is crucial to identify the conservation laws [49]. We
obtain conservation law from the stoichiometric matrix Sσ

ρ

in Eq. (2) by acquiring left null eigenvectors,
∑

σ lλ
σ Sσ

ρ = 0,
where {lλ

σ } ∈ R(σ−w)×σ ,w = rank(Sσ
ρ ). Conservation laws of

the CRN further delineate globally conserved quantities of a
closed system known as the components, Lλ = ∑

σ lλ
σ zσ .

When the closed system is opened by chemostating, con-
servation laws can be broken, and components corresponding
to the broken conservation laws, Lλb , no longer remain the
globally conserved quantities. We can disjoin the set of
chemostatted species in the open system into two subsets
{C} = {Cb} ∪ {Cu}, based on its participation in breaking a
conservation law. Labels u and b specify unbroken and broken
ones, respectively. In this investigation, chemostatted species
A and B are selected as elements of the set Cb, and the rest of
the chemostatted species belong to the set Cu.

As the conservation laws are broken in the open sys-
tem, nonequilibrium Gibbs free energy is not the proper
entity to capture the energetics of the system. Instead, a
transformed potential analogous to the grand potential of
equilibrium thermodynamics has been employed in recent
literature [29,30,50]. To obtain this transformed potential, we
first quantify the concentration of exchanged moieties corre-

sponding to the broken components as MCb = ∑
λb

lλb
Cb

−1
Lλb ,

with lλb
Cb

−1
being derived from the inverse of the square and

nonsingular matrix lλb
Cb

. The energetics corresponding to the
exchanged moieties is then captured by μCbMCb . Eventually,
the proper energy content of the open CRN is acquired by
subtracting the energetic cost of moieties exchange from the

zeq

zzh

D
K
L(
zh
||z

eq
)

DKL
(z||
ze
q )

DKL(z||z
h)

DKL
(z||
ze
q )

DKL
(z
h ||z

eq )
DKL
(z||
zh )

>

+

FIG. 1. Schematic illustration of potential transitions between
three distinct states and their corresponding information-theoretic
costs. Here, zeq represents the concentration of the system under
detailed balance conditions, obtained from the reference chemical
potential. zh corresponds to the nonequilibrium homogeneous state,
while z represents a nonequilibrium state with a specific pattern in
the coupled system. Transitions between these different states are
characterized using the Kullback-Leibler divergence, DKL, of con-
centration distributions.

nonequilibrium Gibbs free energy G = G − ∑
Cb

μCbMCb, and
G is recognized as the semigrand Gibbs free energy of the sys-
tem [30,50]. The lower bound of semigrand Gibbs free energy
is set at the reference equilibrium counterpart, Geq acquired by
exploiting the concentration fields zeq

σ which is derived from
the reference chemical potential, μref

σ . zeq
σ represents the con-

centration of the system in a detailed balance condition and
is denoted as zeq in Fig. 1. Most importantly, the semigrand
Gibbs free energy and reference equilibrium counterpart
are connected via an entity similar to the Kullback–Leibler
(KL) divergence of information theory [51] as, G = Geq +
DKL(zσ ||zeq

σ ), where the KL divergence or relative entropy,
DKL(zσ ||zeq

σ ) can be expressed as DKL(zσ ||zeq
σ ) = zσ ln zσ

zeq
σ

−
(zσ − zeq

σ ) for the nonnormalized concentration distribution
[30]. The KL divergence is always positive, and it captures
here the dissimilarity between the nonequilibrium concentra-
tion, zσ and reference equilibrium concentration, zeq

σ .
However, if our initial reference state is an arbitrary ho-

mogeneous state, zh
σ rather than an equilibrium state, we can

quantify the energetic cost of having the homogeneous state as
Gh = Geq + DKL(zh

σ ||zeq
σ ). Then, the difference between sem-

igrand Gibbs free energy of nonequilibrium inhomogeneous
and reference homogeneous states of the CRN is given by

