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Quantum many-body systems are commonly considered as quantum chaotic if their spectral statistics, such
as the level spacing distribution, agree with those of random matrix theory (RMT). Using the example of the
kicked Ising chain we demonstrate that even if both level spacing distribution and eigenvector statistics agree
well with random matrix predictions, the entanglement entropy deviates from the expected RMT behavior, i.e.,
the Page curve. To explain this observation we propose a quantity that is based on the effective Hamiltonian of
the kicked system. Specifically, we analyze the distribution of the strengths of the effective spin interactions and
compare them with analytical results that we obtain for circular ensembles. Thereby we group the effective spin
interactions corresponding to the number k of spins which contribute to the interaction. By this the deviations of
the entanglement entropy can be attributed to significantly different behavior of the k-spin interactions compared
with RMT.

DOI: 10.1103/PhysRevE.108.044213

I. INTRODUCTION

The properties of many-body systems are commonly char-
acterized using spectral statistics. In particular the comparison
with the results of random matrix theory (RMT) offers many
insights. RMT was originally introduced to describe the spec-
tra of complex nuclei [1,2]. Later it was conjectured that, even
for single-particle systems with classical chaotic limit, the
spectral statistics follow those predicted by RMT [3]. This
has been confirmed for many systems and several types of
spectral statistics and theoretically explained using semiclas-
sical methods [4–6]. The relation between classical chaos and
RMT spectral statistics has been used to introduce the concept
of quantum chaos also for many-body systems which often do
not have a classical limit: A many-body system is commonly
called quantum chaotic if the level spacing distribution fol-
lows the predictions from RMT [7–18]. Moreover, it is often
expected (and assumed), that if the level spacing distribution
follows RMT, also other statistical properties agree with the
RMT predictions [19–21]. In particular, it is expected that for
quantum chaotic many-body systems the eigenstate entangle-
ment follows the results predicted from RMT [22–25].

In this paper we demonstrate that, even if a many-body
systems’ level-spacing statistics is in excellent agreement with
the RMT prediction, i.e., it qualifies as being quantum chaotic,
the entanglement can be significantly lower than expected.
This is illustrated using two parameter sets for the prototyp-
ical example of the kicked Ising spin chain. While for one
chain all considered properties follows RMT, we find very
small deviations in the eigenvector statistics and significant
deviations in the entropy for the other chain when comparing
with the predictions from the RMT. To understand the reason
for such differing behavior we propose to analyze the effective
Hamiltonians of the chains. For this we compute the strengths
of the individual effective spin interactions and group them
with respect to the number k of spins which contribute to the
interaction. The distributions of the strengths are compared

with the analytical RMT results. The analysis for the two
parameter sets of the kicked spin chain reveal good agreement
of the k-spin interactions with RMT for the chains which
shows entanglement as predicted from RMT. In contrast, a
significantly different behavior of the k-spin interactions for
the chain with smaller entanglement entropy is found. Here
the 2-spin interactions are more pronounced, while the effec-
tive interactions reduce with increasing k.

This paper is organized as follows: In Sec. II the basic
concepts, namely, level-spacing statistics, eigenvector statis-
tics, and entanglement, are recalled. In Sec. II D the kicked
Ising chain is introduced and the numerical results for the two
parameter sets are discussed. The effective spin interactions
are introduced in Sec. III, together with the random matrix
result, and compared with the results for the two spin chains.
Finally, a summary and outlook is given in Sec. IV.

