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We report on an experimental investigation of the transition of a quantum system with integrable classical
dynamics to one with violated time-reversal (T ) invariance and chaotic classical counterpart. High-precision
experiments are performed with a flat superconducting microwave resonator with circular shape in which
T -invariance violation and chaoticity are induced by magnetizing a ferrite disk placed at its center, which
above the cutoff frequency of the first transverse-electric mode acts as a random potential. We determine a
complete sequence of �1000 eigenfrequencies and find good agreement with analytical predictions for the
spectral properties of the Rosenzweig-Porter (RP) model, which interpolates between Poisson statistics expected
for typical integrable systems and Gaussian unitary ensemble statistics predicted for chaotic systems with
violated T invariance. Furthermore, we combine the RP model and the Heidelberg approach for quantum-chaotic
scattering to construct a random-matrix model for the scattering (S) matrix of the corresponding open quantum
system and show that it perfectly reproduces the fluctuation properties of the measured S matrix of the microwave
resonator.
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I. INTRODUCTION

In the past four decades, random matrix theory (RMT)
[1] has experienced outstanding success in the field of quan-
tum chaos, of which the objective is to identify quantum
signatures of classical chaos in the properties of quantum sys-
tems. Originally, RMT was introduced by Wigner to describe
properties of the eigenstates of complex many-body quantum
systems. He was the first to propose that there is a connec-
tion between their spectral properties and those of random
matrices [2–5]. This proposition was taken up in Refs. [6–8]
and led to the formulation of the Bohigas-Giannoni-Schmit
(BGS) conjecture, which states that the spectral properties
of all quantum systems, that belong to either the orthogonal
(β = 1), unitary (β = 2), or symplectic (β = 4) universality
class and whose classical analogues are chaotic, agree with
those of random matrices from the Gaussian orthogonal en-
semble (GOE), the Gaussian unitary ensemble (GUE), or the
Gaussian symplectic ensemble (GSE), respectively. On the
other hand, according to the Berry-Tabor (BT) conjecture [9],
the fluctuation properties in the eigenvalue sequences of typi-
cal integrable systems (β = 0) exhibit Poissonian statistics.

The BGS conjecture was confirmed theoretically [10,11]
and experimentally, e.g., with flat, cylindrical microwave
resonators [12–16]. Below the cutoff frequency f cut of the
first transverse-electric mode, the associated Helmholtz equa-
tion is scalar, that is, the electric-field strength is parallel to
the resonator axis and obeys Dirichlet boundary conditions
(BCs) along the side wall. Accordingly, there the Helmholtz
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equation is mathematically identical to the Schrödinger equa-
tion of a quantum billiard (QB) of corresponding shape with
these BCs and the cavity is referred to as microwave bil-
liard. For generic T -invariant systems with chaotic classical
counterpart that are well described by the GOE [11], com-
plete sequences of up to 5000 eigenfrequencies [17–19] were
obtained in high-precision experiments at liquid-helium tem-
perature TLHe = 4 K with niobium and lead-coated microwave
resonators which become superconducting at Tc = 9.2 and
Tc = 7.2 K, respectively. The BGS conjecture also applies
to quantum systems with chaotic classical dynamics and par-
tially violated T invariance [20–23]. These are described by a
RMT model interpolating between the GOE and the GUE for
complete T -invariance violation. Such systems were investi-
gated experimentally in [24–27] and in microwave billiards
[28–34]. In addition, the fluctuation properties of the scatter-
ing (S) matrix of open quantum systems with partially violated
T invariance were analyzed and exact analytical results were
derived based on the Heidelberg scattering-matrix approach
for quantum-chaotic scattering [35–37] denoted HDS model
in the following. Here, T -invariance violation was induced
by inserting a ferrite into a microwave billiard with chaotic
wave dynamics and magnetizing it with an external magnetic
field B. Because of the Meissner-Ochsenfeld effect [38], this is
not possible at superconducting conditions with a lead-coated
cavity [18], which is a superconductor of type I [39]. To avoid
the expulsion of the external magnetic field, the cavity used in
[34] was made from niobium, a type-II [40] superconductor
for 153 � B � 268 mT.

We report in this work on the experimental investigation
of the spectral properties of quantum systems undergoing a
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transition from Poisson to GUE employing superconducting
microwave billiards and the same procedure as in [34] to
induce T -invariance violation. They have the shapes of bil-
liards with integrable dynamics. Ferrites are inserted into the
cavities in such a way that integrability is not destroyed as
long as they are not magnetized. We demonstrate that mag-
netization with an external magnetic field B induces above
the cutoff frequency of the ferrite T -invariance violation and
also chaoticity. In fact, we showed in Ref. [41] that above the
cutoff frequency, the spectral properties of a circular cavity
that is loaded with a ferrite material, which is magnetized by
an external magnetic field perpendicular to the cavity plane,
agree with those of a classically chaotic quantum system
with a mirror symmetry and completely violated T invariance.
Thus, the magnetized ferrite disk acts like a random potential.
The objective is to verify analytical results for the spectral
properties of the Rosenzweig-Porter (RP) model [42], which
was intensively studied about 3–4 decades ago [22,23,43–
50]. Here, we restrict to the RP model, which describes the
transition from Poisson to the GUE. We would like to men-
tion that in recent years, the RP model has come to the fore
in the context of many-body quantum chaos and localization
since it undergoes, on variation of a parameter α, a transition
from localized states in the integrable limit via a nonergodic
phase which is characterized by multifractal states to an er-
godic phase [51–61]. The fractal phase cannot be attained and,
above all, not observed with our experimental setup because
we cannot measure wave functions and the achieved values of
α are too small.

