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We propose a method for manipulating wave propagation in phononic lattices by employing local vibroimpact
(VI) nonlinearities to scatter energy across the underlying linear band structure of the lattice, and transfer energy
from lower to higher optical bands. First, a one-dimensional, two-band phononic lattice with embedded VI unit
cells is computationally studied to demonstrate that energy is scattered in the wave number domain, and this
nonlinear scattering mechanism depends on the energy of the propagating wave. Next, a four-band lattice is
studied with a similar technique to demonstrate the concept of nonresonant interband targeted energy transfer
(IBTET) and to establish analogous scaling relations with respect to energy. Both phononic lattices are shown
to exhibit a maximum energy transfer at moderate input energies, followed by a power-law decay of relative
energy transfer either to the wave number domain or between bands on input energy. Last, the nonlinear normal
modes (NNMs) of a reduced order model (ROM) of a VI unit cell are computed with the method of numerical
continuation to provide a physical interpretation of the IBTET scaling with respect to energy. We show that
the slope of the ROM’s frequency-energy evolution for 1:1 resonance matches well with IBTET scaling in the
full lattice. Moreover, the phase-space trajectories of the NNM solutions elucidate how the power-law scaling is
related to the nonlinear dynamics of the VI unit cell.
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I. INTRODUCTION

Periodicity has been leveraged to control acoustic and elas-
tic energy propagation in linear time-invariant (LTI) phononic
metamaterials [1–3]. Such systems are typically designed on
a unit cell level whereby the application of the Bloch theorem
allows one to engineer a linear band structure which can
enable or augment specified wave phenomena with diverse
applications such as lensing [4], vibration isolation [5–7],
wave steering [8], and topological insulation [9–11]. For LTI
phononic systems, a propagating wave remains stationary on
a prescribed subset of its band structure, and is invariant to
amplitude (or energy) as the dynamics are completely de-
scribed by the superposition principle [3]. However, it is often
desirable to predictively tune wave propagation in phononic
materials in a nonstationary or amplitude-dependent fashion.
To this end, one must either manipulate the underlying band
structure altogether by utilizing external forces or nonlinearity
[3,12], or find methods to modify the distribution of (or, equiv-
alently, passively manage) energy across a fixed underlying
band structure.

Whereas active band manipulation has been achieved by
introducing (active) multiphysics fields, e.g., electromagnetic,
magnetic, or thermal fields [13–18], nonlinear mechanisms
considered here, such as nonlinear mechanical coupling,
offer the key advantage of being passive and tunable (self-
adaptive) to energy, frequency, and wave number content
[12,19]. For instance, the effective dispersion relations of
granular chains with Hertzian contact laws are tunable by lo-
cally linearizing about various precompression states [20–22].
Moreover, passive nonlinear mechanisms possess intrinsic

frequency-amplitude dependencies which are predictable by
Bloch-wave perturbation analysis in the low-energy regime
[23] or by the nonlinear normal modes (NNMs) of the finite
lattice in the high-energy regime [24–26].

The use of nonlinear attachments in acoustic waveguides
(either bulk or periodic) has demonstrated unprecedented
properties in acoustical systems [27]. For instance, a small
mass connected to a resonator chain by an essential (non-
linearizable) stiffness nonlinearity has been shown to induce
interesting nonlinear dynamics when interacting with trav-
eling waves [28], and can even be tuned to arrest incident
pules [29]. Moreover, by incorporating hierarchical mass
scales and asymmetry, similar systems have achieved acous-
tic nonreciprocity [30–32]. These effects have been extended
for systems with local nonlinear gates that enable effective
diode-type features in both continuous waveguides [33] and
discrete oscillator chains [34,35], and similar concepts have
been recently leveraged for mechanical wave filtering in meta-
materials with interfaces [36,37].

Herein, we aim to develop passive mechanisms for re-
distributing propagating energy using localized nonlinearities
to transfer energy across the underlying band structure of
a phononic lattice. In the absence of external actions, this
requires a nonlinear mechanism with the capacity to trans-
fer energy form one region of band structure to another.
Such a mechanism is fundamental to achieving nonlinear
energy exchanges, which are most commonly described in
terms of phase matching, internal resonances, and resonance
captures [38,39]. These nonlinear resonant phenomena have
led to the concept of targeted energy transfer (TET) [40].
Among its many applications, TET has previously been
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utilized to transfer energy between donor and receptor lo-
cations in nonlinear lattices [41]. Recently, TET has been
used to design passive nonlinear energy control using lo-
cal attachments called nonlinear energy sinks (NESs) [40].
NESs are local mechanisms that alter the global dynamics
of a primary linear structure to which they are attached to
achieve TET, with typical applications in vibration mitigation
[42–56].

Traditional NES-based TET relies on resonance capture
of the NES dynamics to a resonance manifold, and thus tra-
ditional TET is intrinsically suited for systems with smooth
nonlinearities and periodic excitations [39]. However, theo-
retical and numerical support has recently been extended to
systems with nonstationary dynamics [57] and systems with
nonsmooth nonlinearities such as idealized vibroimpact (VI)
laws [58–60]. Recent work has introduced the concept of non-
resonant TET energy exchanges in a directly forced primary
linear structure by using VI nonlinearity to redistribute modal
energy within its modal space, termed intermodal targeted en-
ergy transfer (IMTET) [61–63]. Unlike resonant TET, IMTET
scatters energy across the underlying linear modal basis in a
low-to-high-frequency fashion.

To date, nonresonant energy scattering concepts have
not been extended to periodic phononic metamaterials from
a wave propagation perspective. The most notable differ-
ences between modal and periodic acoustical systems are the
timescales which describe the dynamics of nonlinear oscil-
lators considered. While both modal and acoustic systems
oscillate at fast timescales governed by the eigenfrequencies,
the first employs a modal basis to describe stationary vi-
brations (and is suitable for systems of finite extent whose
dynamics are governed by relatively slow timescales, i.e.,
slow flow dynamics [40]), while the latter focuses on acous-
tics and relies on a continuous band structure to describe
propagating waves (and, hence, applies to unbounded and/or
large-scale systems with timescales determined by group ve-
locity and wave-packet bandwidth). Hence, several natural
questions arise when considering nonresonant TET phenom-
ena in a phononic material: Namely, to what extent can the
linear wave propagation be scattered in the wave number
domain across a dispersion branch, and to what capacity can
energy be irreversibly transferred from one band to another by
use of localized VI nonlinearities? These desired phenomena
are notably distinct from previous studies of TET in lattice
systems [27–35,41]. This paper addresses these questions
with extensive computational probing, postprocessing tech-
niques, and physics-based reasoning of the resulting nonlinear
acoustic phenomena.

We begin by studying the effects of VI nonlinearity in a
two-band phononic lattice of diatomic resonators by simula-
tion and numerical postprocessing. For this, we focus on the
energy scattered across the frequency-wave number (spectral)
domain of the single optical band of this lattice as a function
of the number of local VI unit cells and as a function of the
incident wave energy growth. Next, we consider a four-band
phononic lattice, which has one acoustic and three optical
bands over a relatively broad frequency-wave number range.
This band structure, coupled with the strong VI nonlinearities,
allows for low-to-high-frequency energy generation of the
impacts, as well as TET across bands. This brings about the

nonlinear acoustic phenomenon of interband targeted energy
transfer (IBTET).

Accordingly, the organization of this paper is as follows.
Section II provides a system description of the unit cell of
the two-band phononic lattice, a computational framework
for studying spectral scattering within the single optical band
induced by the VIs, and quantification of the spectral disorder
generated by the VIs with respect to energy. Section III ex-
tends the study to a four-band phononic lattice and presents
a method for transferring energy from lower to higher opti-
cal bands via VIs, together with relationships between these
transfers and the total system energy. Section IV presents a
two-degree-of-freedom (2DOF) reduced order model (ROM)
which is studied from the perspective of NNM analysis in
order to provide a physics-based understanding of the results
of Secs. II and III, and relates the nonlinear dynamics of the
ROM to the IBTET occurring in the lattice. Last, Sec. V
offers concluding remarks and some suggestions for further
extension of this work.

II. SPECTRAL ENERGY SCATTERING

We begin by studying a one-dimensional (1D) phononic
lattice in the form of a diatomic resonator chain and embed
VI contact laws in select (local) resonators while preserving
the global linear structure of the lattice. The system is compu-
tationally explored by performing numerical simulations with
wave-packet excitations over an array of excitation amplitudes
and wave numbers. The resulting data sets were postprocessed
in the spatial-temporal domain to uncover the underlying
trends of energy scattering in the wave number domain as the
excitation level (input energy) changes.

