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Application of recurrence quantification analysis of acoustic emission time series
to analysis of a plastic flow of metals
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As a result of the application of recurrence quantification analysis to acoustic emission time series obtained
in uniaxial tensile testing of copper and silver, we detected the existence of a characteristic interval in which the
Shannon information entropy (as a parameter of the quantitative analysis of recurrence plots) increased rapidly.
Using statistical analysis of the behavior of the dislocation ensemble, we established a relation between the
physical parameters of the given interval and the global stability loss parameters of the plastic flow of metals,
indicating the predictability of the distinctive point determined long before the critical state was attained.
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I. INTRODUCTION

The recurrence plot method proposed by Eckmann et al.
[1] is a popular tool for nonlinear time series analysis along
with Lyapunov exponents [2], multifractal analysis [3], and
analysis of correlation dimension [4]. The rapid development
of the recurrence plot method during the last two decades
has led to the emergence of recurrence quantification analysis
(RQA) that has found its application in a wide range of fields,
including seismology [5], astrophysics [6,7], economics [8],
and biological science [9,10]. RQA is based on the reconstruc-
tion of the phase portrait of a dynamical system from a single
observed time series and makes it possible to characterize
the behavior of nonlinear systems not only qualitatively but
also quantitatively; it permits the identification of transitions
between different stages of processes and phenomena being
investigated.

In this sense, the acoustic emission (AE) induced by the
deformation of solids [11,12] can precisely reflect the dynam-
ics of defects ensemble and, representing a time series, can
be a good indicator in testing RQA methods. Despite this,
the cases of RQA application to AE time series in metals are
rare; for example, this method has been employed in Ref. [13]
for studying the corrosion of magnesium alloys. Most of the
publications in this field are devoted to the investigation of
rocks in the context of geophysical studies [14,15].

The RQA method is based on the assumption of the
existence of a specific dynamical system represented as d
autonomous differential equations:

dx
dt

= F(x), (1)

where x(t ) = x1(t ), x2(t ), . . . , xd (t ) is a vector in the phase
space of dimension d , which unambiguously and compre-
hensively characterizes the state of the system at time t in
given initial conditions. However, the system of equations for
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a dynamical system can be written only in some rare cases.
The most effective and classically successful example is the
system of Lorentz equations [16]. However, in practice, there
often exist some observable physical quantities represented in
the form of time series. The AE signals detected during plas-
tic deformation of metals reflect the dynamics of numerous
nonlinearly interacting spatially distributed local stress relax-
ation events which, being spatially and temporarily integrated,
cause the macroscopically homogeneous deformation of the
entire material. Given the strong nonlinearity of the system,
a single variable can contain substantial information on the
behavior of the system as a whole. The latter fact stimulated
the development of the entire class of nonlinear dynamics
methods based on the phase space reconstruction from a single
observable [17].

Let us consider in detail the quantitative analysis of re-
currence plots. Let ui = u1, u2, . . . , uN be an observed time
series of length N . Then the reconstruction of the state
vector based on the Takens theorem [18] will be given by
x̂i = [ui, ui+τ , ui+2τ , . . . , ui+(m−1)τ ]. Here, the following pa-
rameters of the phase space trajectory reconstruction are
introduced: τ is the time delay, and m is the embedding
dimension. To avoid distortions that may lead to erroneous
interpretations and conclusions, it is important to determine
the optimal values of parameters τ and m. According to
Ref. [19], the optimal value of τ is chosen as the value for
which mutual information attains the first minimum. Then the
optimal embedding dimension m is determined by the Cao
method [20].