Superconductivity of the microwave billiards is crucial
in order to obtain complete sequences of eigenfrequencies;
however, the construction of such cavities containing niobium
parts and the realization of T -invariance violation by mag-
netizing ferrites positioned inside the cavity with an external
field is demanding. Therefore, we first performed experiments
with large-scale resonators at room temperature with the
sector-shaped cavity shown in the upper part of Fig. 1 to test
whether we can achieve the transition from Poisson to GUE in
such microwave experiments. Due to the large absorption of
the ferrites, it is not possible to identify complete sequences
of eigenfrequencies under such conditions. Yet, another mea-
sure for the size of chaoticity and T -invariance violation is
the fluctuation properties of the S matrix associated with the
resonance spectra of a microwave resonator [34,36]. For the
case with no magnetization, we analyzed properties of the
S matrix of that cavity in Ref. [62] and found clear devia-
tions from RMT predictions. To get insight into the size of
chaoticity and T -invariance violation achieved with the cavity
with no disks, we compared the fluctuation properties of its S
matrix with those of a cavity with a chaotic wave dynamics
which was realized by just adding metallic disks, as illustrated
in the lower part of Fig. 1. It is known that when magne-
tizing the ferrites, such systems are well described by the
Heidelberg approach for the S matrix [63] of quantum sys-
tems that undergo a transition from GOE to GUE [36,37,64].
Another objective of these experiments was to compare the
properties of the S matrix with a RMT model, which we
constructed by combining the RP model and the Heidelberg
approach. In Sec. II, we report on the scattering experiments
and this RMT model and that describing the transition from

FIG. 1. Top: Cavity SB1 without lid. The microwave resonator
is composed of a sector-shaped frame, shown in the photograph on
top of a plate, which forms its bottom, and a top plate as lid. Bottom:
Cavity SB2 without lid. It is obtained from SB1 by adding five copper
disks of varying sizes and same height as the cavity. All parts are
made from copper. To induce partial T -invariance violation, three
flat rectangular ferrite pieces (black rectangles) of length 50 mm,
width 5 mm, and height 20 mm were attached symmetrically to both
straight parts of the frame at a distance 425, 575, and 725 mm from
the apex and magnetized with an external magnetic field of strength
169 mT.

GOE to GUE. Then, in Sec. III, we present results for the
spectral properties of a superconducting circular cavity con-
taining a ferrite disk at the center which was magnetized with
an external magnetic field. These experiments were performed
at liquid helium TLHe = 4 K. Finally, in Sec. IV, we discuss
the results.

II. EXPERIMENTS AT ROOM TEMPERATURE

A. Experimental setup

The room-temperature measurements of the S matrix were
performed with the large-scale microwave cavity with the
shape of a 60◦ circle sector used in Ref. [62] and shown
without lid in the upper part of Fig. 1. We refer to it as
SB1 in the following. The size of the rectangular top and
bottom plates is 1260 × 860 × 5 mm3. The frame has the
shape of a 60◦ circle sector with radius R = 800 mm and
height 20 mm corresponding to a cutoff frequency 7.5 GHz
of the first transverse-electric mode. The top and bottom plate
and frame were squeezed together tightly with screw clamps.
Furthermore, a rectangular frame of the same size as the
plates and the same height as the sector frame, and the top
and bottom plates, were firmly screwed together. Both frames
contained grooves that were filled with a tin-lead alloy to
improve the electrical contact. Six thin ferrite strips made
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FIG. 2. Nearest-neighbor spacing distribution P(s), cumulative
nearest-neighbor spacing distribution I (s), number variance �2(L),
and two-point cluster function Y2(r) for the cavity SB2 in the range
below the cutoff frequency, which comprises ≈500 eigenfrequencies.
They agree well with GOE statistics. The solid, dashed, and dash-
dot-dotted black lines show the curves for GOE, GUE, and Poisson
statistics, respectively. For the latter, the two-point cluster function
equals zero. Therefore, it is not shown.

of 18F6 with a saturation magnetization Ms = 180 mT were
attached symmetrically to the straight side walls of the circle
sector, to ensure integrability of the wave dynamics for zero
external magnetic field [15,65–69]. In addition, we inserted
five copper disks of varying sizes and same height 20 mm into
the cavity SB1, to induce a chaotic dynamics. We refer to it
as SB2 in the following. A photograph of SB2 without lid is
shown in the bottom part of Fig. 2.

We checked experimentally for frequencies below f cut =
7.5 GHz that for the case of nonmagnetized ferrites, the spec-
tral properties of SB1 [70,71] and SB2 agree with those of
a QB whose shape generates an integrable and chaotic dy-
namics [72–74], respectively. The spectral properties of SB2,
shown in Fig. 2, agree well with GOE statistics. Those of
the empty sector cavity were investigated in [62]. For more
details, see Secs. III B and III C. Note that at the walls of the
ferrite strips, the electric-field strength obeys mixed Dirichlet-
Neumann BCs; however, as demonstrated in Refs. [70,71], the
spectral properties of such QBs comply with those of quantum
systems with an integrable classical dynamics.