II. STATISTICAL PROPERTIES OF KICKED SPIN CHAINS

In the following we focus on quantum systems described
by a unitary time evolution operator U acting on an N-
dimensional Hilbert space,

U |ψn〉 = eiϕn |ψn〉, with n = 1, 2, . . . , N. (1)

The eigenstates |ψn〉 are assumed to be normalized and the
eigenphases fulfill ϕn ∈ [−π, π ). Furthermore, we choose
the phases {ϕ1, ϕ2, . . . , ϕN } to be ordered increasingly. For
a quantum chaotic system it is expected, that the statistical
properties of both the spectrum and eigenstates follow the
predictions from random matrix theory. For systems with-
out any antiunitary symmetry the statistics are described by
the results for the circular unitary ensemble (CUE) while
in the presence of an antiunitary symmetry (e.g., time reversal)
the circular orthogonal ensemble (COE) has to be used [2]. In
Sec. II D we investigate the properties of the kicked Ising spin
chain, which is time-reversal invariant, therefore we restrict to
the results for COE in the following sections.
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A. Level spacing distribution

One of the simplest spectral statistics is the distribution
of the spacings sn between consecutive levels. For the eigen-
phases one gets

sn = N

2π
(ϕn+1 − ϕn), (2)

with ϕN+1 := ϕ1 + 2π . Here the prefactor provides the un-
folding, leading to a unit mean spacing. In the limit N → ∞
the COE result is well-described by the Wigner distribution
[26,27]

PCOE(s) ≈ π

2
s exp

(
−π

4
s2

)
. (3)

Closely related to the level spacing distribution are the ratio
statistics which are particularly useful when an analytical ex-
pression for unfolding of the levels is not available. The ratios
r̃n are defined by [28]

r̃n = min(sn, sn−1)

max(sn, sn−1)
= min

(
rn,

1

rn

)
, (4)

where rn = sn/sn−1. In Ref. [29] an analytical prediction for
the distribution of r has been derived, from which one gets
〈r〉COE = 1.75 and 〈r̃〉COE = 4 − 2

√
3 ≈ 0.5359 for the COE

case.

B. Eigenvector statistics

The second statistical property we are interested in is
the distribution of the components of the eigenvectors. An
eigenstate |ψn〉 is represented in some orthonormal basis
{|m〉}m=1,...,N by the coefficients c(n)

m = 〈m|ψn〉. Due to the
normalization one has

∑
m |c(n)

m |2 = 1. With these coefficients
one defines

ηnm = N
∣∣c(n)

m

∣∣2
, (5)

where the prefactor ensures that the mean of ηnm is one. The
distribution P(η) of ηnm is an often used characteristics of
the properties of the eigenstates. In case of eigenstates of a
COE matrix one gets in the limit N → ∞ the Porter-Thomas
distribution [30–32]

PCOE(η) = exp (−η/2)√
2πη

. (6)

C. von Neumann entropy

The third property we discuss is the eigenstate entangle-
ment of bipartite systems. Here we achieve this bipartite
structure by splitting the original N-dimensional system into
two subsystems of dimension N1 and N2 with N = N1N2. To
quantify the entanglement, we use the von Neumann entropy,
which is defined for a state |ψ〉 by

S = −tr(ρ1 ln (ρ1)), (7)

with ρ1 = tr2(ρ) being the reduced density matrix of subsys-
tem 1, resulting from tracing out the second subsystem from
the density matrix ρ = |ψ〉〈ψ |. Unentangled states can be
written as product states |ψ〉 = |ψ1〉 ⊗ |ψ2〉 and have zero en-
tropy, while maximally entangled states have Smax = ln(N1).

TABLE I. Parameter sets A and B for kicked spin chain.

L J M {�n}
A 12 0.80 1.35 {7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 7}π/32
B 12 1.0 1.2 {9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 9, 9}π/32

The (Haar)-averaged entropy of random states from the COE
is slightly reduced [23],

SCOE = ln (N1) − N1

2N2
. (8)

This formula holds for 1 
 N1 � N2. In Ref. [24] an ex-
act formula for the entropy of CUE states is given, and in
Ref. [25] for the COE and CSE, which are valid without any
restrictions to N1 and N2. They all reduce to the above stated
result (8) for 1 
 N1 � N2. However, for the dimensions con-
sidered in this paper Eq. (8) by Page is accurate enough. The
dependence of the von Neumann entropy on the size of the
first subsystem N1 is often called Page curve.