A recurrence plot shows the times for which the recon-
structed phase trajectory returns to the small neighborhood of
a certain point and is a graphic representation of the recur-
rence matrix defined as

Ri j = θ (δ − ‖x̂i − x̂ j‖), i, j = 1, 2, . . . , M,

where M = N − τ (m − 1). (2)

Here, δ is the radius of the small neighborhood, indices i and
j count the discrete time, ‖x̂i − x̂ j‖ is the distance between
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FIG. 1. Examples of recurrence plots for different artificially generated time series.

the phase trajectories at the instants of time i and j, and θ (u)
is the Heaviside function. The recurrence matrix Ri j consists
of zeros and unities which correspond to white and black
pixels forming the vertical and diagonal lines, separate points,
and other structures on the recurrence plot. Figure 1 shows
examples of recurrence plots for artificially generated time
series. Individual points are produced by strongly fluctuating
trajectories, which is typical of noise signals [white noise,
Fig. 1(a)]. Diagonals appear on the recurrent diagram when
a segment of the phase trajectory runs parallel to an adja-
cent segment, which is typical of quasiperiodic segments of
the time series. For this reason, systems with an exponen-
tial sensitivity to the initial conditions are characterized by
short diagonals with an irregularly varying length [determin-
istic chaos determined by the system of Lorentz equations,
Fig. 1(b)]. Random processes are characterized by dense
irregular structures and empty white zones due to nonstation-
arity [Wiener process or Brownian motion, Fig. 1(c)].

Although the visual analysis of recurrence plots makes it
possible to identify qualitatively various regimes and tran-
sitions between them [21,22], it is more effective to use
parameters characterizing small-scale structures on recur-
rence plots quantitatively, which is the essence of RQA. Using
a small-length window sliding over a time series, it is possi-
ble to determine the behavior of these parameters depending
on time. Some investigations show that RQA parameters
can reveal bifurcation points, including the chaos-order and
chaos-chaos transitions [21,23]. In pioneering work on RQA
[22], five basic parameters were proposed: Recurrent density
(percentage of recurrent points on the recurrent diagram),
determinism (percentage of points forming only diagonal
lines), the ratio of determinism to recurrent density, trend (the

quantity characterizing the displacement of points from the
principal diagonal), and Shannon entropy of the frequency
distribution of diagonal line lengths. The latter quantity is
defined as

S = −
M∑

l=lmin

p(l ) ln [p(l )], (3)

where lmin is the minimal length of the diagonal l , and p(l )
is the probability that the length of the diagonal equals to l ,
which is defined by the following expression:

p(l ) = H (l )

/
M∑

l�lmin

H (l ), (4)

where H (l ) is the histogram of the lengths of diagonal lines:

H (l ) =
M∑

i, j=1

(1 − Ri−1, j−1)(1 − Ri+1, j+1)
l−1∏
k=0

Ri+k, j+k . (5)

Information entropy S reflects the amount of information
required for describing the complex structure of the recur-
rence plot, namely, its diagonal components. Therefore, it can
be interpreted as a measure of complexity of the underly-
ing dynamics. For example, to describe the recurrence plot
consisting only of diagonals of the same length, only one
number, diagonal length (i.e., a small amount of information),
is required. Accordingly, white noise is also characterized by
low-information entropy [Fig. 1(a), S = 0.49]. For describing
a recurrence plot consisting of many diagonals of different
lengths, one must know the length distribution, i.e., a large
amount of information is required. Therefore, it is assumed
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FIG. 2. Fragments of continuous random acoustic emission signals obtained under uniaxial plastic deformation of (a) copper and (b) silver.

that information entropy reflects the degree of complexity
of the recurrence plot. Deterministic chaos is characterized
by recurrence plots with many diagonals of various lengths
and hence by high-information entropy [Fig. 1(b), S = 2.74].
Stochastic processes generating dense structures of irregular
shapes are characterized by still higher values of entropy
[Fig. 1(c), S = 3.15].

In this paper, we apply RQA to reveal and interpret specific
features of AE time series, which were registered under plastic
deformation of representative face-centered cubic (fcc) met-
als. Since the AE method is a universal tool for describing the
evolution of the dislocation structure of a material under load-
ing, the predictability of this tool as regards the emergence of
peculiarities of a plastic flow and the emergence of the critical
state is quite promising for laboratory experiments as well as
for practical application in monitoring and diagnostic systems
in the industry [12].