G − Gh = DKL
(
zσ

∣∣∣∣zeq
σ

) − DKL
(
zh
σ

∣∣∣∣zeq
σ

) = DKL
(
zσ

∣∣∣∣zh
σ

)

+ ln
k−1xh

k+1a
(x − xh) + ln

k−1k+3yh

k+1k−3a
(y − yh), (9)

where DKL(zσ ||zh
σ ) is the KL divergence between concen-

trations, zσ and zh
σ . Notably, the above relation reveals that

the information-theoretic cost (KL divergence) for switching
from equilibrium to nonequilibrium inhomogeneous state via
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a nonequilibrium homogeneous state is lower than the direct
transition between equilibrium and inhomogeneous states.
The above analysis and discussion are practical and general, as
applicable to arbitrary CRNs. These transitions and relations
are illustrated in Fig. 1, where σ is omitted in concentration
representation to maintain concise notations.

C. Nonconservative work

In the general scenario, the dissipation in CRN is delin-
eated in terms of the work and semigrand Gibbs free energy
as T dD

dt = ẇdriv + ẇncon − dG
dt , where ẇdriv quantifies work

rate related to the external time-dependent manipulation of
reference chemostats, and ẇncon represents the nonconserva-
tive work rate for sustaining steady currents of chemostatted
species. Here for the autonomous system, ẇdriv vanishes. We
also assume that chemostatted species have homogeneous
distribution. Hence, there is no work due to the diffusion of
chemostatted species, and the reference chemical potential
μref

Cb
is μCb . This results in, μref

a = μa and μref
b = μb for the

Brusselator system considered here. So fundamental forces
corresponding to the reference chemostatted species are zero,
i.e., FCb = 0. For the chemostatted species of the set Cu,

FCu = μCu − ∑
Cb

μCb

∑
λb

lλb
Cb

−1
lλb
Cu

owing to the difference in
chemical potentials of dissimilar chemostats [52]. For the
Brusselator system, this results in Fd = μd − μb and Fe =
μe − μa, implying μref

d = μb, and μref
e = μa. So the non-

conservative work is only for chemostatted species Cu and
simplifies to ẇncon = −∑

Cu
(μCu − μref

Cu
)SCu

ρ jρ. This noncon-
servative work has been done to keep the concentration of the
chemostatted species Cu constant by offsetting the effect of
chemical reactions.

IV. RESULTS AND DISCUSSION

Different spatiotemporal states in the system are obtained
by discretely varying the oscillatory mean-field (correspond-
ing to the nonlinear global coupling) frequency, ν relative
to the fixed amplitude η = 0.67

√
λ of the field. Hence, the

frequency values are represented in terms of the mean-field
amplitude in all illustrations. At every ν value, we initially
keep the system at a uniform state. For all illustrations, the
control parameter of the Brusselator is fixed at b = 5.24, and
other parameters of the RDS are D11 = 4, D22 = 3.2, a = 2,
and k−ρ = 10−4 	 kρ = 1. For the simulation of the MC-
GLE, a timestep of size 0.01 is taken, and the system length
l = 500 is divided into 2048 grid points. Periodic boundary
conditions are implemented. For every state, amplitude snap-
shots are taken between time t = 2000 and t = 3000.

In this investigation, we use quantitative metrics, the
strength of incoherence (SI), S, and discontinuity measure
(DM), H [53] originally constructed for nonlocally coupled
systems to characterize the different dynamical states. Simi-
larly, we devise these statistical measures (see Appendix A)
based on the local standard deviation for identifying dy-
namical states of the globally coupled continuum chemical
oscillatory system. The combinations of S and H can aid in
recognizing the dynamical states. More specifically, (S = 0,

H = 0), (S = 1, H = 0), (0 < S < 1, H = 1), (0 < S <

1, 2 � H � P
2 ) denote coherent, incoherent, chimera, and

multichimera states, respectively. In this investigation, we
demonstrate the following collective states at distinct fre-
quency values of the mean-field relative to the amplitude.