D. Kicked Ising spin chain

As an example of a many-body system we consider the
kicked Ising spin chain with open boundary conditions. It is
defined by the time-dependent Hamilton operator [33–37]

H = Hfree + Hkick

∞∑
k=−∞

δ(t − k), (9)

where

Hfree = J
L−1∑
n=1

σ z
nσ z

n+1, (10)

Hkick = M
L∑

n=1

[
cos (�n)σ x

n + sin (�n)σ z
n

]
. (11)

Here σ x
n and σ z

n are the standard Pauli spin matrices, see
Eq. (14) below, corresponding to the nth spin and L is the
number of spins in the chain so that the dimension of the
Hilbert space is N = 2L. The free evolution part Hfree contains
a nearest-neighbor coupling in the z component with strength
J . The kicking part Hkick displays a magnetic field of strength
M, which is periodically turned on and off represented by the
sum over δ distributions. The magnetic field acts on all spins
but the direction in which the kick is applied for the nth spin
depends on the angle of tilt �n in the x-z plane. The kicked
Ising spin chain is time-reversal invariant and has a further
symmetry which is called external reflection or bit-reversal
symmetry [37,38]. To avoid a desymmetrization procedure we
break this symmetry by choosing different angles of tilt {�n}
for the individual spins. This allows us to do the following nu-
merics in the full Hilbert space of dimension N . We consider
the following form of the time evolution operator:

U = e−iHfree/2e−iHkick e−iHfree/2, (12)

for which the eigenstates have real coefficients in the com-
putational basis. For the numerical computations two slightly
different parameter sets for chain A and B are used, see
Table I.
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FIG. 1. Level spacing distribution, eigenvector statistics, and von Neumann entropy for the kicked spin chain with L = 12. Left column
show results for parameter set A, right column for parameter set B, see Table I. Red dashed lines show COE results for level spacing distribution
(3) and eigenvector statistics (6). Red circles show predictions for random states (8).

Figure 1 shows the level-spacing distribution, the eigen-
vector statistics, and the von Neumann entropy for the two
chains in comparison with the corresponding RMT results. In
Figs. 1(a) and 1(b) the level spacing distribution is shown. We
see that both chains provide good agreement with the COE
prediction. Also, the results for the averaged ratios 〈r〉 and
〈r̃〉 are close to the results for COE: For chain A we find
〈r〉A = 1.735 ± 0.052 and 〈r̃〉A = 0.5284 ± 0.0039 and for
chain B 〈r〉B = 1.770 ± 0.063 and 〈r̃〉B = 0.5342 ± 0.0039.
These agree within one standard deviation with results for
the COE stated in Sec. II A. Thus, both chain A and chain
B qualify as quantum chaotic. Consequently, one could expect
that also other more general spectral statistics and in particular
eigenstate statistics and entanglement properties follow the
RMT predictions.

The eigenvector statistics is shown in Figs. 1(c) and 1(d)
where the expansion coefficients of all eigenstates of the
time evolution operator (12) in the computational basis are
used. The histograms of P(η) are shown in a semilogarithmic
representation. Neither of the two chains shows a deviation
from the Porter-Thomas distribution. Note that also for small
values of η, very good agreement with the COE is found, see
Appendix A.

In Figs. 1(e) and 1(f) the entanglement is shown for the
two chains. We compute for each eigenstate the von Neumann
entropy (7) between two subchains, where subchain 1 contains
the first L1 spins of the chain, i.e., N1 = 2L1 , and subchain 2
contains the other L2 = L − L1 spins, i.e., N2 = 2L−L1 . From
this the average entropy S

L1 of all eigenstates is obtained.
The corresponding Page curve, Eq. (8), is obtained using the
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corresponding dimensions N1 and N2 (with N1 and N2 ex-
changed if N1 > N2.)