II. EXPERIMENTAL TECHNIQUE

As the material for investigation, we chose polycrystals of
pure (99.99%) fcc metals (copper and silver). Using spark
erosion cutting, we prepared two-dimensional (2D) samples
of size 15 × 7 × 2 mm for uniaxial tensile tests. As a result
of vacuum annealing for 90 min at a temperature of 0.85 of
the melting temperature, we obtained a grain size of 100 ±
35 µm for copper and 90 ± 70 µm for silver. Uniaxial tensile
tests were performed on a Tinius Olsen H50KT universal test
machine with a 5 kN strain-gauge load cell and a precision
system for strain measurements using an extensometer with
a resolution of 1 µm, which ensured a constant strain rate of
2 × 10−3 s−1.

Mechanical tests were accompanied by continuous regis-
tration of an AE signal by an NF AE-900S WB broadband
piezoelectric transducer in the frequency range of 100–
900 kHz. The transducer was connected to a low-noise
PAC 2/4/6 amplifier with an amplification factor of +60 dB,
and the AE signal was recorded using a PAC (Physical

Acoustic Corporation, USA) PCI-2board with a sampling rate
of 2 MHz.

Despite the discreteness of the dislocation slip lines, the
AE signal detected under loading of fcc metals integrates
the contribution from many slip events, which can coincide
or occur sequentially with short interevent intervals. AE is,
therefore, a continuous random process [11]. Figure 2 shows
examples of the fragments of continuous AE signals obtained
under uniaxial plastic deformation of copper [Fig. 2(a)] and
silver [Fig. 2(b)]. The detection of individual events in con-
tinuous AE streams emerging during plastic straining of pure
metals is challenging (or even impossible), and threshold-less
registration of a continuous signal with a high sample rate is
used. For further analysis, the AE parameters, such as power
and energy calculated by a sliding window, are conventionally
used [24–26]. In this paper, we used the amplitude calculated
by a sliding window of length 260 ms with a step of 26
ms as the integral characteristic of the AE time series. The
sample rate of the resulting amplitude time series was 38 Hz.
Figure 3 shows the time dependences of the true stress and the
AE signal amplitude calculated by the sliding window with
the given parameters, which have been obtained for uniaxial
loading of copper [Fig. 3(a)] and silver [Fig. 3(b)].

The resulting time series of the AE amplitude shown in
Fig. 3 were subjected to RQA. The optimal embedding pa-
rameters were determined by the procedures mentioned above
[19,20] and were m = 9, τ = 2, and δ = 9 × 10−3 for copper
and m = 9, τ = 2, and δ = 8.5 × 10−3 for silver. Shannon
information entropy S was calculated using the expressions
in Eqs. (3)–(5) by a sliding window of lengths 40 and 43 s
with steps of 13 and 10 s for silver and copper, respectively.
The resulting time dependences of the information entropy are
shown in Figs. 4(a) and 4(b) for copper and silver, respec-
tively. It should be noted that the obtained S(t ) dependences
display an entropy jump followed by an increase of both
curves. The characteristic time interval corresponding to the
abrupt change in the entropy was chosen as the first segment
that violated the initial trend of the information entropy con-
stancy (in Fig. 4, it is shown in gray).
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FIG. 3. Time dependences of the true stress and acoustic emission (AE) signal amplitude calculated by a sliding window and obtained
under uniaxial straining of (a) copper and (b) silver.

III. THEORETICAL SUBSTANTIATION OF RESULTS
AND DISCUSSION

The state of the deformed metal, in which a sharp change
in the general trend of information entropy variation has been
detected does not correspond to the point of macroscopic
plastic flow stability loss (Considère point [27]). Rather, it is
observed at the stable stage of strain hardening, as will be
demonstrated in what follows. The emergence of the point
at which the general information entropy trend changes is
associated with the features of dislocation ensemble evolu-
tion. Therefore, to identify the physical origin of the given
point, we used the simplest and most commonly adopted
Kocks-Mecking (KM) phenomenology [28] with the evolu-
tion equation of the form:

dρ

dγ
= k1

√
ρ − k2ρ, (6)

where ρ is the dislocation density, γ is the shear strain, and
k1 and k2 are phenomenological coefficients. The first term

on the right-hand side of Eq. (6) describes the multiplication
of dislocations due to the dislocation forest, while the second
term describes their annihilation during dislocation recovery.
This phenomenological approach has been successfully em-
ployed in the analysis of the evolution of dislocation density
on many occasions (notably on the examples of samples tested
in this paper).