A. System description and simulations

We consider a linear diatomic lattice constructed by the pe-
riodic tessellation of 1D unit cells in the x direction [Fig. 1(a)].
Each unit cell is composed of a host mass and internal res-
onator, which, depending on the existence (absence) of rigid
barriers, may (may not) experience vibroimpacts [Figs. 1(b)
and 1(c)]. The corresponding equations of motion for the
infinite phononic lattice are

m1ük
1 = k1

(
uk−1

1 + uk+1
1 − 2uk

1

) + k2
(
uk

2 − uk
1

)
,

m2ük
2 = k2

(
uk

1 − uk
2

)
. (1)

Substituting a Bloch-wave solution into Eq. (1) yields a lower-
frequency acoustic band and higher-frequency optical band to
describe propagation in the lattice.

We consider six different finite lattice configurations,
each corresponding to a unique arrangement of VI unit
cells embedded in the linear lattice with the number
of VIs ranging between 1 and 20 [Fig. 1(d)]. These
configurations ensured that the VI interactions remained
relatively localized in space with respect to the entire lattice,
while also offering insight regarding the dependency of
the energy scattering on the number of VI interactions the
wave may undergo. We fix m1 = 0.01 kg, m2 = 8m1, and
k1 = k2 = 90 kN/m unless otherwise stated. Excitation
is provided to the left boundary in the form of a
windowed harmonic function, F (t ) = W (t ) sin(�t ),

044214-2



SPECTRAL ENERGY SCATTERING AND TARGETED … PHYSICAL REVIEW E 108, 044214 (2023)

1 VI

3 VI

5 VI

10 VI

15 VI

20 VI

(a)

(c)

(d) (e)

(b)

FIG. 1. The linear phononic lattice composed of coupled (host)
masses with embedded internal resonators which may or may not
undergo vibroimpacts: (a) the primary linear periodic system and
(b) the underlying linear dispersion relation showing the acoustic (A)
and optical (O) bands. (c) Schematics of finite lattice configurations
which are predominately composed of (d) the linear phononic lattice
primitive unit cells with (e) nonlinear VI cells embedded at select
locations in the lattice.

where W (t ) = A[H (t ) − H (t − 2πNc
�

)][1 − cos( �t
Nc

)] is a
windowing function, H (t ) the Heaviside function, A the
forcing amplitude, Nc the number of cycles in the window,
and � the center frequency of excitation. The forces induced
by the local nonlinear VIs are described by

FNL(wk ) = kc[(wk − �k )n
+ − (−wk − �k )n

+]g(ẇk ), (2)

where wk (t ) = uk
2(t ) − uk

1(t ), n = 3/2 unless otherwise
stated, �k is the clearance of the kth VI in the lattice, and
kc = 2EVI

√
RVI

3(1−ν2 ) the stiffness parameter for Hertzian contacts,
with EVI = 200 MPa, RVI = 0.005 m, and ν = 0.3 being the
modulus, radius, and Poisson ratio of the VI, respectively.
The notation ( )+ indicates that only positive arguments are
to be considered. We consider an inelastic dissipation func-
tion based on the work-energy principal [64], g(ẇk ) = (1 −
3(1−r)

2ẇ−
k

ẇk ), where ẇ−
k is the velocity ẇk immediately before

impact and r the coefficient of restitution which is set to
r = 0.7 to emulate steel-to-steel contact [63]; this roughly
equates to an equivalent linear viscous damping constant of
c2+ = 5.5 × 10−4k2. Note that Eq. (2) does not modify the
underlying linear band structure of the extended lattice and
the VIs only affect the propagating waves when wk > �k at a
given unit cell.

Numerical simulations were performed for center frequen-
cies corresponding to wave number κ = 5π/9. Excitation
frequencies were chosen based on the optical band dispersion
to ensure relative out-of-phase motion between the resonator
and impactor and thus excite the VIs, and the VI clearances
were nominally set to range between 0.0002 and 0.0001 m
with a logarithmic dependence on position from the leading
VI unit cell to account for the momentum loss of the wave
as it passes successively through VI cells based on numerical

FIG. 2. Simulation results for a five-VI configuration at excita-
tion wave number k� = 5π/9 (in the optical band of the linear lattice)
with columns corresponding to (a) low-, (b) medium-, and (c) high-
amplitude excitations. For each amplitude, the rows depict (i) the
spatiotemporal evolution of the kinetic energy of the propagating
wave, (ii) the temporal variation of the wave number distribution in
the lattice, and (iii) the numerically computed dispersion computed
using the entirety of the simulation with a gray dashed line superim-
posed to depict the analytical dispersion of the infinite liner lattice

probing of the lattice response at various forcing levels.
Within this framework, an ensemble of simulation data was
constructed for 25 logarithmically increasing forcing ampli-
tudes for each configuration in Fig. 1.

B. Influence of VIs on wave propagation

In this section, we focus on a narrow subset of three simula-
tions conducted at low, medium, and high forcing amplitudes
in order to build intuition on the postprocessing analysis and
to establish qualitative dependence of the frequency-wave
number distribution on system energy. Quantitative results
across all simulations will be given subsequently.

Figure 2 depicts the results for a representative simulation
with a five-VI configuration (cf. Fig. 1) for low, medium,
and high forcing amplitude (equivalently low-, medium-, and
high-energy simulations) corresponding to A = 0.1, 1, and
10 N, respectively. The resulting energy measures are com-
puted directly by considering only the kinetic energies of the
oscillator. At low amplitude, the acoustics are entirely linear
as the wave does not create deflections greater than the VI
clearance [Fig. 2(ai)]. The interactions of the VI mechanisms
come about in the medium- and high-amplitude simulations,
whereby the energy of the propagating wave scatters pro-
foundly in the space-time domain [Figs. 2(bi) and 2(ci)].

To understand the energy scattering in terms of frequency
and wave number content, we utilize a set of signal pro-
cessing procedures that are briefly detailed in Appendix A.
Figures 2(aii), 2(bii), and 2(cii) depict the wave number spec-
trum across the lattice computed over progressions of time
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snapshots for each simulation, which was recovered by per-
forming Fourier analysis in the spatial domain over successive
time iterations. It is clear from Figs. 2(aii)–2(cii) that the wave
number distribution in linear (low-amplitude) simulations
does not change after the excitation ends, as expected for a LTI
system. In contrast, new wave numbers emerge for medium
and high excitation amplitudes. However, for the case of high
energy level, the wave number generation is not nearly as
pronounced compared to medium energy level, indicating that
the wave reflections of Fig. 2(ci) do not generate substantial
wave number components beyond that of the incident wave.

Taking the Fourier transformation across both time
and space provides the numerically resolved dispersion
D(κ, ω) = F x,t {u(x, t )} which is given in Figs. 2(aiii)–2(ciii).
Figure 2(aiii) may serve as a reference since no VIs engage in
the low-amplitude simulations, where only a small region of
the optical branch is energetic, corresponding directly to the
excitation spectrum. In the nonlinear regimes, the energy scat-
tering over ω-κ is much more profound for medium-energy
cases, corroborating the trends established by rows (i) and (ii)
of Fig. 2. Note that the spectral content generated by scattering
in Fig. 2(biii) remains bound to the underlying linear disper-
sion relation; this indicates that the VIs “redistribute” (scatter)
wave energy across the dispersion relation of the underlying
linear lattice in a nonresonant fashion, rather than modify
the dispersion altogether. Hence, this nonresonant scattering
mechanism yields the same effect for transient wave propaga-
tion to that studied in modal dynamics [63].

To visualize the propagation of the wave specific to dif-
ferent partitions of the optical band, and thus confirm that
wave propagation at new wave numbers occurs due to VI
interactions, customized filter banks were constructed to seg-
ment spectral content in the wave number domain. Namely,
we follow a similar continuous wavelet transform approach to
[65] and partition wavelet-transformed simulation data into 12
wave number partitions. The spatial wavelet-transformed data
at a time t , denoted as X (κ, x)|t , were multiplied by a masking
filter corresponding to the jth partition of the optical band to
deliver the binned quantity K j (x, κ ). The propagation in each
frequency bin K1–K12 was then computed as the collection of
inverse wavelet transformations of binned wavelet data over
time. The kinetic energy can be computed for each spatial-
spectral partition with litter error (see Appendix A), which
cannot be achieved directly in the frequency domain due to
the mass dependency of the kinetic energy. More importantly,
as discussed below, the described numerical partition of the
optical band enables us to study in detail the transmission of
wave energy at different wave number bands and, hence, can
offer insight into the nonlinear physics of the scattering of the
incident wave at the VI sites.