The eigenfrequencies of the cavity correspond to the po-
sitions of the resonances in its reflection and transmission
spectra. These were measured by attaching antennas a and b
at two out of five possible ports distributed over the cavity lid
and connecting them to a Keysight N5227A Vector Network
Analyzer (VNA) via SUCOFLEX126EA/11PC35/1PC35
coaxial cables. It couples microwaves into the resonator via
one antenna a and receives them at the same or the other
antenna b, and determines the relative amplitude and phase
of the output and input signal, yielding the S-matrix elements
Saa and Sba, respectively. To achieve partial T -invariance vi-
olation, we magnetized the ferrite pieces with an external
magnetic field B = 169 mT perpendicular to the cavity plane,

generated with NdFeB magnets that were placed above and
below the cavity [28,30,64,75]. The absorption at the ferrite
surface is especially high for B �= 0 and ohmic losses in
the walls lead to overlapping resonances, which makes the
identification of their positions challenging. Above all, the
wave dynamics is (nearly) integrable, implicating close-lying
resonances. As a consequence, we were not able to obtain
complete sequences of eigenvalues for the normal-conducting
resonators with B �= 0 mT. Yet, we succeeded in construct-
ing a superconducting cavity with induced T invariance, as
outlined in Sec. III, and, therefore, focused in the room-
temperature experiments on the fluctuation properties of the
S matrix instead. Note that because we are only interested in
properties of the S matrix, we do not need to restrict to the
frequency range below f cut.

B. Random-matrix formalism for the scattering matrix of a
quantum-chaotic scattering process

We demonstrated in [62] that the fluctuation properties of
the S matrix of the cavity with no ferrites and no disks or up
to three disks, whose spectral properties follow Poisson and
intermediate statistics [76], respectively, clearly deviate from
those of chaotic scattering systems. Therefore, the question
arose as to what they look like for cavity SB1 for B �= 0. In
order to get an estimate for the closeness to a chaotic wave
dynamics and the size of T -invariance violation, we com-
pared its S-matrix fluctuation properties to those of the chaotic
cavity SB2. For the RMT model describing the fluctuation
properties of the S matrix of such cavities, exact analytical
results exist for the two-point S-matrix correlation functions
for no or partial up to full T -invariance violation in terms of
a parameter ξ that quantifies the strength of T -invariance vio-
lation. We employ them to estimate it for SB1 and determine
it for SB2, as outlined in the following.

We performed Monte Carlo simulations based on the scat-
tering formalism for quantum-chaotic scattering [63]. The
S-matrix elements of the RMT model, referred to as HDS
model in the following, are

SHDS
ba ( f ) = δba − 2π i[Ŵ †( f 1 − Ĥ + iπŴŴ †)−1Ŵ ]ba. (1)

Here, the matrix Ŵ accounts for the interaction between the
internal states of the resonator Hamiltonian Ĥ , which mimics
the spectral fluctuation properties of the closed microwave
cavity, and the open channels. These comprise the two an-
tenna channels a, b and � fictitious ones that account for
ohmic losses in the walls of the resonator [36,37] in terms
of a parameter τabs. The matrix elements of Ŵ are real and
Gaussian distributed, with Waμ and Wbμ describing the cou-
pling of the antenna channels a, b to the resonator modes
μ. We ensured that as assumed in the HDS model, direct
transmission between the antennas is negligible, that is, a
diagonal frequency-averaged S matrix [77], implying that∑N

μ=1 WeμWe′μ = Nv2
e δee′ [77]. The parameters v2

e denote the
average strength of the coupling of the resonances to channels
e. For e = 1, 2, referring to the antenna channels, they corre-
spond to the average size of the electric field at the positions
of the antennas a and b and they yield the transmission coeffi-
cients Te = 1 − |〈See〉|2, which are experimentally accessible
[37]. The transmission coefficients of the fictitious channels,
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which are assumed to be the same, T3 = T4 · · · = T� = Tf ,
yield, through the Weisskopf formula [78], the absorption
parameter τabs = �Tf . In the numerical simulations, we chose
� = 30.

The transmission coefficients T1, T2 and τabs are input pa-
rameters of the HDS model where they are assumed to be
frequency independent. Accordingly, we analyzed the fluctu-
ation properties of the measured S matrix in 1 GHz windows
[36]. To determine τabs, we compared the experimental two-
point correlation function

Cab(ε) = 〈
Sfl

ab(ν)S∗fl
ab (ν + ε)

〉
, (2)

with ν and ε denoting the microwave frequency and frequency
increment in units of the average resonance spacing, to RMT
predictions. Generally, 〈·〉 denotes ensemble and spectral av-
eraging. To get an estimate for the strength of T -invariance vi-
olation, we analyzed cross-correlation coefficients defined as

Ccross
ab (0) = Re

[〈
Sfl

ab( f )S∗fl
ba ( f )