It is worth noticing here that the phenomenological equa-
tions of the KM model can be derived from the basics of
nonequilibrium dislocation ensemble thermodynamics [29].
The obtained values of the coefficients describing the produc-
tion, multiplication, and annihilation of dislocations include
only physically measurable properties of the material and
do not contain explicit uncertainties. The KM formulation
of the dislocation kinetics represents a simplistic single in-
ternal variable integral approach which has pros and cons.
Apparently, it misses many details of the dislocation behavior
such as slip multiplication on each system due to cross-slip
of screw dislocations or dislocation loop generation at glis-
sile junctions [30,31]. There have been many modifications

FIG. 4. Time dependences of information entropy for (a) copper and (b) silver. The characteristic interval of the jump-wise change in the
information entropy, in which the initial trend of its constancy has been violated for the first time, is shown in gray.
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proposed to enhance the KM model, attempting to capture var-
ious microstructural factors by introducing additional terms
or employing two or more internal variables [28,32,33]. The
versatility of modified models permits precise approximation
of a wide range of experimental stress-strain data. Although
detailing various dislocation reactions is possible in this way,
it occurs at a price—the analytical transparency is lost. Aim-
ing at keeping as small a number of parameters as possible
and avoiding redundant complexity without compromising the
accuracy of the strain hardening prediction, the first-order
approximation KM approach is most appealing. We shall
demonstrate in what follows that, although the simplest form
of the KM model is employed, it reproduces the experimental
stress-strain curves quite well. As a bonus, the simplicity
and conciseness of the model ensures straightforward applica-
tion of the fluctuation analysis and clear interpretation of the
results.

In what follows, we will use the approach proposed in
Ref. [34], assuming the dislocation density and the shear-
strain rate are considered fluctuating physical quantities. To
implement this approach, we rewrite Eq. (6) as

dρ

dt
= γ̇ (k1

√
ρ − k2ρ ). (7)

The fact that the dislocation ensemble density fluctuates
has been discussed in detail in Ref. [11]. Let us suppose that,
on a certain segment of the loading curve corresponding to
strain rate γ̇ and dislocation density ρ, their fluctuations are
δγ̇ and δρ, respectively. Then in accordance with Eq. (7),
these fluctuations satisfy the following condition:

d (ρ + δρ)

dt
= (γ̇ + δγ̇ )[k1

√
ρ + δρ − k2(ρ + δρ)]. (8)

Opening the brackets in this equation, disregarding the
second-order terms (product of fluctuations), and subtracting
Eq. (7) from the resulting expression, we obtain

δρ̇ = k1

(
γ̇ δρ

2
√

ρ
+ √

ρδγ̇

)
− k2(γ̇ δρ + ρδγ̇ ). (9)

In this expression, the phenomenological constant k1 can
be eliminated using Eq. (6) in the form k1 = ( dρ

dγ
+ k2ρ )/

√
ρ,

which immediately yields

δρ̇ = 1

2ρ

(
dρ

dγ
− k2ρ

)
γ̇ δρ + dρ

dγ
δγ̇ .. (10)

In addition, we will use the Taylor relation connecting the
true flow stress and the dislocation density:

σ = αGMb
√

ρ = β
√

ρ, (11)

where α ∼ 0.4–0.5, G is the shear modulus, b is the mag-
nitude of Burger’s vector of the dislocation, and M is the
orientation factor. At variance with our previous work [34], we
dropped the strain rate sensitivity in Eq. (11) for clarity, bear-
ing in mind that the strain rate sensitivity is fairly small for fcc
metals. The use of this equation with explicit strain rate sensi-
tivity has led to cumbersome mathematical expressions. This
resulted in the incomplete stability analysis in Ref. [34], where
the only global loss of plastic flow stability was considered,
whereas the second characteristic point was not considered.

Without contradictions with the previous work, this issue is
addressed in this paper.