(a) Quasiperiodic coherent state: When the frequency is
sufficiently larger than the amplitude, for example, ν = 100η,
the system shows a spatially coherent behavior in Fig. 2.
Snapshots of the concentrations reveal closed orbits in the
complex plane in the lower panel of Fig. 3(a). However, the
temporal dynamics of an arbitrarily chosen spatial point are
quasiperiodic and have modulated amplitude. Therefore, the
spatiotemporal behavior in the phase portrait of ν = 100η in
Fig. 2 emerges as a circular motion on a torus. We recognize
this state as a quasiperiodic coherent state. Then, for a rela-
tively lower frequency value, ν = 10η, the system occupies
a similar quasiperiodic coherent state with a complex torus
attractor in the phase portrait in Fig. 2. However, this state is
less coherent than the previous one, as a very small distortion
appears on the circular orbit of the snapshot in Fig. 3(b). In
both states, we obtain SI and DM as S = 0 and H = 0 as
expected for the coherent states of the system.

(b) Treelike transition state: As we explore low frequen-
cies, we find that the cyclic orbit eventually gets split and
is converted into a circular arc in the phase portrait of the
snapshots. For further lower frequencies (shown for ν = 2η),
a multifold trajectory emerges in the lower panel of Fig. 3(c).
This trajectory implies the generation of incoherence in the
spatial dimension. The temporal dynamics of the state in the
upper panel exhibit a transition from intricate quasiperiodic
motion to chaotic flow over time; hence, the torus attractor
no longer exists in the corresponding spatiotemporal phase
portrait in Fig. 2. In the spatiotemporal field of the concen-
tration, treelike patterns [54] appear locally over some spatial
regimes, and this treelike pattern spreads more as we lower
the frequencies (see ν = 2η in Fig. 2). The combination of SI
and DM values indicates a multichimera state [55] at ν = 2η

due to the loss of spatial coherence at multiple parts of the
concentration field. However, we would recognize these par-
tially synchronized states as “treelike transitioning states.” A
similar transitioning state is also identified in Couette flow
[56].

(c) Incoherent state: The complex treelike state then
evolves into spatiotemporal intermittency [57,58] for a
slightly lower frequency. As we keep decreasing the frequency
discretely, irregular patches scattered over the spatiotemporal
dimension of the concentration dynamics develop around the
equal value of the amplitude and frequency (Fig. 2). For ν =
η, we now have a very complex trajectory in the phase portrait
of snapshots, and the temporal dynamics in the phase portrait
follow a peculiar attractor in Fig. 3(d). This state is identified
as an incoherent state, and the overall spatiotemporal nature of
the incoherent is exhibited in the corresponding phase portrait
of the activator-inhibitor concentration in Fig. 2. The entities
SI and DM, with values S = 1 and H = 0, also support the
existence of the incoherent state.

(d) Transitioning cluster state: As we further lower the
frequency, keeping the amplitude, η fixed, the incoherent
nature is decreased as the size of the patches increases sig-
nificantly, and we have simpler spatiotemporal intermittency
on the surface of the concentration (not shown here). Due to
further phase variation, a transition from this spatiotemporal
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FIG. 2. Transitions in the spatiotemporal concentration dynamics of the system due to the change in the mean-field (yielded in the nonlinear
global coupling scheme) frequency keeping the amplitude of the mean-field fixed at η = 0.67

√
λ. The magnitudes of the frequencies are

indicated at the filled circle over the line. For different frequencies, the 3D concentration field of the activator is illustrated in the inner
panel. Here, color bars indicate the mapping of activator concentration values into the color map. In the outer panel, X and Y spatiotemporal
concentration dynamics are shown in phase portraits for the corresponding frequencies of the mean field. Other parameters are fixed at D11 = 4,

D22 = 3.2, l = 500, a = 2, b = 5.24, and k−ρ = 10−4 	 kρ = 1 for all illustrations.