〉]
√

〈|Sfl
ab( f )|2〉〈|Sfl

ba( f )|2〉
, (3)

which provides a measure for the size of the violation of the
principle of reciprocity, Sab( f ) = Sba( f ), and thus for the
strength to T -invariance violation. Namely, for T -invariant
systems, the principle of reciprocity holds and Ccross

ab (0) = 1,
whereas fully violated T invariance yields Ccross

ab (0) = 0.
We constructed a HDS model for the S matrix of cavity

SB1 by inserting, for Ĥ in Eq. (1), the Hamiltonian of the
RP model, which describes the transition from Poisson to the
GUE,

Ĥ0→2(λ = αN/DN ) = Ĥ0 + αN ĤGUE. (4)

Here, Ĥ0 is a random diagonal matrix with a smooth but
otherwise arbitrary distribution and ĤGUE is drawn from the
GUE [79]. To get rid of the N dependence of the parameter
αN and to render the limit N → ∞ feasible, which is needed
for the derivation of universal, system-independent analyti-
cal results for the spectral properties [80,81], the parameter
αN is rescaled with the spectral density of the entries of
Ĥ0 [23,45,49,81,82]. For this, it is replaced by λ = αN/DN ,
where λ gives the value of αN in units of DN = W/N , with
W denoting the band width of the elements of the diagonal
matrix H0. The Hamiltonian Ĥ0→2(αN ) interpolates between
Poisson for αN = 0 and GUE for αN → ∞; however, its
spectral properties already coincide with GUE statistics for
values of λ of order unity. In the numerical simulations, we
chose (400 × 400)-dimensional random matrices with vari-
ances 〈Re(HGUE

i j )2〉 = 〈Im(HGUE
i j )2〉 = 1

4N (1 + δi j ) and for
Ĥ0 Gaussian distributed elements with the same variance as
for the diagonal elements of ĤGUE. Then, the band width
equals W = 2π .

The S matrix properties of cavity SB2 were compared to
Monte Carlo and analytical results for the S model describing
the transition from GOE to GUE [36,37,83]. For this case, Ĥ
in Eq. (1) is replaced by the Hamiltonian [21,82,84]

Ĥ1→2(ξ ) = Ĥ (S) + iξ
π√
N

Ĥ (A), (5)

with the strength of partial T invariance determined by the pa-
rameter ξ . Here, Ĥ (S) is a real-symmetric random matrix from
the GOE and Ĥ (A) is a real-antisymmetric one with Gaussian

FIG. 3. Cross-correlation coefficients of the cavities SB1 (black
dots) and SB2 (red dots) determined in 1 GHz windows, where
the ferrites are magnetized with an external magnetic field with
B = 169 mT. The corresponding values of the T -violation parameter
ξ are plotted as black and red squares, respectively (see main text).

distributed elements with a mean value of zero and the same
variance as for Ĥ (S). For the simulations, we chose the same
values for dimension and variances as for the Hamiltonian in
Eq. (4).

C. Analysis of the measured scattering matrix

To determine the strength ξ of T -invariance violation in the
cavity SB2, we proceeded as in [36,37,85] and compared the
experimental cross-correlation coefficients Ccross

ab (0), defined
in Eq. (3), shown in the right part of Fig. 3 as red dots, to
exact analytical results for Ccross(0; ξ, Ta, Tb, τabs), yielding
the values of ξ shown as red squares in Fig. 3. As outlined in
Sec. III B, the cross-correlation coefficient provides a measure
for the size of violation of reciprocity, so that we also used it
to find out whether T invariance is violated for the cavity SB1.
The results are shown as black dots and squares in Fig. 3.
In order to obtain an estimate for the size of T -invariance
violation, we compared the cross-correlation coefficients with
the analytical result for the model given by Eq. (5), even
though this is not the appropriate model for SB1. Above about
8 GHz, T invariance is clearly violated.

To determine the value of τabs, we performed a Monte
Carlo simulation for the S matrix, given by Eq. (1), with the
model given by Eq. (4), determined the two-point correlation
functions, and compared them to the experimental ones. For
the case given by Eq. (5), we fit the analytical result for the
two-point correlation function to the experimental one. In
Fig. 4, we compare the experimental correlation functions for
the cavities SB1 (black dots) and SB2 (red dots) for different
frequency ranges with the Monte Carlo and analytical results
(orange and turquoise), respectively. In Fig. 5 are exhibited the
corresponding amplitude distributions. For these, no analyti-
cal results are available for both models. Agreement between
the experimental and RMT curves is very good in all cases.
We observe that with increasing frequency, the correlation
functions for the cavity SB1 approach those for SB2, implying
that there is a transition from Poisson to GUE that takes place.
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FIG. 4. Two-point correlation functions of the S-matrix ele-
ments for a �= b in the frequency ranges indicated in the panels.
Shown are the results for the cavity SB1 (black) and SB2 (red),
the exact analytical results deduced from Eq. (1) with Ĥ re-
placed by Ĥ 1→2(ξ ) (turquoise), and the results obtained from
Monte Carlo simulations for the S matrix, given by Eq. (1), with
Ĥ replaced by Ĥ 0→2(λ) (orange). The parameters for the transi-
tion from GOE to GUE are Ta = 0.60, Tb = 0.68, τabs = 1.6, ξ =
0.28 for f ∈ [9, 10] GHz, Ta = 0.80, Tb = 0.87, τabs = 2.5, ξ = 0.2
for f ∈ [14, 15] GHz, and Ta = 0.86, Tb = 0.89, τabs = 3.75, ξ =
0.185 for f ∈ [18, 19] GHz. For the transition from Poisson
to GUE, they are Ta = 0.60, Tb = 0.68, τabs = 0.75, λ = 0.25 for
f ∈ [9, 10] GHz, Ta = 0.80, Tb = 0.87, τabs = 2.0, λ = 0.22 for f ∈
[14, 15] GHz, and Ta = 0.86, Tb = 0.89, τabs = 3.75, λ = 0.185 for
f ∈ [18, 19] GHz.