With an account for the sample incompressibility condition
δσ = σδε [34] (ε is the true axial strain, ε = γ /M) and the
variation of the Taylor relation in Eq. (10), we can quickly
obtain the following chain of equalities:

δγ = Mδε = M
δσ

σ
= M

β
δρ

2
√

ρ

β
√

ρ
= M

δρ

2ρ
. (12)

Assuming the time dependence of fluctuations in the form:{
δρ = x = x0 exp (λt )

δγ = y = y0 exp (λt )

{
δρ̇ = ẋ = x0λ exp (λt )

δγ̇ = ẏ = y0λ exp (λt )
, (13)

and substituting these expressions into Eqs. (10) and (12), we
obtain the following linear system of equations:[

λ − γ̇

2ρ

(
dρ

dγ
− k2ρ

)]
x0 =

[
dρ

dγ
λ

]
y0[

M

2ρ

]
x0 = y0. (15)

The compatibility of this linear system leads to the charac-
teristic equation:

λ

(
1 − M

2

1

ρ

dρ

dγ

)
= γ̇

2

(
1

ρ

dρ

dγ
− k2

)
. (16)

With an account for the Taylor relation in Eq. (11), Eq. (16)
is transformed to

λ

(
1 − 1

σ

dσ

dε

)
= γ̇

2

(
2

M

1

σ

dσ

dε
− k2

)
. (17)

Assuming exponential relaxation of the amplitude of dis-
location density fluctuations in Eq. (13), the decay of the
fluctuation amplitude requires the negativity of the exponent,
which immediately leads to the condition λ < 0.

This immediately leads to a system of inequalities which
must be fulfilled for the plastic flow to be stable:

1

σ

dσ

dε
>

k2M

2
1

σ

dσ

dε
> 1. (18)

For convenience, let us introduce unified variables [35]:

σS = βk1

k2
,

1

ε̃
= k2M

2
,

σS

ε̃
= k1Mβ

2
. (19)

Then combining the KM evolution in Eq. (6) with Eq. (11),
one obtains the equation for the flow stress in the form:

dσ

dε
= 1

ε̃
(σS − σ ). (20)

Solving this equation with the initial condition σ (ε = 0) =
σ0 (σ0 is the initial strain hardening connected with initial
dislocation density ρ0 by the relation σ0 = β

√
ρ0) yields the

explicit form of the stress-strain relationship as

σ (ε) = σ0 + (σS − σ0)
[
1 − exp

(
−ε

ε̃

)]
. (21)
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FIG. 5. Diagram of evolution of a material under deformation
in the Kocks-Mecking phenomenology in the strain vs hardening
coefficient coordinates: (a) stable plastic flow region, (b) plastic flow
instability evolution region, and (c) region of global stability loss in
the plastic flow.

We can now rewrite the conditions in Eq. (18) in a unified
form, and the stresses corresponding to the boundary of the
inequalities can be found using Eq. (21):{

1
σ

dσ
dε

> 1
ε̃

1
σ

dσ
dε

> 1
⇒

{
σ1 = σS

2

σ2 = σS
ε̃+1

. (22)

Using Eq. (20), we depict the evolution of the material
during straining with the conditions in Eq. (22) in coordinates
(σ ; dσ

dε
) (Fig. 5). The evolution occurs along the black line,

with the arrow from the point corresponding to the initial
strain hardening. In this case, the Cartesian plane contains
three regions: Green (region of stable plastic flow, where both
inequalities of the system in Eq. (22) hold; region a in Fig. 5),
yellow (region of the plastic flow instability evolution, in
which only the second inequality of the system in Eq. (22)
holds, region b in Fig. 5), and orange (global stability loss
region of the plastic flow, in which both inequalities of the sys-
tem in Eq. (22) are invalid; region c in Fig. 5). These regions
are separated from one another by straight lines dσ

dε
= 1

ε̃
σ and

dσ
dε

= σ (as a rule, 1
ε̃

= k2M
2 > 1 for coarse-grain materials).