Figure 3 depicts the results of the wave number partitioning
scheme. The propagation of energy across each wave num-
ber partition is given by Figs. 3(ai)–(axii) and plotted to the
same color scale with respect to kinetic energy. The wave
initiates in K7 and K8, which are both energetic at the onset of
propagation. However, midway through the lattice, the energy
begins to propagate through all partitions, and this is clear
indication that the VI nonlinearity generates wave number
content not native to the incident wave. Figure 3(b) shows the
amplitude dependence of the scattering by superimposing the

FIG. 3. Propagation of wave energy at different wave number
bands: (a) the kinetic energy versus time at each wave number parti-
tion for a mid-energy simulation with panels (i)–(vii) plotted to the
same color scale to compare relative energies; (b) superimposition
of wave propagation at each wave number partition depicted by con-
tours for (i) low-, (ii) medium-, and (iii) high-energy simulation; and
(c) the optical band of the linear lattice plotted with corresponding
colors to the wave number-based energy contours of (b).

propagation in each wave number band for low-, medium-,
and high-profile wave numbers, from which it is apparent
again that wave number generation is far more potent at
medium-amplitude simulations than for high ones.

C. Quantifying wave number spectrum disorder

Having established, in a qualitative sense, that the VIs gen-
erate new wave numbers in an amplitude-dependent fashion
(cf. Figs. 2 and 3), we now seek to quantify the spectral
scattering and establish empirical relationships with respect
to amplitude. To this end, we consider the spectral entropy,
which is the extension of classical Shannon entropy to the
frequency domain [66], to quantify signal complexity in terms
of frequency content. We consider the wave number entropy
generated over space at a given time snapshot as

H (x) = −
∑

κ

P(x, κ ) log2 P(x, κ ), (3)

where P(x, κ ) is the space-dependent probability distribution
over wave number computed with the space-frequency power
spectrogram. Computing P(x, κ ) over time snapshots, t j deliv-
ers a matrix of entropy versus time, H(x, t ), capturing the time
evolution of wave number entropy of the propagating wave for
each simulation.

We compute a statistical summary of the wave number en-
tropy by considering the elements of H(x, t ) for time intervals
after the incident wave has already reached the first VI unit
cell at t = t̂ . Figure 4 depicts the average entropy quantity
normalized between 0.01 and 1 with respect to forcing ampli-
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FIG. 4. Mean spectral entropy in the lattice with VIs for system
configurations ranging from 1 to 20 VIs (see Fig. 1) over an array of
excitation amplitudes logarithmically spaced from 0.1 to 20: Top and
bottom plots are for the same data with the bottom plots depicting the
log-log scaling; a fitted power law is denoted as a thick black line,
and the adjusted R-squared value is listed for each configuration in
the bottom plots.

tude for all configurations depicted in Fig. 1. To this effect,
we are capturing the relative scattering of wave numbers
as compared to an optimal excitation amplitude for a given
VI configuration. For low-amplitude (linear) simulations, the
entropy remains nearly zero as the only variation in the wave
number comes from the intrinsic dispersive characteristics of
the underlying linear lattice (i.e., with inactive VIs). However,
once the VIs are engaged at medium and high excitation
levels, the entropy rises to a maximum before rapidly falling
again with respect to forcing amplitude. Figure 4 reveals that
after the maximum entropy is reached, the remainder of the
data fit remarkably well with a power law, with adjusted
R-squared coefficients above 0.95 being recovered for the ma-
jority of configurations studied. The power coefficients b for
the law y = axb are reported by insets in each panel of Fig. 4
showing that the decay rate has a 1:1 proportion to energy
with b ≈ −1, and that this trend is ubiquitous among each
considered configuration (i.e., 1 to 20 VI oscillators). Error
bars in Fig. 4 measure the standard deviation of entropy across
the spatial extent of the lattice which corresponds to the spatial
uniformity of the scattering. Hence, the larger error bounds at
high excitation amplitudes indicate that novel wave number
components are localized rather than distributed (or propa-
gated) throughout the spatial extent of the lattice, and this is in
direct agreement with the qualitative results of Figs. 2 and 3.

III. INTERBAND TARGETED ENERGY TRANSFERS

With Sec. II establishing that the VI nonlinearities can
scatter energy about the optical band of a diatomic lattice, we
now seek to induce VI-enabled targeted energy across differ-
ent bands. This can be considered the acoustics equivalent to
the IMTET mechanism established for modal dynamics [61].
Hence, this section demonstrates interband targeted energy
transfers (IBTET) by showcasing irreversible transfer of en-
ergy from a lower optical band to a higher one. Moreover,

FIG. 5. Increasing the bands of the lattice: (a) schematic of the
unit cell and (b) the corresponding dispersion diagram for parameters
λ = 0.1 and η = 0.5 showing the acoustic band (A) and optical
bands 1–3 (O1–O3).

we demonstrate this phenomenon for multiple classes of VI
contact laws by introducing a nonlinear VI law to be studied
alongside the Hertzian model of Sec. II. This demonstrates
that the subsequent results are not particular to the Hertzian
contact law utilized in Sec. II and thus achievable by a broader
design space of phononic wave guides. Achieving IBTET
requires additional optical bands above the first optical band,
since a spectral feature of VIs is the low-to-high-frequency
energy transfers [63]. To maintain the simplicity of one di-
mension, we proceed with a four-DOF model of the unit cell,
offering two additional bands to transfer energy towards.

A. The four-band lattice

The four-band model emulates closely the resonator model
of Fig. 1 with the main difference being two masses added
in series in between resonators as shown in Fig. 5(a). The
equations of motion for a unit cell of the infinite four-band
phononic lattice read

m1ük
1 + k4

(
uk

1 − uk−1
4

) + k1
(
uk

1 − uk
2

) = 0,

m2ük
2 + k2

(
uk

2 − uk
1

) + k3
(
uk

2 − uk
3

)
+ k4

(
uk

2 − uk
4

) + fNL(wk ) = 0,

m3ük
3 + k3

(
uk

3 − uk
2

) − fNL(wk ) = 0,

m4ük
4 + k1

(
uk

4 − uk+1
1

) + k4
(
uk

4 − uk
2

) = 0. (4)

To maximize the potential for IBTET, the parameters of sys-
tem (4) were selected to ensure that (i) sufficient out-of-phase
motion was achieved on the second band (which is selected
as the excitation band), (ii) the excitation band corresponds
to high group velocities to minimize linear dispersive effects
in the simulation, and (iii) the higher bands possess ade-
quate bandwidth to receive the low-to-high-frequency energy
redistribution caused by the VI interactions [63], which is
equivalent to maximizing their average group velocity over
the Irreducible Brillouin Zone. System (4) is parametrized by
η and λ which relate the mass and stiffness of the resonator
cell to the nominal parameters of m1 = m4 = m = 0.005 kg
and k1 = k4 = k = 2 × 104 N/m by m2 = m(1 − η), m3 =
mη, and k3 = kλ while we fix k2 = 104 N/m. We confine the
design space to 0.1 < λ < 1 and 0.1 < η < 1, and recover
λ = 0.1 and η = 0.5 (see the Supplemental Material [67]),
which results in the band structure shown in Fig. 5(b).

To simulate the system, a finite lattice of 300 unit cells
(1200 DOF) was constructed. Accordingly, we consider only
a five-VI lattice configuration [as depicted in Fig. 1(d)] herein
and refer the reader to the Supplemental Material [67] for
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FIG. 6. IBTET in the four-band lattice with five VI sites: (a) evolution of the propagating wave energy; [(b)–(d)] propagation of the wave
energy corresponding to each band of the lattice based on the numerically recovered dispersion of the full simulation; [(e), (f)] dispersion
of the input and output segments [labeled in (a)] demonstrating the targeted energy transfer to the higher bands; [(g), (h)] Fourier spectra
corresponding to the velocity of the four unit cell DOF selected before (fifth unit cell) and after (150th unit cell) VI engagement, with the four
bandpass regions depicted with shading and insets depicting the corresponding velocity-time histories.

the results of a one-VI lattice configuration. Simulations were
performed similarly to Sec. II with excitation provided by
a windowed tone burst. An input signal of 30 periods was
considered, and the excitation frequency is selected based on
the maximum group velocity of the optical band. Simulations
were performed for 50 selections of the excitation amplitude
between 1 and 104 N.

We employ the same Hertzian contact law described by
Eq. (2) for n = 3/2, and also a bilinear contact law which
takes the same form as Eq. (2) but for n = 1. This is performed
to ensure that the subsequent results are not particular to
nonlinear Hertzian contact laws but are rather a product of
the contact nonlinearity. For the four-band system considered,
the contact stiffness parameters (kc) were computed based on
E = 100 MPa, ν = 0.3, and RVI = 0.005 m, and the clear-
ances are now varied between 10−2.65 and 10−2.75 m.

B. Low-to-high-band targeted energy transfer

Figure 6 depicts an example of a wave propagating through
the four-band system with five Hertzian VIs engaged. Energy
clearly cascades from the main wave packet as it propagates
through the lattice [Fig. 6(a)], similar to the diatomic chain
(Fig. 2). Computing the numerical dispersion at the begin-
ning and end of the simulation clearly shows that energy
in fact transfers from the lowest optical band to the higher
two optical bands [Figs. 6(f) and 6(g)]. This is further con-
firmed by Figs. 6(h) and 6(i), which show the difference
in the temporal frequency of the wave at the start versus
end of the lattice and hence the low-to-high-frequency tar-

geted transfer of energy from the second band to the higher
bands.