Chain A agrees well with the Page curve, with some small
visible deviations around L1 = 6. In contrast, the entangle-
ment of chain B is significantly smaller. As both chains qualify
as quantum chaotic, and also lead to good agreement with the
RMT result for the eigenvector statistics, this is unexpected. It
raises the question about the origin of this different behavior
for the two spin chains which we are going to address in the
following section.

III. EFFECTIVE SPIN INTERACTIONS

The different behavior of the entanglement for chains A
and B in Fig. 1 can be explained by differences in the ef-
fective spin interactions. To quantify these, we define an
effective Hamiltonian which contains these interactions. Any
unitary matrix U can be written as U = e−iHeff , where Heff is
a Hermitian matrix Thus, we define the effective Hamiltonian
corresponding to the unitary operator U as

Heff = i ln (U ). (13)

We evaluate Eq. (13) using the eigenvectors and eigenphases
defined in Sec. II A, i.e., Heff = −∑

n ϕn|ψn〉〈ψn|. To analyze
the effective spin interactions we decompose the effective
Hamiltonian into the spin interaction basis. This basis is
given by the tensor products {S1 ⊗ · · · ⊗ SL}, where Sn ∈
{σx, σy, σz, I} for n = 1, . . . , L, with the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

(14)

and the identity matrix I . With the Hilbert-Schmidt inner
product (also called Frobenius inner product for the finite-
dimensional case) one gets an orthonormal basis. Thus, we
can write

Heff =
∑

CS1,...,SL (S1 ⊗ · · · ⊗ SL ), (15)

where the sum runs over all combinations (S1 ⊗ · · · ⊗ SL ) and
the 4L real coefficients {CS1,...,SL } are given by

CS1,...,SL = 1

2L
Tr((S1 ⊗ · · · ⊗ SL )Heff ). (16)

Each basis matrix is a Pauli string (S1 ⊗ · · · ⊗ SL ) and rep-
resents a specific spin interaction, e.g., for L = 4 the basis
matrix (σx ⊗ σx ⊗ I ⊗ I ) represents the 2-spin interaction of
the first and second spin in the x component and (σx ⊗ σx ⊗
σx ⊗ I ) the 3-spin interaction of first, second, and third spin in
the x component.

The coefficients CS1,...,SL describe the strength of the ef-
fective spin interactions. A basis matrix containing k Pauli
matrices presents a k-spin interaction, and we call k the (in-
teraction) order of the corresponding basis matrix. Note that
we only consider the number of nontrivial factors in the basis
matrix, i.e., we do not discuss effects of locality or support
of the basis matrix. The distribution of the coefficients cor-
responding to the same k-spin interaction order embody the
effective strength of this interaction order. The only basis ma-
trix with k = 0 is the identity matrix of dimension 2L. Thus,
the corresponding coefficient CI,...,I correspond to a global

FIG. 2. Distribution of the coefficients (16) for COE matrices of
size N = 212 using 10 realizations. Coefficients for k = 2, 4, 7, 12
spin interactions are shown in dark to light colors. For each interac-
tion order we use 500 coefficients of each realization. The red dashed
line shows the prediction (18) for the COE.

phase, and we set this coefficient to zero by considering an
adjusted time evolution operator Ũ = eiCI,...,IU , which fulfills
C̃I,...,I = 0. In the following we omit the tilde, to simplify
notation.

For systems with time-reversal invariance there exists a
basis in which the eigenvectors are real [31,32]. This leads to
a real effective Hamiltonians, see (B4), so that the coefficients
corresponding to imaginary basis matrices are zero. Thus,
the effective Hamiltonian is fully described by the remaining
2L−1(2L + 1) coefficients. We only consider these coefficients
in case of systems with an antiunitary symmetry.