The evolution of the material begins in the green region of
global stability. Further, for dσ

dε
= 1

ε̃
σ (blue bullet; in this case,

the mechanical stress is σ = σS
2 ), the material is in the yellow

region, where instability begins to develop, which terminates
with the global loss of stability for dσ

dε
= σ (Considère point;

red bullet; the mechanical stress in this case is σ = σS
ε̃+1 ). In

the orange region, a stable plastic flow is impossible. For this
reason, the further model evolution in the orange region is de-
picted by the dashed black line that intersects the mechanical
stress axis at hypothetic saturation stress σ = σS .

Thus, the approach in the frames of the KM phenomenol-
ogy reveals two characteristic points corresponding to the
conditions in Eq. (22). Using Eq. (21), we can determine the
true strain corresponding to these characteristic points:{

1
σ

dσ
dε

= 1
ε̃

1
σ

dσ
dε

= 1
⇒

{
σ1 = σS

2

σ2 = σS
ε̃+1

⇒
{

ε1 = ε̃ ln
[
2
(
1 − σ0

σS

)]
ε2 = ε̃ ln

[(
1 + 1

ε̃

)(
1 − σ0

σS

)] .

(23)

The experimental loading curves for copper [Fig. 6(a)]
and silver [Fig. 6(a)] were approximated by Eq. (21) with
the regression coefficient r2 = 99.95. The resulting values
of approximation parameters are compiled in Table I and
depicted in Fig. 3 by the model curve plotted using these
parameters. The values of the true stresses and the true strain
corresponding to characteristic points were calculated using
the expressions in Eq. (23). The results are compiled in
Table I.

Comparing the true stresses in the characteristic interval
corresponding to the abrupt change of the Shannon entropy
from Table I with the point determined by the condition
dσ
dε

= 1
ε̃
σ in the KM formulation, it can be noted that the

relative error between these two methods does not exceed
10%. We can confidently state that the abrupt change in the
Shannon entropy corresponds to the point (ε1; σ1) in the KM
approach in Eq. (23). At the very beginning of plastic flow, the
material deforms heterogeneously—coarse favorably oriented
grains yield first. However, the first point of instability which
is defined by the condition in Eq. (23) corresponds to true
strain of 7–11%, where the deformation is macroscopically
uniform. For coarse-grained materials, a homogeneous plastic
flow is observed at much lower strains.

Despite its simplicity, the KM model provides an excellent
approximation of the strain-hardening curve from the onset of
plastic flow to the point of macroscopic instability (Fig. 6).
Keeping in mind that the amplitude of AE depends on the
dislocation density in a complex manner determined by the
interaction of dislocations during strain hardening, the agree-
ment of the AE analysis with the predictions of the KM model
indicates that the underlying aspects of dislocation kinetics
have been adequately captured. The amplitude of the AE at
each moment of time reflects the rate of the elastic energy
dissipation during the evolution of the dislocation ensemble.
The behavior of the Shannon entropy indicates that this pro-
cess becomes more complex as the deformation proceeds. We
emphasize that the Shannon entropy relates to the dynam-
ics of the energy release, while the configurational entropy
characterizes all possible configurations of atoms for a single
dislocation. Оne should bear in mind that AE is a cumulative
effect of multiple dislocation reactions involving production,
multiplication, and annihilation. In this connection, the in-
crease in the Shannon entropy corresponds to the evolution
of the dislocation ensemble to a state where the nonlinear
interaction of dislocations dominates.

Since we deal with the deformation of fcc polycrystals, de-
tecting the signs of critical behavior in terms of the dislocation
avalanches, as has been done in Refs. [36–40], is challenging.
Most studies associating the dislocation avalanche size dis-
tribution with the AE amplitude distribution were performed
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FIG. 6. True stress (gray curves) and strain-hardening coefficient (green curves) as functions of true strain for (a) copper and (b) silver.
Blue curves are the results of approximation by Eq. (21) in the Kocks-Mecking phenomenology. Blue and red bullets are the characteristic
points obtained from conditions in Eq. (23) and serving as boundaries of the regions in Fig. 5. Turquoise fragments are the characteristic
intervals obtained by the recurrence quantification analysis (RQA) method.