intermittency to a treelike perturbation [54] state can occur.
The treelike perturbation state for ν = η

2 has been illustrated
in Fig. 2. The spatiotemporal turbulence nature in the phase
portrait is now converted into a thin cyclic orbit. So, unlike the
incoherent regimes, the temporal dynamics phase portrait in
Fig. 3(e) demonstrates multiple cyclic attractors attributed to
multirythemicity. In the lower panel, snapshots of spatial grids
in the complex plane reveal that the system possesses two
clear circular arc attractors at the higher time, which indicates
the existence of at least two groups. Although the combination
of SI and DM values indicates a multichimera state at ν = η

2
due to the loss of spatiotemporal coherence multiple times,
we identify this as an amplitude cluster state, argued to be the
prerequisite of having chimera in the globally coupled system
[26].

(e) Multichimera state: Now for even lower frequency,
for instance, ν = η

4 , multiple modulated amplitude clusters
emerge in the phase portrait of the temporal dynamics of the

spatial grid in Fig. 3(e). However, the snapshots of the spatial
grids have folded double-layer trajectories. The cluster states
in this coupling parameter move irregularly with time, leading
to a change in the position of the coherence and incoherence
regimes. Hence, multiple sharp incoherence clusters grow in
the spatiotemporal concentration in Fig. 2 and thus generate
the appearance of chimera states with the coexistence of mul-
tiple coherent and incoherent clusters. A chimera state with
a chaotic motion of coherent and incoherent regimes in time
was previously described as a finite-size effect [59]. Here, in
the continuum system, we identify this spatiotemporal pattern
as a multicluster chimera, as also hinted by the combination
of SI and DM values.

(f) Chimera state: For further lower frequency, i.e., ν = η

10 ,
a conventional amplitude-mediated chimera state emerges in
the spatiotemporal concentration field in Fig. 2. The com-
bination of SI and DM (0 < S < 1, H = 1) also matches
the identification of the chimera state. In the phase portrait,

044218-6



NONEQUILIBRIUM THERMODYNAMIC SIGNATURES OF … PHYSICAL REVIEW E 108, 044218 (2023)

FIG. 3. Amplitude dynamics corresponding to different states at the distinct coupling parameters are shown in the complex plane. Upper
panel: Temporal dynamics of the amplitude at an arbitrary spatial node are demonstrated in a complex plane. For panels (g) and (h), we have
shown temporal dynamics for two different spatial nodes (solid and dashed lines). Lower panel: For each case of coupling parameters, the
snapshot of the amplitude at an arbitrary time point is illustrated in the complex plane. Two profiles (solid and dashed lines) correspond to two
different time points.

Fig. 3(g), the modulated amplitude dynamics are obtained
for the spatial grid of the coherence regime, and coexisting
incoherence part (dashed line) yields more intricate phase
trajectories. Corresponding snapshots of spatial dynamics il-
lustrate distorted ρ-shaped profiles [17,44] that get modified
with time. The nonlinear nature of global coupling causes
complexity in the ρ-shaped profiles.

(g) Chimera-to-coherent transition: As the frequency
of the mean-field decreases, a type-II cluster [26] pattern
emerges with a modulated amplitude of temporal dynam-
ics. Initially, this pattern appears quasiperiodic, but as the
value of ν decreases further, it begins to split [Fig. 3(h)]. At
ν = η

100 , we have two out-of-phase coherence clusters in the
concentration field (see Fig. 2). Phases of the clusters alternate
after some time. There is a miniature incoherent patch at the
boundary of the clusters. The combination of SI and DM
(S = 0, H = 0), suggests this pattern as a coherent state.

For all these states, the time-averaged description of a
transformed variable, Xi,t (see Appendix A) reflects an odd
symmetry in their profiles (not shown), and this implies an
even symmetric center of mass for the activator concentration.
Regimes belonging to the coherent states of the concentra-
tion field have Xi,t around the origin of the vertical axis. In
contrast, the regimes corresponding to the incoherent states
deviate from that origin.