Energy transfer between bands can be quantified by first
converting the numerically measured data into the ω-κ do-
main with the two-dimensional (2D) Fourier transformation.
Thereafter, the 2D spectrum is partitioned band by band and
also into band-gap regions. For each partition, the remainder
of the spectrum is zero-padded before the inverse Fourier
transformation returns the spectral content into the spatiotem-
poral domain for that specific partition. This results in the
propagation depicted in Figs. 6(b)–6(e), where it can be seen
that the content of the upper bands indeed corresponds to
propagating waves generated by the VIs, and thereafter ki-
netic energy calculations over each band can be conveniently
performed.

Figure 7 depicts the results of the IBTET analysis over the
ranges of forcing amplitudes considered for both Hertzian and
bilinear VI laws. The log-log plots depict a very similar trend
to what was observed in Sec. II: a sudden spike in energy
transfer once the amplitude is sufficient enough to engage the
VI, and a sudden decline in energy transfer as the excitation
amplitudes rise thereafter. This decline in IBTET continues
until a minimum is reached which is defined by the relative
energy obtained by the higher bands for a completely linear
system. This ≈0.01% lower bound of the total system energy
is explainable by the fact that the excitation is a Gaussian dis-
tribution in the frequency domain which invariably provides
trace amounts of energy to the higher bands.

The same trends in IBTET are recovered for both Hertzian
and bilinear contacts, indicating that the nature of the contact
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FIG. 7. The portion of input energy transferred to the upper two
optical bands versus forcing amplitude of the incident wave for
(a) Hertzian VIs and (b) bilinear VIs in (i) linear-linear and (ii)
log-log scales.

law does not play a critical role in the energy transfer, but
rather the discontinuous potential is the driving mechanism
for the energy exchanges. This is further verified in Figs. 7(aii)
and 7(bii), which show that the maximum IBTET is on the
same order for both the Hertzian and bilinear VIs (30–35 %)
which confirms that (i) an appreciable level of IBTET is
achievable and (ii) this phenomenon is general across various
VI designs.

IV. PHYSICAL INTERPRETATION
OF IBTET MECHANISM

We now seek to relate the trends established in Secs. II and
III to physics-informed arguments in order to offer physical
insight into IBTET in a consistent and comprehensive way.
We do so by studying the nonlinear normal modes (NNMs) of
a reduced order model (ROM) constructed to emulate the VI
unit cells. NNMs have proven a useful tool for interpreting the
responses of nonlinear dynamical systems and their passive
tunability with respect to energy through either analytical or
computational tools [68–71]. The uses and interpretations of
NNMs are quite extensive; however, a direct and intelligible
way of interpreting the evolution of the system’s dynamics
with respect to energy is with the frequency energy plot (FEP)
of a given dynamical system and its bifurcating branches [68].
Such methodology has been employed already for understand-
ing the dynamical evolution of VI systems of various forms
[72–74].

FIG. 8. A 2DOF model emulating a VI resonator cell.

A. Reduced order model

We consider a 2DOF ROM that emulates the individual VI
resonators embedded within the four-band lattice of Sec. III.
Figure 8 provides a schematic of the ROM whereby the
parameters k̄1 = k = 2 × 104 N/m, k̄2 = 2 × 103 N/m, and
m̄2 = m̄2 = 0.0025 kg parametrize the set of equations

m̄1 ¨̄u1 + k̄1ū1 + k2(ū1 − ū2) + fNL(w̄) = 0,

m̄2 ¨̄u2 + k̄2(ū2 − ū1) − fNL(w̄) = 0,
(5)

where an overbar denotes that the variable is associated with
the ROM and not the full phononic lattice. The nonlinear force
in Eqs. (5) is considered in both Hertzian and bilinear forms
with a contact stiffness and clearance of 10−2.75 m.

We assume that the connecting stiffness between masses
in the lattice is distributed between the two mass elements.
Thus, the grounding stiffness on the left and right boundaries
of the ROM’s outer mass is approximated to be one-half of the
coupling stiffness of the full phononic lattice. Moreover, the
most critical component of the ROM is the internal stiffness
and nonlinear VI component, which matches identically to
the VI cells considered in Sec. III. Hence, the ROM provides
reasonable resemblance to the VI cells in the full lattice sys-
tem, allowing it to capture the trends of the full system with
surprisingly good accuracy, as we will show.

B. Nonlinear normal modes as a measure of nonlinearity

The energy dependencies of Figs. 4 and 7 make continu-
ation of NNM branches a natural approach since it provides
an overview of the dynamics across energy scales. To this
end, we apply the NNM continuation scheme described
in [71] to our ROM with minor numerical modifications
(see Appendix B). A condensed description of this proce-
dure is given, and the reader is directed to [71] for full
algorithmic details. The state form of system (5) is ż =
g(z), where g(z) is a nonlinear function of the state vari-
ables. A periodic orbit (or NNM) will satisfy the two-point
boundary value problem defined by the shooting function,
H(zp0 , T ) = z(zp0 , T ) − zp0 = 0. A phase condition of zero
initial velocities is employed to ensure unique NNM solutions,
and with this Newton’s method returns the first NNM during
the shooting stage. After the shooting stage, a pseudoarclength
predictor-corrector routine traces out the NNM branch in the
(2n + 1)-dimensional parameter space, where n is the number
of degrees of freedom of the ROM. This is a critical step
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FIG. 9. The FEPs of the ROMs with (a) Hertzian and (b) bilinear
nonlinearity with insets zooming in on the transition from region I to
region II with instability denoted by orange for regions with Floquet
multipliers |α| � 1; [(c), (d)] slopes of the FEPs of (a) and (b) with
respect to energy; [(e), (f)] corresponding phase trajectories of the
NNMs for (a) and (b), respectively, for regions I, II, III, and IV of the
FEPs.

for resolving the NNMs of the VI system since the NNM
branches may have turning points that a standard Newton-
Raphson algorithm cannot solve.

The result of numerical continuation is a frequency energy
plot, which describes the evolution of the NNM branch for 1:1
resonance (the “backbone” branches) in the frequency-energy
space. Figure 9 depicts the FEPs computed for the system
described by Eqs. (5) for both Hertzian and bilinear contact
laws. It is interesting to emphasize that the degree (strength)
of nonlinearity of the ROM can be qualitatively interpreted by
the slope of a given NNM branch [72]. The steeper the slope
of the branch is, the more sensitive the frequency-amplitude
dependency of the NNM becomes, and the more intense is the
nonlinearity in the ROM when it responds on that NNM.

The FEP results reveal similar trends for both Hertzian
and bilinear VI ROMS, possessing four dynamical regions
labeled I–IV in Fig. 9 which describe the transition between
two distinct smooth limiting systems. The corresponding
phase trajectories of the periodic orbits in each region are
given in Figs. 9(e) and 9(f) for Hertzian and bilinear models,
respectively. In the low-energy region I, the VIs do not engage,

and the dynamics are completely linear; this is confirmed by
zero slope of the FEP and can be regarded as the low-energy
limiting system. In region II, there is a grazing of the VI
contacts, causing a sudden change in the dynamics and a rapid
increase of FEP slope; this marks the critical energy required
to engage the VIs. Here, the corresponding NNM branch folds
back on itself towards lower energies before transitioning to-
wards higher energies, with this effect being more prevalent in
the bilinear model (the Hertzian nonlinearity being less promi-
nent in the small-deflection-amplitude limit). This fold in the
NNM branch yields a small neighborhood of energies where
the FEP slope is theoretically infinite, and these energies cor-
respond to the maxima of Figs. 9(c) and 9(d), indicating that
the transition from region I to region II represents a transition
where the dynamics are most sensitive to nonlinear effects.
Despite the apparent smoothness of Figs. 9(eII) and 9(fII)
the volatile VI-grazing dynamics in region II are unstable as
determined by the maximum magnitude of the NNM Floquet
multipliers, α, which greatly exceed unity for the energy re-
gions depicted by orange lines in Fig. 9. Hence, the solutions
corresponding to maximum FEP slopes are not physically
realizable.