Thus, magnetization of the ferrite pads induces above the
≈8 GHz T -invariance violation and chaoticity of the dynam-
ics, which is above their cutoff frequency. The orange curves,
which show the correlation functions and amplitude distribu-
tions of the S-matrix elements obtained from the HDS model
given by Eq. (1) with Ĥ replaced by the RP Hamiltonian given
by Eq. (4), agree very well with the experimental ones for
the cavity SB1. Thus, we may conclude that this HDS model
is appropriate for the description of the fluctuation properties
of the S matrix of microwave cavities whose wave dynamics
undergoes a transition from Poisson to GUE.

III. EXPERIMENTS AT SUPERCONDUCTING
CONDITIONS

A. Experimental setup

We performed experiments at superconducting conditions
with a circular microwave billiard, referred to as CB1 in
the following, with radius R = 250 mm containing a ferrite
disk with radius R0 = 30 mm at the center, shown in Fig. 6,
to investigate the spectral properties of quantum systems
that undergo a transition from integrable classical dynamics
with preserved T invariance to a chaotic one with complete

FIG. 5. Distributions of the amplitudes of the S matrix for a �= b
in the frequency ranges indicated in the panels. Shown are the results
for the cavity SB1 (black) and SB2 (red) and the results of Monte
Carlo simulations for the S matrix, given by Eq. (1), with Ĥ =
Ĥ1→2(ξ ) (turquoise) and Ĥ 0→2(λ) (orange) for the same parameters
as in Fig. 4. The blue solid curve shows the RMT prediction for the
Ericson regime of strongly overlapping resonances.

T -invariance violation. The radius of the circle is R =
250 mm and the cavity height is h = 5 mm, corresponding
to a cutoff frequency f cut = 30 GHz. A ferrite disk made of
19G3 with saturation magnetization Ms = 195 mT with radius
R0 = 30 mm and same height as the cavity corresponding
to a cutoff frequency f cut

F ≈ 4.5 GHz is placed at its center.
To induce T -invariance violation, the ferrite is magnetized
with a static magnetic field of strength B = 200 mT that is
generated with two external NdFeB magnets, fixed above and
below the cavity [34]. In total, 10 ports were fixed to the lid.
The three plates are screwed together tightly through holes
along the cavity boundary and circles that are visible in the
photographs, and tin lead is filled into grooves that were

FIG. 6. Photograph of the niobium lid (left) and the 5-mm-thick
lead-coated brass plate with a circular hole on top of a niobium plate
(right) of the microwave billiard with a ferrite disk visible at the
center CB1. The lid has been removed.
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FIG. 7. Relative size of violation of the principle of detailed
balance for B = 0 and B = 200 mT, respectively. The orange dots
connected by a dashed line show the average values in a sliding
1 GHz window.

milled into the top and bottom surfaces of the middle plate
along the circle boundary to attain a good electrical contact
and, thus, high-quality factors. To achieve high-quality factors
of Q � 5 × 104, the cavity was cooled down to below ≈5 K
in a cryogenic chamber constructed by ULVAC Cryogenics in
Kyoto, Japan. We thereby could determine a complete se-
quence of 1014 eigenfrequencies in the frequency range
10–20 GHz, using the resonance spectra measured between
the antennas for all port combinations. The measurements
were performed for B = 0 and B = 200 mT. We also de-
termined the eigenfrequencies of the circular cavity with a
metallic disk instead of the ferrite at the center, denoted CB2
in the following. Below f cut, it corresponds to an integrable
ring-shaped QB.

In Fig. 7, we show ab = [||Sab| − |Sba||]/[|Sab| + |Sba|],
which gives a measure for the violation of detailed bal-
ance, |Sab| = |Sba|, and thus for the strength of T -invariance
violation. Note that for the calibration of the S matrix at
superconducting conditions, a special cumbersome procedure
is required [86–88] which, however, is not needed as long as
one only is interested in spectral properties. Therefore, we
cannot get any information on T -invariance violation from
the fluctuation properties of the S matrix, which depend on its
phases, such as the cross-correlation coefficients, and consid-
ered ab instead [37]. For B = 0 mT, the principle of detailed
balance is fulfilled up to experimental accuracy, whereas for
B = 200 mT, it is clearly violated. In Fig. 8, we compare
measured transmission spectra of the cavity with a ferrite
disk at the center for B = 0 and B = 200 mT. The effect of
magnetization is that the resonances are shifted with respect
to those for B = 0 mT, which becomes visible in a change of
the spectral properties, as demonstrated in Sec. III C, and part
of them are missing.