on materials with a hexagonal close-packed lattice (Zn, Cd,
ice, etc.) exhibiting strong anisotropy and deforming primarily
by a single slip mechanism. The exception is copper sin-
gle crystals investigated among other materials in Ref. [38].
Although the authors found a power-law distribution of AE
amplitudes, we note that the number of discrete AE signals
distinguishable in the case of copper single crystals [38] is
very small, only a few tens. Finally, it should be mentioned
that the scale invariance of the dislocation ensemble observed
in ice single crystals is violated in polycrystals. Not only the
grain boundaries impose a finite-sized effect, but they are also
responsible for the triggering effect. In the present case, the
number of well-detected discrete AE bursts that can be inter-
preted as dislocation avalanches is very small. Moreover, the
pronounced strain hardening makes it necessary to consider
local amplitude distributions in a small time window to reduce
the effect of nonstationarity of AE time series. In this case, it
is more appropriate to analyze continuous AE signals without

detecting individual discrete events, which is implemented in
this paper.

The point (ε1; σ1) in the KM phenomenology in Eq. (23)
has a clear physical meaning. Considering the right-hand
side of Eq. (7) as a function of dislocation density, we
can easily find that it has a maximum when the condition
d

dρ
(k1

√
ρ − k2ρ ) = 0 is met, which leads to the critical dis-

location density ρ∗ = ( k1
2k2

)
2
. Using the Taylor formula in

Eq. (11), we can find stress σ∗ = β
√

ρ∗ = βk1

2k2
= σS

2 = σ1

corresponding to this dislocation density. Therefore, the char-
acteristic point determined by the condition dσ

dε
= 1

ε̃
σ in the

KM phenomenology corresponds to the maximal growth rate
of the dislocation density.

On the other hand, the second characteristic point (ε2; σ2)
determined by the condition dσ

dε
= σ is the classical Considère

point describing the global stability loss with the formation of
a neck followed by sample fracture. This point indicates the

TABLE I. The characteristic points determined from the analysis of AE signals by the RQA method and proceeding from the Kocks-
Mecking phenomenology. Red and blue colors correspond to the red and blue bullets in Fig. 6.

Metal

Determined parameters Cu Ag

Characteristic intervals of experimental parameters t , s 64.2–74.7 104.9–118.0
determined by the RQA method and corresponding ε 0.07–0.08 0.11–0.12
to the change in the information entropy trend σ , MPa 131−145 99−107

Values of parameters of approximation of σ0, MPa 17.50 12.60
experimental data by Eq. (21) in the Kocks-Mecking σS , MPa 306.14 227.36
phenomenology 1/ε̃ 7.59 4.70

Values of true strain and true stress corresponding to ε1 0.08 0.13
the characteristic points in the Kocks-Mecking σ1, MPa 153 114
phenomenology in accordance with the expressions ε2 0.28 0.36
in Eq. (23) σ2, MPa 270 187
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complete degradation of the material after the attainment of
stress σ2. The functional relation between the parameters of
the first and second characteristic points can easily be obtained
from the conditions in Eq. (23):

ε2 = ε1 + ε̃ ln

(
ε̃ + 1

2ε̃

)

σ2 = 2σ1

ε̃ + 1
. (24)

Therefore, if the RQA of the AE time series shows the first
sharp increase in the Shannon information entropy from the
initial trend, the mechanical stress corresponding to this point
is connected by the clear functional relation in Eq. (24) with
the mechanical stress corresponding to the global stability loss
of the plastic flow. The only control parameter of the above
functional dependences is a parameter ε̃ = 2

k2M ; however, the
dislocation dynamic recovery coefficient k2 for coarse-grain
materials typically ranges between 1 and 10.

In conclusion, because of the RQA of AE time series, a
characteristic interval of the rapid increase of the Shannon
information entropy was found. Physical interpretation of

the found characteristic interval at the beginning of plastic
flow stability loss was proposed based on a fluctuation anal-
ysis of dislocation ensemble behavior. With the appropriate
calibration, the proposed RQA approach offers a fundamental
basis for developing diagnostic systems capable of forecasting
the critical state of a material and indicating the safe intervals
for the operation of different mechanisms. To this end, the
effects of loading conditions and metallurgical factors need to
be incorporated explicitly in the upcoming research.
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