After grazing, the FEP gradually increases in frequency
towards region III. Region III is characterized by strong VI
oscillations which is apparent by the boxlike phase trajectories
indicating nonsmooth temporal dynamics. Here, the linear
dynamics of k̄1 are negligible and the VI dynamics dominate;
however, the VI forces only interact with the oscillator for
localized time windows during an oscillation cycle (hence the
nonsmooth phase portrait). It is in region III that the slopes
of the FEPs decrease in a power-law-like fashion as the ROM
asymptotically reaches the limiting region IV. This asymptotic
approach corresponds to the power-law decline of the FEP
slopes of Figs. 9(c) and 9(d). The physical interpretation of
this result is as follows. As the energy increases, so too does
the frequency and the indentation depth of the VI. As a result,
the VI forces exist for relatively longer durations during the
periodic oscillation as energy grows. This corresponds to a
transition from the boxlike nonsmooth VI phase trajectories
marked by sudden changes in kinetic and potential energies,
to the limiting smooth dynamics of region IV. Region IV is
characterized by in-phase dynamics dominated by the contact
stiffness; this can be regarded as the high-energy limiting
system. In this region, the clearance is negligible and the VI
contacts behave as an extremely stiff elastic spring. Hence,
the dynamics of the ROM with Hertzian contacts approaches
a smoothly nonlinear system with a 3/2 nonlinear coupling,
whereas the dynamics of the bilinear ROM approaches a
linear system at high energy, as is confirmed by the phase
portraits of Figs. 9(eIV) and 9(fIV). Moreover, for the bilinear
system, the FEP clearly levels off as the high-energy (almost)
linear limiting behavior is reached.

C. Relating the dynamics of the ROM to the acoustics
of the lattice

The evolution of the FEP slope with respect to energy of
the ROM [Figs. 9(b) and 9(c)] possess a remarkable similarity
to trends of nonlinear IBTET in the full phononic lattice
(Fig. 7). The two measures can be related to one another by
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FIG. 10. The relative interband energy transfer, with the normal-
ized slope from the ROM-FEP superimposed for (a) Hertzian and
(b) bilinear contact models; the dashed lines depict the normalized
FEP slopes, the gray lines depict the normalized FEP slopes lower
bounded by the initial (linear) energy of the higher bands, and green
lines depict a power-law fit to red dots, with the adjusted R-squared
value shown with the inset.

replotting the energy transfers of Fig. 7 with respect to system
energy (to match the energy-dependent nature of the FEP) and
superimposing the FEP slopes to compare similarities in their
evolution with energy. To do this requires a normalization, as
the maximum and minimum values of the FEP slope can be
arbitrarily large or small, whereas the relative energy of the
upper optical bands is lower bounded by the amount provided
by the excitation source (from the Fourier uncertainty prin-
cipal), and upper bounded by unity (since the energy in the
upper bands cannot exceed the total energy of the system).
Moreover, the wave propagation in the 1200-DOF phononic
lattice carries the energy of 30 cycles of the windowed excita-
tion, whereas the FEP energy is parametrized by the periodic
orbits of the 2DOF ROM. Thus, the energy of the finite lattice
must be normalized in order to be commensurate with the
energy of the ROM used to generated the FEP. These normal-
izations are performed as follows. The FEP slope is divided by
a scalar to quantitatively align with the relative energy transfer
so that a direct comparison can be made with respect to decay
rate versus energy. A scalar quantity defined by the low bound
of IBTET (dashed lines of Fig. 7) is then added to the FEP
slope to account for the lower threshold of the energy transfer
in the VI lattice. The energy of the finite lattice is normalized
so that the initiation energy, that is, the energy required to
engage the first VI site encountered by the propagating wave
front, aligns with the transition between regions I and II of the
FEP. These normalizations preserve the slopes of both quan-
tities since scalar multiplication results only in translations
for logarithmic scaling. Hence, the amplitude-normalized FEP
slopes can be directly compared to energy-normalized IBTET
when superimposed. Figure 10 displays the described super-
position where a remarkable agreement is found between the

trends in the slope of the FEP of the ROM and the energy
transfer between bands in the lattice. Hence, the underlying
FEP of the ROM, along with the evolution of the dynam-
ical regimes of Fig. 9, clearly has a direct implication of
the IBTET in the lattice. Moreover, by fitting a slope to the
measured energy transfer versus normalized system energy
for data points falling in region III, a near-perfect power law is
recovered as indicated by the adjusted R-squared values close
to 1 (see Fig. 10). Finally, these results are in agreement with
the trends observed for spectral spreading within the optical
band of the two-band system considered in Sec. II, indicating
that the same physical arguments developed in Sec. IV B can
be used to interpret the trends of Sec. II as well. Hence,
the numerical results presented for the finite lattices can be
understood in terms of the underlying nonlinear dynamics of
the ROM as it transitions from a limiting low-energy linear
system to a highly nonlinear VI system, and then asymptoti-
cally approaching a smooth high-energy limiting system. With
this, a predictive tool is presented to assess the capacity for
IBTET in full phononic systems based on the simplified VI
ROMs which, being of low dimensionality, are much more
amenable to analysis compared to the extended nonlinear
lattices considered herein.

V. CONCLUSIONS

In this work, we have investigated the effect of local VI
nonlinearities on the propagation of traveling waves in 1D
phononic lattices. Specifically, first a diatomic two-band lat-
tice was numerically studied over a wide range of forcing
amplitudes and embedded VI configurations (Sec. II). It was
demonstrated that spectral energy transfer in the optical band
of this lattice is most profound for moderate excitation am-
plitudes, and decreases in effectiveness as the energy rises
(Fig. 2). This was quantified using the spatial-spectral en-
tropy (or wave number entropy) for various systems which
all followed very closely to power-law decays with respect to
excitation amplitude after the peak value was reached (Fig. 4).
Attention then turned to interband targeted energy transfer
(IBTET) in a four-band system (Sec. III). Simulations were
carried out over a range of excitation amplitudes, and nu-
merical postprocessing of wave scattering demonstrated that
IBTET is indeed possible. Moreover, this phenomenon was
proven effective for both Hertzian and bilinear VIs, and the
trends in IBTET with respect to excitation amplitude followed
closely those observed for spectral energy transfer in the two-
band lattice (Fig. 7).

To provide some physical insight into the effect of the VIs
on the acoustics of the lattice, a 2D ROM was constructed
based on the unit VI cell. The underlying FEP of the ROM
was computed for the NNM family of 1:1 resonance branches
which revealed four dynamic regimes that the ROM assumes
with respect to energy, namely, a limiting linear low-energy
region, a grazing region characterized by the initiation of VI
interactions, a VI-oscillator regime with nonsmooth tempo-
ral dynamics, and an effectively linear or smoothly nonlinear
limiting high-energy regime, depending on the contact law
(Hertzian or bilinear). This, in turn, produced a frequency-
energy slope that directly scales to the trends of IBTET in the
lattice with respect to system energy, providing the physical
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interpretation of the spectral scattering of Secs. II and III.
Moreover, the FEP presents a means for accurately predicting
energy transfer capacity of the full phononic lattice based on
the low-dimensional ROM.

Although this work focused primarily on fundamental
understanding of the physics at play, the implications and
potential for future developments are rather extensive. The
low-to-high-energy transfers directly correspond to a reduc-
tion in magnitude, since the energy must be preserved in the
frequency transfer. Moreover, the evolution of the VI dynam-
ics with respect to energy corresponds to an effective filter that
can greatly alter transmissibility of incident waves (cf. Fig. 2).
These attributes alone make VI-based methods attractive for
wave transmission tuning (or tailoring) with respect to ampli-
tude. Moreover, while we have targeted low-to-high-energy
transfers between bands, future works could explore the po-
tential for targeting specific bands and specific subregions of
bands of phononic lattices by optimizing the distribution and
parameters of local VIs in lattices through methods such as
genetic programming or machine learning.
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APPENDIX A: DETAILS ON SIGNAL PROCESSING
PROCEDURES

1. Continuous wavelet transformation

In this section, we provide a brief discussion of the wavelet
transformation algorithm employed in this work in order to
clarify the mathematical details pertinent for performing the
wavelet-based wave number partition analysis of Sec. II (cf.
Fig. 3). A similar discourse may be found in [65]. The contin-
uous wavelet transformation (CWT) is traditionally used as a
time-frequency analysis tool by transforming the signal from
the time domain to the time-frequency domain. To the same
effect, one can consider the space-wave number domain. For
1D systems the standard definition of the CWT with respect
to the spatial variable x is

X (κ, x) =
√

κ

κc

∫ ∞

−∞
u(ξ )ψ∗

(
κ

ξ − x

κc

)
dξ, (A1)

where ψ∗(ξ ) is the complex conjugate of the mother wavelet
function and κc the center frequency,

κc =
[∫ ∞

0 κ2|�(κ )|2dκ∫ ∞
0 |�(κ )|2dκ

]1/2

. (A2)

We consider the Morelet wavelet for all transformations in this
work:

ψ (x) = 1

π1/4

(
eiκcx − e−κ2

c /2
)
e−x2/2. (A3)

FIG. 11. The reconstructed kinetic energy and corresponding re-
construction error for the described wavelet partition scheme; red
dashed line indicates 1% error.