A. Effective spin interactions for random matrices

For random matrices from the COE and CUE the distri-
bution of the coefficients (16) describing the effective spin
interactions can be obtained analytically. For this we define
the effective Hamiltonian corresponding to a COE matrix
U COE by

HCOE
eff = i ln(U COE). (17)

In analogy to the kicked spin chains we evaluate Eq. (17)
using the eigenvectors and eigenphases of U COE, which are
restricted to the interval [−π, π ). Random matrices do not
have any spin-like structure, therefore all interaction orders
behave identical and moreover all coefficients show the same
distribution. Using this we derive in Appendix B that the
distribution P(C) of the coefficients for N-dimensional COE
matrices is a normal distribution

PCOE(C) = 1√
2πσ 2

COE

exp

(
− C2

2σ 2
COE

)
, (18)

with variance σ 2
COE = 2π2/(3N2). Note that we find for CUE

matrices the same distribution with adapted variance σ 2
CUE =

π2/(3N2), see Appendix B.
Figure 2 compares the prediction (18) with numerical data

for N = 212 dimensional COE matrices using 10 realiza-
tions. The distributions of the coefficients corresponding to
k = 2, 4, 7, 12 spin interactions are shown. As expected, all
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FIG. 3. Distribution of the coefficients (16) for kicked spin
chains of length L = 12. Panel (a) shows result for parameter set
A, panel (b) for parameter set B, see Table I. Coefficients for k =
2, 4, 7, 12 spin interactions are shown in dark to light colors. For
each interaction order 500 coefficients are used. The red dashed line
shows the prediction (18) for the COE.

interaction orders behave similar and follow the predicted
normal distribution.

B. Effective spin interactions for kicked spin chains

Now we compare the distribution of the effective spin inter-
actions for two spin chains with the random matrix prediction,
see Fig. 3. As for the COE case, we consider k = 2, 4, 7, 12
spin interactions.

In Fig. 3(a) we find for chain A, that the distributions for
the different interaction orders are all close to the predicted
COE curve. The distribution for the 2-spin interactions is
slightly shifted to negative coefficients, while the larger k-spin
interactions are centered but a bit more peaked than expected.
Nevertheless, we see in particular the same distribution for
all k > 2, which is close to the RMT result and thus in
line with the small deviations of the entanglement shown in
Fig. 1. In contrast, Fig. 3(b) for chain B shows a clearly dif-
ferent behavior of the effective interactions. The distribution
of the coefficients of the 2-spin interactions is broader than
the predicted normal distribution. This means, that the 2-spin
interactions are stronger than those of the COE. For larger
k the distribution becomes more and more peaked around
zero, which means that these effective spin interactions are
too weak in chain B. The different behavior for the individual

k-spin interactions illustrates that we do not only find a dif-
ferent distribution of the interactions than expected for COE,
but a fundamentally different nature of spin interactions for
chain B. As a consequence, this does not allow the generation
of eigenstate entanglement predicted for COE states. So the
k-spin interactions, which get weaker with increasing k, ex-
plain the smaller eigenstate entanglement, found in Fig. 1 for
chain B.

IV. SUMMARY, DISCUSSION, AND OUTLOOK

In this paper we show that, if the level spacing distribution
of a system follows RMT, the eigenstate entanglement does
not necessarily show RMT results. We demonstrate this by
the example of two kicked spin chains, which both qualify
as quantum chaotic based on their level spacing distribution.
While for both chains the eigenvector statistics follows the
RMT prediction, the von Neumann entropy differs from the
expected Page curve. For one chain we see the Page prediction
nearly reached, but for the other the eigenstate entanglement
is significantly lower. We can understand the observed en-
tanglement by analyzing the effective k-spin interactions. In
a random matrix situation the statistics of the interactions
behaves identical for all k. But for the second chain, with the
smaller eigenstate entanglement, we find that the interaction
reduces with increasing k and thus behaves significantly dif-
ferent from the COE. Therefore it does not allow the creation
of entanglement predicted by Page. Interestingly, we also find
for the first chain, which shows only very small deviations
from the Page curve, that the k-spin interaction statistics is
slightly different from the COE result. Thus, the question
arises if the deviations from RMT in the entanglement and
the effective spin interactions are typical for quantum chaotic
kicked spin chains. Based on the numerical explorations to
find good parameter sets we have the impression that this
is indeed the case for the considered kicked Ising chain. To
properly decide this questions much longer chains would be
required where additionally the parameter dependence seems
to become less sensitive. Moreover, it would be interesting to
know if this different behavior is also visible in the long-range
correlations of the levels or in a more detailed analysis of the
eigenvector components.