The nonequilibrium thermodynamic entities corresponding
to all the collective states mentioned above are illustrated
in Figs. 4, 5, and 6. From Fig. 4, one can notice that the
nonconservative work profiles (upper panel) of all the states
qualitatively follow the time-integrated profiles of the acti-
vator concentration, Xm (lower panel). This feature is due to
the activator concentration in the dominant forward reaction
currents, j+2 and j+4, which are part of the nonconserva-
tive work expression. Most of the nonconservative work is
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FIG. 4. Nonconservative work done on the system for different states related to distinct frequencies is shown in the upper panel. The
corresponding time-integrated concentration profile, Xm, is illustrated in the lower panel. The nonconservative work and Xm profiles are
qualitatively analogous.

dedicated to spatial entropy production in Fig. 5. Another
nonequilibrium thermodynamic element, the semigrand Gibbs
free-energy profiles of the different nonequilibrium states of
the system are illustrated in Fig. 6. The semigrand Gibbs free
energy of the initial homogeneous state is subtracted from
the semigrand Gibbs free energy of all states. Hence, these
profiles contain the amount of information generated along the
spatial dimension to achieve these states from a homogeneous
reference state. As all the conservation laws are broken here,
the semigrand Gibbs free energy represented at the local level
is the proper thermodynamic potential of the system [52].
Since the transition between different states occurs with vari-
ation in the ratio of the amplitude and frequency of the mean
field, the semigrand Gibbs free energy and entropy production
profiles at the local level go through drastic modification and
thus aid in distinguishing the dissimilarities of different states.
In all these cases, semigrand Gibbs free energy and spatial
entropy production profiles are similar but completely out
of phase. The entropy production and local free-energy flow
due to the diffusion flux are negligible here. In Fig. 7, we
have demonstrated the KL divergence, DKL(zσ ||zh

σ ) (dashed

line) obtained between the nonequilibrium inhomogeneous
state, zσ and homogeneous reference state, zh

σ of the coupled
system and a measure resembling the Fano factor, denoted
as Var(x)t

(x)t
(dash-dotted line) for different values of ν. Here

Var(x)t is the variance and (x)t is the average of the activator
concentration in the inhomogeneous state over time, respec-
tively. Figure 7 provides compelling evidence that the KL
divergence, DKL(zσ ||zh

σ ) and the Fano factorlike entity exhibit
qualitative and quantitative similarity with the same degree
of variability. More importantly, the semigrand Gibbs free-
energy expression in Eq. (9) contains DKL(zσ ||zh

σ ), and thus
the above equivalence indicates a strong association between
the proper nonequilibrium thermodynamic potential and vari-
ance of the concentration dynamics of the coupled system.

For the coherence state corresponding to ν = 100η in
Fig. 2, all the dynamic and thermodynamic entities in Figs. 4,
5, and 6(a) exhibit a sine waveform with harmonic distortion.
In the case of ν = 10η coherence state, the sine wave profiles
in all these entities are distorted by a different harmonic. We
note that spatial entropy production profile in Fig. 5(b) and
semigrand Gibbs energy profile in Fig. 6(b) corresponding
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FIG. 5. Entropy production of different states of the coupled system is presented over the spatial length of the system. Panels (a), (b), and
(h) correspond to coherent states at different frequencies. Panels (c) and (e) illustrate the entropy production of two different transitioning
states. Panels (f) and (g) are entropy production for multichimera and chimera states, respectively. In panel (d), entropy production of the
incoherent state is captured.

to the coherence state at ν = 10η has an additional cusp.
This cusp possibly manifests the appearance of slight distor-
tion in concentration dynamics shown in the complex plane
in Fig. 3(b). Whereas in the case of the coherent state of
much lower frequency, i.e., ν = η

100 , we have clipped sine
waveforms with roughly equal amplitude in both top and
bottom for the dynamic and thermodynamic entities in Figs. 4,
5, and 6(h). DKL(zσ ||zh

σ ) and the Fano factorlike entity for
the coherence states in Figs. 7(a), 7(b), and 7(h) have re-
markably small ranges, making even the slightest magnitude
differences between these two measures appear significantly
prominent.