For the scale and quantities of data sets considered in this
work, computational efficiency is a requirement. To this end,
the fast Fourier transform (FFT) is employed to speed up
wavelet computations. Taking �(κ ) as the analytical Fourier
transform of the mother wavelet,

�(κ ) = e−(κ−κc )2/2, (A4)

and x̃(κ ) the FFT of the signal, Parseval’s theorem allows one
to express wavelet transformation equivalently as

X (κ, x) =
√

κc

κ

∫ ∞

−∞
x̃(η)�∗(ηκ/κc)eiηxdη. (A5)

Each wavelet transformation can be partitioned over space
and wave number. The spectral partitions are defined over 12
regions spanning between κ = 0 and κ = π to account for 12
different wavelet-domain representations of the spatial signal
at each time instant. The kth wave number partition is defined
as

Xk (κ, x) = X (κ, x)hk (κ ),

hk (κ ) = H

(
κ − (k − 1)π

12

)
− H

(
κ − kπ

12

)
. (A6)

The inverse wavelet transformation can be applied at
each time snapshot to each wave number partition, uk (x) =
W−1{Xk (κ, x)}, which is computed as

uk (x) =
√

κ

κ
3/2
c C

∫ ∞

0

∫ ∞

−∞
X̂k (κ, ξ )�

(
ξκ

κc

)
dξdκ, (A7)

where X̂k (κ, ξ ) is the Fourier transformation of Xk (κ, x) with
respect to x. Figure 11 depicts the reconstructed kinetic energy
of the lattice, KErec, as well as the directly computed (exact)
kinetic energy from the numerical simulations, KEphys, with
the error between the two quantities computed by

e(t ) = ||KErec(t ) − KEphys(T )||
||KEphys(t )|| . (A8)

2. Spectral entropy

Here, we provide more details pertaining to the spectral
entropy plots displayed in Fig. 4. Figure 12 depicts the dis-
tribution of entropy using Eq. (3) to recover H (x) for each
t . The resulting matrix H(x, t ) is plotted as an image for
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FIG. 12. Contours of the instantaneous wave number entropy
across the time-entropy domain for low-, medium-, and high-
amplitude simulations (top), and the summary contours of the
instantaneous entropy H (t ) (bottom).

low, medium, and high excitation amplitudes. The distribution
of high-entropy regions is clearly seen in the medium- and
high-excitation-amplitude simulations as the VIs engage the
incoming wave. Superimposed on each image is the instanta-
neous spectral entropy, which summarizes H(x, t ) over space
to render time-dependent measures H (t ).

A data set storing H (t ) for each excitation amplitude in
the simulation ensemble can then be generated and plotted in
the form of an image to study how the wave number entropy
varies in time with respect to the forcing amplitude for a given
lattice configuration. This is depicted in the bottom plot of
Fig. 12. In the low-amplitude region with no VI engagement,
no entropy is generated after excitation (as expected). For
medium amplitudes, regions of sustained high wave number
entropy are realized after the VIs engage the incident wave.
In contrast, only localized patches of high entropy are seen
for high-amplitude simulations, indicating that the VIs do not
affect the global wave number of the lattice after the incident
wave passes through (or reflects off of) the unit cells with
embedded VIs.

3. Computing energy on each band

The computation of wave energy over each band in Sec. III
is performed as follows. The data matrix for a given simu-
lation is mapped to the Fourier domain using the 2D FFT
algorithm D(κ, ω) = F x,t {u(x, t )}. Next, frequency filters are
constructed as follows:

Gk (κ, ω) =
{

1, ω ∈ Bk, −π � κ � π

0 otherwise, (A9)

FIG. 13. Energy reconstruction of band-partitioning decom-
position.

where the first four ranges of frequencies Bk are defined over
the temporal frequency limits of the four pass-bands (PBs),

B1 = min(PB1) � ω � max(PB1),

B2 = min(PB2) � ω � max(PB2),

B3 = min(PB3) � ω � max(PB3),

B4 = min(PB4) � ω � max(PB4). (A10)

The remaining two filter banks are constructed for the band
gap between the acoustic band and first optical band (BG1),
and for the band gap between the upper two optical bands
(BG2):

B5 = min(BG1) � ω � max(BG1),

B6 = min(BG2) � ω � max(BG2). (A11)

The spatial-temporal dynamics corresponding to each pass
band and band-gap region are then given as

uk (x, t ) = F−x,−t {Gk (κ, ω) · D(κ, ω)},
where F−x,−t { } indicates the 2D inverse FFT with respect to
x and t . The rigid boundaries of the filters in Fourier space
inevitably result in minute numerical artifacts in the inverse
transformation for each partition taking the form of ripples
along the space-time boundaries. However, Fig. 13 shows
that the reconstruction of energies computed by summing the
energy over each band nearly identically to the energies com-
puted for the direct numerical simulations, and hence these
numerical artifacts are negligible.

APPENDIX B: NONLINEAR NORMAL
MODE COMPUTATIONS

The recipe for NNM calculations follows very closely
to the procedure outlined in [71]. For all FEP calculations,
the shooting method used a prescribed initial step size of
1−5 and a tolerance of ε = 1 × 10−6. For low-energy orbits,
Newmark integration was employed with 2000 steps per
period, and Jacobian calculations of predictor-corrector steps
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were computed using the sensitivity analysis in [71]. In
region II, the unstable dynamics proved to be challenging
for the computation of the corresponding NNM branch.
Hence, sufficiently small predictor steps were required for
convergence, with the residual reduction being varied from
10−12 to 10−10. Sensitivity analysis was employed again to
compute Jacobian terms in region II.

Once the dynamics of the NNMs stabilized to that of
a definitive VI oscillator in region III, and moreover to
smoothly stable NNMs in region IV, the finite-difference

method sufficiently approximated Jacobian terms allowing for
the implementation of fast and accurate Runge-Kutta-based
methods such as ODE78. The nonsmooth nature of dynamics
in region III would require still a great number of Newmark
iterations to achieve the same accuracy as the ODE78 routine,
and therefore the transition was made to a finite-difference
Jacobian calculation scheme based on ODE78 for energies be-
yond region II to increase computational speed and reduce the
number of steps required to resolve the high-energy regions of
the FEP branch.

[1] S. A. Cummer, J. Christensen, and A. Alù, Controlling sound
with acoustic metamaterials, Nat. Rev. Mater. 1, 16001 (2016).

[2] J. U. Surjadi, L. Gao, H. Du, X. Li, X. Xiong, N. X. Fang,
and Y. Lu, Mechanical metamaterials and their engineering
applications, Adv. Eng. Mater. 21, 1800864 (2019).

[3] M. I. Hussein, M. J. Leamy, and M. Ruzzene, Dynamics of
phononic materials and structures: Historical origins, recent
progress, and future outlook, Appl. Mech. Rev. 66, 040802
(2014).

[4] S. Tol, F. Degertekin, and A. Erturk, 3D-printed phononic crys-
tal lens for elastic wave focusing and energy harvesting, Addit.
Manuf. 29, 100780 (2019).

[5] K. K. Reichl and D. J. Inman, Lumped mass model of a
1D metastructure for vibration suppression with no additional
mass, J. Sound Vib. 403, 75 (2017).

[6] K. H. Matlack, A. Bauhofer, S. Krödel, A. Palermo, and
C. Daraio, Composite 3D-printed metastructures for low-
frequency and broadband vibration absorption, Proc. Natl.
Acad. Sci. USA 113, 8386 (2016).

[7] J. Mueller, K. H. Matlack, K. Shea, and C. Daraio, Energy
absorption properties of periodic and stochastic 3D lattice ma-
terials, Adv. Theory Simul. 2, 1900081 (2019).

[8] L. Sirota, D. Sabsovich, Y. Lahini, R. Ilan, and Y. Shokef,
Real-time steering of curved sound beams in a feedback-based
topological acoustic metamaterial, Mech. Syst. Signal Process.
153, 107479 (2021).

[9] R. K. Pal and M. Ruzzene, Edge waves in plates with res-
onators: An elastic analogue of the quantum valley Hall effect,
New J. Phys. 19, 025001 (2017).

[10] H. Chen, H. Nassar, and G. Huang, A study of topological
effects in 1D and 2D mechanical lattices, J. Mech. Phys. Solids
117, 22 (2018).

[11] J. R. Tempelman, A. F. Vakakis, and K. H. Matlack, A modal
decomposition approach to topological wave propagation,
J. Sound Vib. 568, 118033 (2024).

[12] G. U. Patil and K. H. Matlack, Review of exploiting nonlinear-
ity in phononic materials to enable nonlinear wave responses,
Acta Mech. 233, 1 (2022).