Note that deviations of the entanglement entropy from the
expected RMT results were also found for the midspectrum
eigenstates of autonomous spin chains [39–44] including pre-
dictions and explanations for the deviations [45–47].

To describe the statistical properties of eigenstates of
many-body systems, several RMT models have been intro-
duced, which take the many-body structure of the Hamiltonian
into account. One commonly used model are the embedded
random matrices [31,48–56] and power-law-banded random
matrices [57–60]. Another ansatz is to use random 2-spin
interactions to build a random Hamiltonian [61]. It would
be helpful to have similar models for the unitary case. One
possible approach are Floquet random unitary circuits [18,62–
65] which are an extension of random unitary circuits [66,67]
to the Floquet setting and take the local structure of the time
evolution operator into account by applying repeatedly the
same set of random gates which couple neighboring spins. A
different ansatz is based on the effective Hamiltonian (13) and
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FIG. 4. Distribution of η̃ = ln(η) for the kicked spin chain with
L = 12. Panel (a) shows the results for parameter set A and panel
(b) for parameter set B, see Table I. The red dashed lines show the
COE result (A1).

its decomposition (15) into the spin interaction basis. If one
can find the distribution for the coefficients corresponding to
a generic kicked spin chain one can build random effective
Hamiltonians H random

eff and study U = exp(−iH random
eff ) to in-

vestigate the properties of the corresponding time evolution
operator. This is an interesting task for the future.
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APPENDIX A: LOGARITHMIC EIGENVALUE STATISTICS

In Fig. 1 the eigenvector distribution P(η) is shown in a
logarithmic representation, where no differences are visible
between the chains A and B. To investigate the behavior for
small η we consider the logarithm of the scaled and squared
eigenvector elements η̃ = ln(η). The logarithmic version of
the Porter-Thomas distribution (6) reads

PCOE(η̃) =
√

eη̃

2π
exp

(
−eη̃

2

)
. (A1)

In Fig. 4 the distribution of η̃ for chain A and chain B is
shown in a logarithmic representation. For small values of

η, corresponding to η̃ < 0, we find for both chains equally
good agreement with the COE result. Interestingly, we see
here for large values of η̃, that the distribution is a bit closer to
the expectations for chain A than for chain B. This is in line
with the deviations we see for the eigenstate entanglement.
Thus, this can be seen as a hint that already the distribution
of the eigenvector components can show differences from the
expected behavior even if the level-spacing statistics agrees
well with the RMT results.

APPENDIX B: DISTRIBUTION OF THE COEFFICIENTS

Here we derive the distribution of the coefficients (16) of
the effective spin interactions for HCOE

eff as defined in Eq. (17)
for random matrices, based on the known distributions of
individual eigenphases and eigenvector elements for COE
matrices.