B. Review of analytical results for the RP model

We analyzed the spectral properties in terms of the
nearest-neighbor spacing distribution P(s), the cumulative

FIG. 8. Part of the transmission spectrum of the circular mi-
crowave billiard measured at ≈5 K for external magnetic field B = 0
and B = 200 mT.

nearest-neighbor spacing distribution I (s), the two-point clus-
ter function Y2(r), which is related to the spectral two-point
correlation function R2(r) via Y2(r) = 1 − R2(r), the number
variance �2(L) = 〈[N (L) − 〈N (L)〉]2〉, and the form factor
K (τ ) = 1 − b(τ ) with b(τ ) = ∫ ∞

−∞ Y2(r)e−irτ dr. We com-
pared these measures to analytical ones for the RP model
given by Eq. (4). The parameter αN , respectively, λ =
αN/DN , characterizing the transition from Poisson to GUE
was determined by fitting the result for the number variance
�2

0→2(L), which was deduced from the exact analytical re-
sult for the two-point cluster function Y 0→2

2 (r) derived in
Refs. [22,49,50]. We would like to note that Lenz derived an
analytical expression in 1992, which is exact for all values
of αN and dimensions N of Ĥ0→2(λ) in Eq. (4); however,
the N dependence is so complex that the computation of the
limit N → ∞ was impossible [22]. In Ref. [49], Y 0→2

2 (r) was
obtained from the inverse Fourier transform of the analytical
result for b0→2(τ ) = ∫ ∞

−∞ Y 0→2
2 (r)e−irτ dr,

K0→2(τ̃ ) = 1 + 2

γ
I1(γ ) exp

[
−πα̃2τ̃ − α̃2τ̃ 2

2

]

− τ̃

2π
γ

∫ ∞

1
dt (t2 − 1)I1(γ t )

× exp

[
−t2 α̃2τ̃ 2

2
− πα̃2τ̃

]
, (6)

γ =
√

2πα̃2τ̃ 3/2, (7)

which was rederived in Ref. [51]. In Ref. [50], an exact an-
alytical expression was computed for Y 0→2

2 (r) based on the
graded eigenvalue method, yielding

Y 0→2
2 (r) = 1

2(πr)2

[
1 − e−2 r2

α̃2 cos(2πr)
] − 1

(πα̃)2

+ 1

π

∫ ∞

0
ρdρe− ρ2

2c

∫ π

0
dφ cos(φ)[Re(A)+Re(B)],

A = eiφ
[
1 − ρ

κ
sin φ

]
1 + i ρeiφ

2κ

exp

[
−i

ρ2

2cκ

1

1 − ρ

κ
sin φ

]
,
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B = e−iφ
[
1 + ρ

κ
sin φ

]
1 + i ρe−iφ

2κ

exp

[
−i

ρ2

2cκ

1

1 + ρ

κ
sin φ

]
,

κ = r

πα̃2
, c = 1

(πα̃)2
. (8)

Note that there are discrepancies in the scales of α̃ and τ̃

between Refs. [48,49,51,81], resulting from differing defini-
tions of the N-independent parameter λ. We fixed the scales
and verified the validity of Eqs. (6)–(9) by comparing the
analytical results with Monte Carlo simulations for spectra
consisting of a few hundreds of eigenvalues. We chose (400 ×
400)-dimensional random matrices, such that the number of
eigenvalues is comparable to the experimental eigenfrequency
sequences. Here, we used the same settings as in Eq. (4),
that is, Gaussian distributed entries for Ĥ0 of the same vari-
ance 〈(Ĥ0)ii〉2 = 1

2N as for the diagonal elements ĤGUE, such
that their band width equals W = 2π , that is, αN = λDN =
λ 2π

N in the random matrix model, given by Eq. (4), with a
N-dimensional Hamiltonian. This yielded α̃ = π√

2
λ and τ̃ =

τ
α̃2 . Note that approximations have been derived for Y 0→2

2 (r)
for λ � 1 and λ � 1 in Refs. [22,23,43–50]. These, however,
are applicable to the experimental data for a small value of
r, respectively, L. Therefore, we do not show the comparison.
We determined the values of λ from the experimental eigen-
frequency spectra by fitting the analytical expression for the
number variance deduced from Eq. (9) via the relation

�2
0→2(L) = L − 2

∫ L

0
(L − r)Y 0→2

2 (r)dr, (9)

to their number variance.
In Ref. [22], a Wigner-surmise-like expression was derived

for the nearest-neighbor spacing distribution based on the RP
model, given by Eq. (4), with N = 2, which was rederived in
Ref. [89] and is quoted in Ref. [90], given by

P0→2(s) = Cs2e−D2s2
∫ ∞

0
dxe

− x2

4α2
L
−x sinh z

z
,

D(αL ) = 1√
π

+ 1

2αL
eα2

L erfc(αL ) − αL

2
Ei

(
α2

L

)

+ 2α2
L√
π

2F2

(
1

2
, 1;