[13] J. O. Vasseur, O. B. Matar, J. F. Robillard, A.-C. Hladky-
Hennion, and P. A. Deymier, Band structures tunability of bulk
2D phononic crystals made of magneto-elastic materials, AIP
Adv. 1, 041904 (2011).

[14] F. Allein, V. Tournat, V. E. Gusev, and G. Theocharis, Tun-
able magneto-granular phononic crystals, Appl. Phys. Lett. 108,
161903 (2016).

[15] C. D. Pierce, C. L. Willey, V. W. Chen, J. O. Hardin, J. D.
Berrigan, A. T. Juhl, and K. H. Matlack, Adaptive elastic

metastructures from magneto-active elastomers, Smart Mater.
Struct. 29, 065004 (2020).

[16] Y. Cheng, X. J. Liu, and D. J. Wu, Temperature effects on
the band gaps of Lamb waves in a one-dimensional phononic-
crystal plate (L), J. Acoust. Soc. Am. 129, 1157 (2011).

[17] Y. Yao, F. Wu, X. Zhang, and Z. Hou, Thermal tuning of Lamb
wave band structure in a two-dimensional phononic crystal
plate, J. Appl. Phys. 110, 123503 (2011).

[18] Z. Zhao, X. Cui, Y. Yin, Y. Li, and M. Li, Thermal tuning of
vibration band gaps in homogenous metamaterial plate, Int. J.
Mech. Sci. 225, 107374 (2022).

[19] Nonlinearities in Periodic Structures and Metamaterials, edited
by C. Denz, S. Flach, and Y. S. Kivshar (Springer, Berlin, 2010).

[20] F. Li, D. Ngo, J. Yang, and C. Daraio, Tunable phononic crystals
based on cylindrical Hertzian contact, Appl. Phys. Lett. 101,
171903 (2012).

[21] R. Chaunsali, F. Li, and J. Yang, Stress wave isolation by purely
mechanical topological phononic crystals, Sci. Rep. 6, 30662
(2016).

[22] R. Chaunsali, E. Kim, A. Thakkar, P. G. Kevrekidis, and J.
Yang, Demonstrating an in situ topological band transition
in cylindrical granular chains, Phys. Rev. Lett. 119, 024301
(2017).

[23] R. K. Narisetti, M. J. Leamy, and M. Ruzzene, A perturbation
approach for predicting wave propagation in one-dimensional
nonlinear periodic structures, J. Vib. Acoust. 132, 031001
(2010).

[24] J. R. Tempelman, K. H. Matlack, and A. F. Vakakis, Topological
protection in a strongly nonlinear interface lattice, Phys. Rev. B
104, 174306 (2021).

[25] K. R. Jayaprakash, Y. Starosvetsky, A. F. Vakakis, M. Peeters,
and G. Kerschen, Nonlinear normal modes and band zones in
granular chains with no pre-compression, Nonlinear Dyn. 63,
359 (2011).

[26] A. Mojahed and A. F. Vakakis, Certain aspects of the acoustics
of a strongly nonlinear discrete lattice, Nonlinear Dyn. 99, 643
(2020).

[27] O. V. Gendelman and A. F. Vakakis, Introduction to a topical
issue “nonlinear energy transfer in dynamical and acoustical
systems”, Philos. Trans. R. Soc. A 376, 20170129 (2018).

[28] V. Rothos and A. Vakakis, Dynamic interactions of traveling
waves propagating in a linear chain with an local essentially
nonlinear attachment, Wave Motion 46, 174 (2009).

[29] A. F. Vakakis, M. A. AL-Shudeifat, and M. A. Hasan, Inter-
actions of propagating waves in a one-dimensional chain of
linear oscillators with a strongly nonlinear local attachment,
Meccanica 49, 2375 (2014).

044214-12

https://doi.org/10.1038/natrevmats.2016.1
https://doi.org/10.1002/adem.201800864
https://doi.org/10.1115/1.4026911
https://doi.org/10.1016/j.addma.2019.100780
https://doi.org/10.1016/j.jsv.2017.05.026
https://doi.org/10.1073/pnas.1600171113
https://doi.org/10.1002/adts.201900081
https://doi.org/10.1016/j.ymssp.2020.107479
https://doi.org/10.1088/1367-2630/aa56a2
https://doi.org/10.1016/j.jmps.2018.04.013
https://doi.org/10.1016/j.jsv.2023.118033
https://doi.org/10.1007/s00707-021-03089-z
https://doi.org/10.1063/1.3676172
https://doi.org/10.1063/1.4947192
https://doi.org/10.1088/1361-665X/ab80e4
https://doi.org/10.1121/1.3543970
https://doi.org/10.1063/1.3669391
https://doi.org/10.1016/j.ijmecsci.2022.107374
https://doi.org/10.1063/1.4762832
https://doi.org/10.1038/srep30662
https://doi.org/10.1103/PhysRevLett.119.024301
https://doi.org/10.1115/1.4000775
https://doi.org/10.1103/PhysRevB.104.174306
https://doi.org/10.1007/s11071-010-9809-0
https://doi.org/10.1007/s11071-019-05080-9
https://doi.org/10.1098/rsta.2017.0129
https://doi.org/10.1016/j.wavemoti.2008.10.004
https://doi.org/10.1007/s11012-014-0008-9


SPECTRAL ENERGY SCATTERING AND TARGETED … PHYSICAL REVIEW E 108, 044214 (2023)

[30] H. Nassar, B. Yousefzadeh, R. Fleury, M. Ruzzene, A. Alù, C.
Daraio, A. N. Norris, G. Huang, and M. R. Haberman, Nonre-
ciprocity in acoustic and elastic materials, Nat. Rev. Mater. 5,
667 (2020).

[31] J. Bunyan, K. J. Moore, A. Mojahed, M. D. Fronk, M. Leamy,
S. Tawfick, and A. F. Vakakis, Acoustic nonreciprocity in a
lattice incorporating nonlinearity, asymmetry, and internal scale
hierarchy: Experimental study, Phys. Rev. E 97, 052211 (2018).

[32] M. D. Fronk, S. Tawfick, C. Daraio, S. Li, A. Vakakis, and M. J.
Leamy, Acoustic non-reciprocity in lattices with nonlinearity,
internal hierarchy, and asymmetry: Computational study, J. Vib.
Acoust. 141, 051011 (2019).

[33] I. Grinberg, A. F. Vakakis, and O. V. Gendelman, Acoustic
diode: Wave non-reciprocity in nonlinearly coupled waveg-
uides, Wave Motion 83, 49 (2018).

[34] C. Fu, B. Wang, T. Zhao, and C. Q. Chen, High efficiency
and broadband acoustic diodes, Appl. Phys. Lett. 112, 051902
(2018).

[35] A. Darabi, L. Fang, A. Mojahed, M. D. Fronk, A. F. Vakakis,
and M. J. Leamy, Broadband passive nonlinear acoustic diode,
Phys. Rev. B 99, 214305 (2019).

[36] T. Devaux, A. Cebrecos, O. Richoux, V. Pagneux, and V.
Tournat, Acoustic radiation pressure for nonreciprocal trans-
mission and switch effects, Nat. Commun. 10, 3292 (2019).

[37] N. Mork, M. D. Fronk, M. B. Sinclair, and M. J. Leamy, Non-
linear hierarchical unit cell for passive, amplitude-dependent
filtering of acoustic waves, Extreme Mech. Lett. 57, 101915
(2022).

[38] R. W. Boyd, Nonlinear Optics (Academic Press, San Diego,
1992), p. 439.

[39] A. F. Vakakis, O. V. Gendelman, L. A. Bergman, A. Mojahed,
and M. Gzal, Nonlinear targeted energy transfer: State of the art
and new perspectives, Nonlinear Dyn. 108, 711 (2022).

[40] A. F. Vakakis, O. V. Gendelman, L. A. Bergman, D. M.
McFarland, and G. Kerschen, Nonlinear Targeted Energy Trans-
fer in Mechanical and Structural Systems (Springer, Berlin,
2008).

[41] G. Kopidakis, S. Aubry, and G. P. Tsironis, Targeted energy
transfer through discrete breathers in nonlinear systems, Phys.
Rev. Lett. 87, 165501 (2001).

[42] J. Wang, N. Wierschem, B. F. Spencer, and X. Lu, Numerical
and experimental study of the performance of a single-sided
vibro-impact track nonlinear energy sink, Earthquake Eng.
Struct. Dyn. 45, 635 (2015).

[43] A. F. Vakakis and O. Gendelman, Energy pumping in nonlin-
ear mechanical oscillators: Part II—resonance capture, J. Appl.
Mech. 68, 42 (2001).

[44] A. F. Vakakis, Inducing passive nonlinear energy sinks in vi-
brating systems, J. Vib. Acoust. 123, 324 (2001).