The effective Hamiltonian can be written in terms of the
eigenphases and eigenvectors of U as

Heff = i ln U (B1)

= iCC† ln UCC† (B2)

= iC ln(C†UC)C† (B3)

= −Cdiag(ϕ1, . . . , ϕN )C†. (B4)

Here we use the matrix C, which contains the eigenvector
elements (C)nm = c(n)

m = 〈m|ψn〉 for the computational basis
{|m〉}m=1,...,N . Thus, the coefficients can be computed by

CS1,...,SL = − 1

N
Tr((S1 ⊗ · · · ⊗ SL )

× Cdiag(ϕ1, . . . , ϕN )C†). (B5)

The simplest nontrivial form of the dependence on the phases
and eigenvector elements of U arises for the coefficient

CI,I,...,I,σz = −1

N

∑
n

ϕn

∑
m

(−1)m−1|c(n)
m |2. (B6)

To find the distribution of the coefficient CI,I,...,I,σz we would
have to use the joint distribution of all eigenphases and eigen-
vector elements. This distribution does not have a closed
analytical from. Instead we assume that the eigenphases and
eigenvector elements are independent of each other. For the
COE and CUE the eigenphases are uniformly distributed in
[−π, π ), i.e.,

PCOE/CUE(ϕ) = 1

2π
for ϕ ∈ [−π, π ). (B7)

This distribution has an average value ϕ = 0 and finite vari-
ance σ 2

ϕ = π2/3. In the following, each eigenvector |ψn〉 is
modeled using a normalized state |φn〉 with coefficients c(n)

m =
〈m|φn〉. In case of the COE the elements c(n)

m have to be real
and ηnm = N |c(n)

m |2 follows the Porter-Thomas distribution

PCOE(η) = exp (−η/2)√
2πη

, (B8)

which has average ηCOE = 1 and variance σ 2
η,COE = 2. For the

CUE c(n)
m can also become complex and the distribution is an
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exponential,

PCUE(η) = e−η, (B9)

with average ηCUE = 1 and variance σ 2
η,CUE = 1.

To derive the distribution of the coefficient CI,I,...,I,σz we
assume for simplicity that the matrix dimension N is even and
first discuss the sum over m,

�m :=
∑

m

(−1)m−1
∣∣c(n)

m

∣∣2

= 1

N

N∑
m=1

(−1)m−1ηnm

= 1

N

⎛
⎝ N/2∑

m′=1

ηn,2m′ −
N/2∑

m′=0

ηn,2m′+1

⎞
⎠

= 1

2

⎛
⎜⎜⎜⎜⎝

1

N/2

N/2∑
m′=1

ηn,2m′

︸ ︷︷ ︸
I1

− 1

N/2

N/2∑
m′=0

ηn,2m′+1

︸ ︷︷ ︸
I2

⎞
⎟⎟⎟⎟⎠.

The entries in both sums have the same distribution, given by
Eq. (B8) or Eq. (B9), respectively. Applying the central limit
theorem for large N , the distributions of I1 and I2 will both

approach a normal distribution with average zero and variance
σ 2

I = σ 2
η /(N/2). This implies that �m = 1/2(I1 − I2) is the

scaled sum of two Gaussian random variables and thus itself
a Gaussian random variable with mean �m = 0 and variance
σ 2

�m
= 1

22 (σ 2
I + σ 2

I ) = σ 2
η /N , where

σ 2
�m,COE = 2/N, σ 2

�m,CUE = 1/N. (B10)

We can now return to the distribution of the coefficient,

CI,I,...,I,σz = −1

N

∑
n

ϕn�m, (B11)

which can be interpreted as a product of two random variables
which follows the joint distribution of ϕ and �m. Since the
mean values ϕ and �m are both zero, the mean of the joint
distribution is also zero. The variance is given by

σ 2
ϕ�m

= σ 2
ϕ σ 2

�m
+ σ 2

ϕ (�m)2 + σ 2
�m

(ϕ)2 = π2

3
σ 2

�m
.

Since this is a finite value we can apply the central limit the-
orem and find that the coefficient CI,I,...,I,σz follow Gaussian
distribution with mean value zero and variance σ 2 = σ 2

ϕ�m
/N .

Thus, we find

σ 2
COE = π2

3

2

N2
, σ 2

CUE = π2

3

1

N2
.

As discussed before this distribution holds also for all the
other coefficients.
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