In the case of the treelike transition state between coher-
ence and incoherence states corresponding to ν = 2η, the
nonconservative work in Fig. 4(c) yields a more composite
waveform. The nonconservative work profile has multi-
ple notches, and irregular oscillatory behavior with varying
amplitude appears over the spatial dimension due to the oc-
casional loss of spatial coherence in the presence of the
treelike pattern. The entropy production and semigrand Gibbs
free-energy profiles develop stronger modulation than the co-
herence states and have one part with a more regular multifold
spatial period than the out-of-phase another region. The er-
ratic part of the thermodynamic profiles indicates that loss of

FIG. 6. Semigrand Gibbs free-energy profiles corresponding to the states obtained via frequency variation are quantified. For all cases, the
semigrand Gibbs free energy of a common initial homogeneous state is subtracted from the semigrand Gibbs free-energy profiles of the states.
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FIG. 7. The equivalence of Kullback-Leibler divergence between the nonequilibrium inhomogeneous and homogeneous concentrations
with an entity resembling the Fano factor, denoted as Var(x)t

(x)t
, where Var(x)t is the variance and (x)t is the average of the activator concentration in

the inhomogeneous state over time, respectively. Here, zh
σ corresponds to the nonequilibrium homogeneous concentrations, while zσ represents

concentrations of species at the nonequilibrium inhomogeneous state. The range for the two equivalence entities is very small in coherence
states (a), (b), and (h), which highlights the seemingly pronounced difference between these entities.

coherence due to the treelike pattern is more dominant in
that spatial regime. For the incoherence state corresponding to
ν = η, thermodynamic entities in Figs. 4, 5, and 6(d) exhibit
more breakup of oscillations and continuous aperiodic be-
haviors emerge over spatial length. Due to the comparatively
large range of DKL(zσ ||zh

σ ) and the Fano factorlike entity for
the treelike transition and incoherence states in Figs. 7(c) and
7(d), respectively, the two measures seem to have a notable
degree of overlap.

Then, as we obtain a transitioning cluster state from the
incoherent state, the dynamics of the system become more
regular and the aperiodic continuous wave profile translates
into a symmetric profile for nonconservative work in Fig. 4(e).
This profile can be described as a superposition of two dis-
tinct behaviors. One part is flat, and then there is a transition
to a double-peaked structure with a comparatively higher
amplitude. In both the entropy production and semigrand
Gibbs energy profiles, Figs. 5 and 6(e), two almost symmet-
ric structures with the same phase but varying magnitudes
are interconnected. At the point of connection between these
structures, maxima appear in the semigrand Gibbs free-energy
profile. Unlike the nonconservative work profile, both the en-
tropy production and semigrand Gibbs energy profiles display
a wavy structure instead of a flat region. Figure 7(e) indicates
that the range of the similar entities DKL(zσ ||zh

σ ) and Var(x)t
(x)t

for this transitioning cluster state falls within an intermediate
level between that of the coherence and incoherence states.

For the multichimera state, at ν = η

4 , the nonconserva-
tive work profile Fig. 4(f) has a global minimum with
spatial double-periodic structure. There are also some other
secondary minima and maxima, which are not prominent
markers. For the entropy production and semigrand Gibbs
free energy, the profiles display completely distinct signatures
comparing to the corresponding work profile, as can be seen
from the Figs. 5 and 6(f), respectively. Entropy production and
semigrand Gibbs free energy have several intricate structures

with multiple bumps of different amplitudes corresponding to
the incoherent regimes, and they are connected via small, rel-
atively flat profiles corresponding to the coherence parts. This
wave profile reflects that the multiple patches are not static
over the spatiotemporal dimension; rather, the incoherence
domains’ boundaries have spatiotemporal erratic motion. In
this context, it is crucial to highlight that the nonconservative
work is directly related to the addition of the KL divergence,
DKL(zσ ||zh