3

2
,

3

2
; α2

L

)
,

C(αL ) = 4D3(αL )√
π

, z = xDs

αL
, (10)

where erfc(x) denotes the complementary error function,
Ei(x) the exponential integral, and 2F2(iα1, α2; β1, β2; x) the
generalized hypergeometric error function [91,92]. Com-
parison of these analytical results with our Monte Carlo
simulations yields αL = √

2λ.
We also analyzed the distribution of the ratios [93,94] of

consecutive spacings between next-nearest neighbors, r j =
f j+1− f j

f j− f j−1
, for which no analytical results are available. Yet, they

have the advantage that no unfolding is required since the
ratios are dimensionless [93–95]. Another frequently studied

measure is the power spectra, defined as

s

(
τ = l

n

)
= 〈| 1√

n

n−1∑
q=0

δq exp

(
−2π i

l

n
q

)
|2〉,

l = 1, . . . , n, (11)

with n denoting the number of eigenvalues and δq = εq+1 −
ε1 − q for a complete sequence of n levels, where 1

n � τ �
1 [96,97]. An analytical expression was derived for s(τ )
in Ref. [97] in terms of the spectral form factor. It pro-
vides a good approximation for experimental data obtained
in microwave networks and microwave billiards [32,98–100]
consisting of sequences of a few hundreds of eigenfrequen-
cies, for all three universality classes of Dyson’s threefold
way. With the aim to get an approximation for s(τ ) for the
transition from Poisson to GUE, we replaced in the analyt-
ical expression of Ref. [97] the spectral form factor by the
expression Eq. (6), yet did not find good agreement with the

FIG. 9. Top: Spectral properties of the cavities CB1 with B =
0 mT (red histogram and dots) and CB2 (green histogram and
squares) for ≈1000 eigenfrequencies in the frequency range [10,20]
GHz. They are compared to the results for Poisson (black dash-dot-
dotted lines), GOE (solid black lines), and GUE (dashed black lines)
statistics. Bottom: Same as top for the cavity CB1 with B = 200 mT.
Here, the green lines show the curves deduced from Eqs. (8)–(10) for
λ = 0.475.

044211-7



ZHANG, ZHANG, CHE, AND DIETZ PHYSICAL REVIEW E 108, 044211 (2023)

FIG. 10. Ratio distributions (upper panels) and cumulative ratio
distributions (lower panels). (a),(c) Cavities CB1 (red histogram and
dots) and CB2 (green histogram and squares) for ≈1000 eigenfre-
quencies in the frequency range [10,20] GHz. They are compared
to the results for Poisson (black dash-dot-dotted lines), GOE (solid
black line), and GUE (dashed black lines) statistics. (b),(d) Same as
(a) and (c) for B = 200 mT.

experimental data or in Monte Carlo simulations with high-
dimensional RP Hamiltonians [101]. Exact analytical results
were obtained for the power spectra in Refs. [102,103] for
fully chaotic quantum systems with violated T invariance;
however, we are not aware of any analytical results for the
RP model. Due to the lack of an analytical expression, we
compared the results deduced from the experimental data for
the power spectrum to Monte Carlo simulations, as outlined
in Sec. III C.

C. Analysis of correlations in the eigenfrequency spectra

For the analysis of the spectral properties, we unfolded
the eigenfrequencies to mean spacing one, by replacing them
with the spectral average of the integrated resonance density
〈N ( f )〉, εi = 〈N ( fi )〉, which for the cavity CB2 is given by
Weyl’s formula, 〈N ( f )〉 = Aπ

c2 f 2 − L
2c f + N0, with A and L

denoting the area and perimeter of the billiard, respectively,
and provides a good approximation for the cavity CB1 for
B = 0 mT. For B �= 0 mT, we determined 〈N ( f )〉 by fitting a
quadratic polynomial to the experimentally determined N ( f ).
The parameter λ was determined in all considered cases by
fitting the analytical result given by Eq. (9) to the experimen-
tally determined number variance, which provides a suitable
measure since it is very sensitive to small changes in λ. In
the upper part of Fig. 9, we show spectral properties of the
cavities CB1 with B = 0 mT and CB2. The curves lie very
close to or on top of each other and coincide with analytical
results for the corresponding ring QB; that is, the agreement
with Poisson is as good as expected for ≈1000 levels. In
the lower part are exhibited the spectral properties for the
cavity CB1 with B = 200 mT in the range [0,20] GHz, which
also comprises ≈1000 levels. They agree best with the RP
model for λ = 0.474. In Fig. 10 are shown the associated ratio
distributions. They are close to Poisson for the case B = 0 mT
and to GUE for B = 200 mT.