[45] M. Taleshi, M. Dardel, and M. H. Pashaie, Passive targeted
energy transfer in the steady state dynamics of a nonlinear plate
with nonlinear absorber, Chaos Solitons Fractals 92, 56 (2016).

[46] Y. Starosvetsky and O. V. Gendelman, Attractors of har-
monically forced linear oscillator with attached nonlinear
energy sink. II: Optimization of a nonlinear vibration absorber,
Nonlinear Dyn. 51, 47 (2007).

[47] Y. Starosvetsky and O. Gendelman, Interaction of non-
linear energy sink with a two degrees of freedom lin-
ear system: Internal resonance, J. Sound Vib. 329, 1836
(2010).

[48] D. Qiu, S. Seguy, and M. Paredes, Tuned nonlinear energy
sink with conical spring: Design theory and sensitivity analysis,
J. Mech. Des. 140, 011404 (2017).

[49] D. Huang, R. Li, and G. Yang, On the dynamic response
regimes of a viscoelastic isolation system integrated with a
nonlinear energy sink, Commun. Nonlinear Sci. Numer. Simul.
79, 104916 (2019).

[50] F. Georgiades and A. Vakakis, Dynamics of a linear beam with
an attached local nonlinear energy sink, Commun. Nonlinear
Sci. Numer. Simul. 12, 643 (2007).

[51] O. Gendelman, L. I. Manevitch, A. F. Vakakis, and R.
M’Closkey, Energy pumping in nonlinear mechanical oscilla-
tors: Part I—dynamics of the underlying Hamiltonian systems,
J. Appl. Mech. 68, 34 (2001).

[52] O. V. Gendelman, Transition of energy to a nonlinear local-
ized mode in a highly asymmetric system of two oscillators,
Nonlinear Dyn. 25, 237 (2001).

[53] O. V. Gendelman, Y. Starosvetsky, and M. Feldman, Attractors
of harmonically forced linear oscillator with attached nonlinear
energy sink I: Description of response regimes, Nonlinear Dyn.
51, 31 (2007).

[54] A. Darabi and M. J. Leamy, Clearance-type nonlinear energy
sinks for enhancing performance in electroacoustic wave energy
harvesting, Nonlinear Dyn. 87, 2127 (2017).

[55] H. Dai, A. Abdelkefi, and L. Wang, Vortex-induced vibra-
tions mitigation through a nonlinear energy sink, Commun.
Nonlinear Sci. Numer. Simul. 42, 22 (2017).

[56] L. A. Bergman, O. V. Gendelman, G. Kerschen, Y. S. Lee,
and D. M. McFarland, Nonlinear Targeted Energy Transfer in
Mechanical and Structural Systems (Springer-Verlag GmbH,
Berlin, 2008).

[57] L. I. Manevitch, A concept of limiting phase trajectories and
description of highly non-stationary resonance processes, Appl.
Math. Sci. 9, 4269 (2015).

[58] F. Nucera, A. F. Vakakis, D. M. McFarland, L. A. Bergman, and
G. Kerschen, Targeted energy transfers in vibro-impact oscilla-
tors for seismic mitigation, Nonlinear Dyn. 50, 651 (2007).

[59] O. Gendelman, Analytic treatment of a system with a vibro-
impact nonlinear energy sink, J. Sound Vib. 331, 4599 (2012).

[60] T. Li, S. Seguy, and A. Berlioz, Optimization mechanism of
targeted energy transfer with vibro-impact energy sink under
periodic and transient excitation, Nonlinear Dyn. 87, 2415
(2017).

[61] M. Gzal, B. Fang, A. F. Vakakis, L. A. Bergman, and
O. V. Gendelman, Rapid non-resonant intermodal targeted en-
ergy transfer (IMTET) caused by vibro-impact nonlinearity,
Nonlinear Dyn. 101, 2087 (2020).

[62] M. Gzal, A. F. Vakakis, L. A. Bergman, and O. V. Gendelman,
Extreme intermodal energy transfers through vibro-impacts for
highly effective and rapid blast mitigation, Commun. Nonlinear
Sci. Numer. Simul. 103, 106012 (2021).

[63] J. R. Tempelman, A. Mojahed, M. Gzal, K. H. Matlack, O. V.
Gendelman, L. A. Bergman, and A. F. Vakakis, Experimental
inter-modal targeted energy transfer in a cantilever beam under-
going vibro-impacts, J. Sound Vib. 539, 117212 (2022).

[64] K. H. Hunt and F. R. E. Crossley, Coefficient of restitution
interpreted as damping in vibroimpact, J. Appl. Mech. 42, 440
(1975).

[65] A. Mojahed, L. A. Bergman, and A. F. Vakakis, New
inverse wavelet transform method with broad application

044214-13

https://doi.org/10.1038/s41578-020-0206-0
https://doi.org/10.1103/PhysRevE.97.052211
https://doi.org/10.1115/1.4043783
https://doi.org/10.1016/j.wavemoti.2018.08.005
https://doi.org/10.1063/1.5020698
https://doi.org/10.1103/PhysRevB.99.214305
https://doi.org/10.1038/s41467-019-11305-7
https://doi.org/10.1016/j.eml.2022.101915
https://doi.org/10.1007/s11071-022-07216-w
https://doi.org/10.1103/PhysRevLett.87.165501
https://doi.org/10.1002/eqe.2677
https://doi.org/10.1115/1.1345525
https://doi.org/10.1115/1.1368883
https://doi.org/10.1016/j.chaos.2016.09.017
https://doi.org/10.1007/s11071-006-9168-z
https://doi.org/10.1016/j.jsv.2009.11.025
https://doi.org/10.1115/1.4038304
https://doi.org/10.1016/j.cnsns.2019.104916
https://doi.org/10.1016/j.cnsns.2005.07.003
https://doi.org/10.1115/1.1345524
https://doi.org/10.1023/A:1012967003477
https://doi.org/10.1007/s11071-006-9167-0
https://doi.org/10.1007/s11071-016-3177-3
https://doi.org/10.1016/j.cnsns.2016.05.014
https://doi.org/10.12988/ams.2015.55378
https://doi.org/10.1007/s11071-006-9189-7
https://doi.org/10.1016/j.jsv.2012.05.021
https://doi.org/10.1007/s11071-016-3200-8
https://doi.org/10.1007/s11071-020-05909-8
https://doi.org/10.1016/j.cnsns.2021.106012
https://doi.org/10.1016/j.jsv.2022.117212
https://doi.org/10.1115/1.3423596


TEMPELMAN, VAKAKIS, AND MATLACK PHYSICAL REVIEW E 108, 044214 (2023)

in dynamics, Mech. Syst. Signal Process. 156, 107691
(2021).

[66] B. Boashash, Time-Frequency Signal Analysis and Processing:
A Comprehensive Review (Academic Press, San Diego, 2013).

[67] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.108.044214 for additional results and
details.

[68] A. F. Vakakis, L. I. Manevitch, Y. V. Mikhlin, V. N. Pilipchuk,
and A. A. Zevin, Normal Modes and Localization in Nonlinear
Systems (Wiley, New York, 2008), p. 552.

[69] G. Kerschen, M. Peeters, J. Golinval, and A. Vakakis, Nonlinear
normal modes, part I: A useful framework for the structural
dynamicist, Mech. Syst. Signal Process. 23, 170 (2009).

[70] K. V. Avramov and Y. V. Mikhlin, Review of applications
of nonlinear normal modes for vibrating mechanical systems,
Appl. Mech. Rev. 65, 020801 (2013).

[71] M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, and J.-C.
Golinval, Nonlinear normal modes, part II: Toward a practical
computation using numerical continuation techniques, Mech.
Syst. Signal Process. 23, 195 (2009).

[72] Y. S. Lee, F. Nucera, A. F. Vakakis, D. M. McFarland, and
L. A. Bergman, Periodic orbits, damped transitions and targeted
energy transfers in oscillators with vibro-impact attachments,
Physica D 238, 1868 (2009).

[73] H. Tao and J. Gibert, Periodic orbits of a conserva-
tive 2-DOF vibro-impact system by piecewise continua-
tion: Bifurcations and fractals, Nonlinear Dyn. 95, 2963
(2019).

[74] E. Moussi, S. Bellizzi, B. Cochelin, and I. Nistor, Non-
linear normal modes of a two degrees-of-freedom piece-
wise linear system, Mech. Syst. Signal Process. 64–65, 266
(2015).

044214-14

https://doi.org/10.1016/j.ymssp.2021.107691
http://link.aps.org/supplemental/10.1103/PhysRevE.108.044214
https://doi.org/10.1016/j.ymssp.2008.04.002
https://doi.org/10.1115/1.4023533
https://doi.org/10.1016/j.ymssp.2008.04.003
https://doi.org/10.1016/j.physd.2009.06.013
https://doi.org/10.1007/s11071-018-04734-4
https://doi.org/10.1016/j.ymssp.2015.03.017