σ ) and entropy production for all the states. So de-
spite the profound dissimilarity between the work profile and
the individual profiles of entropy production and semigrand
Gibbs free energy in this state, the former can indeed be
derived from the scaled DKL(zσ ||zh

σ ) and entropy production.
For the conventional chimera state at ν = η

10 , the noncon-
servative work profile Fig. 4(g) has a flat line corresponding
to the coherence state, and an asymmetric profile belongs to
the incoherence regime. For entropy production over spatial
dimension in Fig. 5(g) exhibit hump structures with a global
minimum between them. The global minima correspond to
the center regime of the incoherence part of the chimera.
The hump in this entropy production profile is a marker for
the transition from coherence to incoherence. The semigrand
Gibbs free energy in Fig. 6(g) resembles a modulated pulse
structure for the incoherent regime with a peak identifying
the core of the incoherent state. Additionally, notches on
both sides mark the transition from coherence to incoherence
and correspond to the previously mentioned humps in the
spatial entropy production profile. The variation of entities
DKL(zσ ||zh

σ ) and Var(x)t
(x)t

is also similar for the multichimera
and chimera states in Figs. 7(f) and 7(g), respectively, and the
range of these two entities is comparable to the range related
to transitioning states.

For the coherence, incoherence, and transitioning clus-
ter state between incoherence and chimera, we get closely
similar signatures for the nonconservative work and en-
tropy production. However, we have distinct signatures for
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nonconservative work and entropy production profiles for
the chimera, multichimera, and the treelike transition state
between the coherence and incoherence. As nonconservative
work qualitatively reflects the time-integrated concentration
dynamics, we also assert that system dynamics signatures
at the level of the first raw moment differ from the spa-
tial entropy production for the chimera, multichimera, and
the treelike transition state of the collective dynamics of the
system.

V. CONCLUSION

To sum up, our work has identified the emergence of
the different states and the transition between them in a
globally coupled continuum chemical oscillatory system and
quantified the corresponding nonequilibrium thermodynamic
entities to capture the nonequilibrium thermodynamic signa-
tures. In this regard, detailed comparative studies of these
states are carried out, and thus acquired dynamic and thermo-
dynamic signatures can be utilized to differentiate different
dynamical states of chemical reaction networks qualitatively.
The profiles of spatial entropy production in this study can
be key diagnostic elements to detect the nature of transitions
in diverse collective systems with different coupling schemes.
The profiles of nonconservative work and semigrand Gibbs
free energy for all the states are acquired here to reveal
the connection between thermodynamic and dynamic entities
and also among the thermodynamic entities. Notably, a con-
crete and intriguing connection between the semigrand Gibbs
free energy and the variance of the activator concentration
is asserted by displaying similarities between information-
theoretic cost and Fano-factor-like measure. This result hold
promise for advancing our understanding of complex systems
in the fascinating intersection of thermodynamics and dynam-
ics. Further, we observe that the Fano-factor-like measure for
all the states is significantly lower than the constant value (=1)
of the entity corresponding to a situation related to a Poisson
process, which confirms that the underlying dynamics of these
“under-dispersed” states are more complex and intricate than
the Poisson process.

Although we have obtained collective dynamics in a spe-
cific framework of the chemical oscillator, the principal
constituent exploited for this nonequilibrium thermodynamic
investigation of collective dynamics is common in many
frameworks where such dynamical states were previously
reported, and hence investigating similar thermodynamic en-
tities is also viable for those systems. For instance, the
thermodynamic characterization of different dynamical states
in continuum settings could be extended to a ring of coupled
oscillators, thus facilitating the investigation to reveal the
connection between the chimera and other states in Kuramoto-
type networks [60]. Following the recipe designated in this
investigation, the nonequilibrium thermodynamic description
of glycolytic oscillation [61] can be extended to collec-
tive dynamical states of such biological phenomena. The
semigrand Gibbs free-energy quantification of the different
dynamic states and its information-theoretic connection con-
ferred here can be crucial for elucidating different patterns of
brain dynamics and function [62]. Additionally, the valuable
connection between the semigrand Gibbs free energy and

variance of the activator concentration illustrated here for the
global coupling framework of the chemical oscillator should
be extended for local and nonlocal coupling schemes as well
to assess the generality of this connection. It is imperative to
note that, in this work, we have refrained from delineating the
coupling mechanism at the level of activator and inhibitor con-
centrations. The precise functional expression of the nonlinear
global coupling (presented in MCGLE) within the confines
of a reaction-diffusion framework is a topic that we intend to
explore in our future work. We anticipate that implementing
coupling directly at the concentration will aid in extracting
the numerical concentration dynamics without reducing the
coupled system.

APPENDIX A: CLASSIFICATION OF DYNAMIC STATES
USING THE STRENGTH OF INCOHERENCE

AND DISCONTINUITY MEASURE

Initially, from the spatiotemporal concentration field of
the activator, x, we define a transformed variable over the
whole time range t , Xi,t = xi,t − xi+1,t with i = 1, 2, . . . , N −
1 being the grid point over the spatial length, l . Then to dif-
ferentiate the coherent state from the incoherent and chimera
state, we calculate the standard deviation of the variable
and take the time average, σ = 〈

√
1
N

∑N
i=1[Xi,t − 〈Xi,t 〉]2〉t

with 〈Xi,t 〉 = 1
N

∑N
i=1 Xi,t and 〈...〉t denoting the average

over time. A vanishingly small σ value indicates a coherent
state, whereas relatively higher values of σ imply incoher-
ent and chimera states. However, as incoherent and chimera
can have the same order of σ , we need another entity to
distinguish chimera from incoherent states. So we define
local standard deviation for a properly chosen bin number
P, σloc = 〈

√
1
n

∑pn
j=np−n+1[X j,t − 〈Xi,t 〉]2〉t with n = N−1

P and
p = 1, 2, . . . , P. Now, we use a Heaviside step function,
�(δ − σloc) with threshold, δ = 0.0003|Xmax − Xmin| to dis-
tinguish these states. Finally, the strength of incoherence (SI)

is defined as S = 1 −
∑P

p=1 �(δ−σloc (p))

P . Additionally, the entity
that aids in differentiating the multichimera from the chimera

state is the discontinuity measure, H =
∑P

i=1 |�i−�i+1|
2 .

APPENDIX B: CONSERVATION LAWS
OF THE BRUSSELATOR

For the Brusselator reaction network, the conservation laws
of the closed system comprise two linearly independent (1×6)
vectors,

lλ=1
σ =

( X Y A B D E

1 1 1 0 0 1
)

and

lλ=2
σ =

( X Y A B D E

0 0 0 1 1 0
)
.

Hence, components of the system are L1 = x + y + a + e
and L2 = b + d . From the chemostatted species of the
chemical reaction network, any of the combinations
(A, B), (A, D), (E , B), and (E , D) would break both the con-
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servation laws in Brusselator. In this investigation, we select
the combination, (A, B) as the reference chemostatted species
and the entries of the inverse of the identity matrix

(1 0
0 1

)
are

denoted by lλb
Cb

−1
. Hence, moieties concentrations are given

here by MA = x + y + a + e, and MB = b + d . The reference
chemical potential of intermediate species of the Brusselator

is given by, μref
x = ∑

Cb
μCb

∑
λb

lλb
Cb

−1
lλb
x = μa, and μref

y =∑
Cb

μCb

∑
λb

lλb
Cb

−1
lλb
y = μa.
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