FIG. 11. Spectral properties of the cavity CB1 with B = 200 mT
(red histograms and dots). They are compared to the curves de-
duced from Eqs. (8)–(10) (green curves) and results for Poisson
(black dash-dot-dotted lines), GOE (solid black line), and GUE
(dashed black lines) statistics. Shown are the results for (a) n = 231,
fi ∈ [10, 13] GHz, (b) n = 294, fi ∈ [13, 16] GHz, (c) n = 232,
fi ∈ [16, 18] GHz, and (d) n = 256, fi ∈ [18, 20] GHz, with λ =
0.325, 0.45, 0.55, 0.625, respectively.
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FIG. 12. Same as Fig. 11 for the spectral form factor of the
cavities (a) CB1 (red solid line) and CB2 (turquoise dashed line)
for B = 0 mT and ≈1000 eigenfrequencies in the frequency range
[10,20] GHz, and (b)–(d) CB1 with B = 200 mT (red solid lines)
compared to the analytical results given by Eq. (6) (green curves) and
results for Poisson (black dash-dot-dotted lines), GOE (solid black
line), and GUE (dashed black lines) statistics. Shown are the results
for (b) n = 294, fi ∈ [13, 16] GHz, (c) n = 232, fi ∈ [16, 18] GHz,
and (d) n = 256, fi ∈ [18, 20] GHz, with λ = 0.45, 0.55, 0.625,
respectively.

Actually, using the whole frequency range from 10 to
20 GHz corresponds to superimposing spectra with different
values of λ. To demonstrate this, we analyzed the spectral
properties in frequency intervals of approximately constant
ab (see Fig. 6). They are shown together with the analytical
curves in Fig. 11. The corresponding values of λ are given
in the figure caption. Deviations are visible in the long-range
correlations beyond a certain value of L. This may be at-
tributed to the comparatively small number of eigenvalues n
given in the figure caption. The associated ratio distributions
are in all frequency ranges similar to the results shown in
Figs. 10(b) and 10(d), implying that they are not sensitive to
the changes in the value of λ, i.e., to the size of chaoticity
and T -invariance violation. Furthermore, we compared exper-
imental results for the form factor to the analytical prediction
deduced from Eq. (6); see Fig. 12. In this case, we had to
cope with the problem that we have sequences of only few
hundreds of eigenvalues; however, for the Fourier transform,
long sequences are preferable. Furthermore, we have only one
sequence for each value of λ, whereas, e.g., in the experiments
[32,100], there is an ensemble of up to a few hundreds of
spectra of comparable lengths. So we observe a qualitative
agreement with the analytical results confirming the values
of λ; however, these data cannot be used to determine λ.
In Fig. 13, we compare the experimentally obtained power
spectra to Monte Carlo simulations with the RP model, given
by Eq. (4), and to the curves for the GOE and GUE, which
were obtained based on the analytical expressions in terms of
the form factor derived in Ref. [97]. The smallest value of τ

is 1
n , with n denoting the number of eigenfrequencies given

in the caption. Nevertheless, differences between the power
spectra for the different frequency ranges are visible below
log10(τ ) � −0.5, and they agree well with the Monte Carlo
simulations.

FIG. 13. Power spectra for the cavity CB1 with B = 200 mT
(red histograms and dots). They are compared to curves de-
duced from Monte Carlo simulations (green curves) and results for
Poisson (black dash-dot-dotted lines), GOE (solid black line),
and GUE (dashed black lines) statistics for (a) n = 231, fi ∈
[10, 13] GHz, (b) n = 294, fi ∈ [13, 16] GHz, (c) n = 232, fi ∈
[16, 18] GHz, and (d) n = 256, fi ∈ [18, 20] GHz, with λ =
0.325, 0.45, 0.55, 0.625, respectively.

FIG. 14. Top: Length spectra of the cavities CB1 (red solid line)
and CB2 with radius R = 250 mm containing a ferrite, respectively,
metallic disk, with radius R0 = 30 mm (black solid line). Orbits,
which hit the ferrite disk at the center of the circular billiard and thus
feel the differing boundary conditions, are marked by yellow arrows.
Green arrows point at the peaks corresponding to the lengths of the
orbits shown in the insets. Bottom: Same as top for cavity CB1 with
B = 200 mT (black solid line) and B = 0 mT (red solid line).
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FIG. 15. Intensity distributions of the electric-field compo-
nent of the electromagnetic waves along the cavity axis, that
is, in the z direction, |Ez|, (first column) and the magnetic-
field components in the x and y directions (second and
third column), respectively, for, from top to bottom, f =
10.0012, 12.9405, 16.0522, 17.9931, 19.9404 GHz.

Furthermore, we analyzed the length spectra of the three
microwave billiard systems. A length spectrum is given by the
modulus of the Fourier transform of the fluctuating part of the
spectral density from wave number to length and has the prop-
erty that it exhibits peaks at the lengths of the periodic orbits of
the corresponding classical system. The upper part of Fig. 14
shows the length spectra for the cavities CB1 with B = 0 mT
and CB2. Both length spectra exhibit peaks at the lengths of
orbits of the corresponding ring QB. Some peaks are either
weakened or suppressed for CB1. This is attributed to the dif-
fering BCs at the walls of the metallic and ferrite disks, impli-
cating for the latter that in the classical limit, there is no spec-
ular (hard-wall) reflection at the inner circle. For the length
spectrum for B = 200 mT, shown as a black curve in the lower
part of Fig. 14, some peaks are suppressed or disappear, im-
plying that the corresponding periodic orbits no longer exist.
These are orbits that hit the disk at the center of the circular
billiard, marked by yellow arrows. Furthermore, we show
some periodic orbits. Green arrows point at the corresponding
peaks. In Fig. 15 of the Appendix, we show examples of the
electric- and magnetic-field distributions to illustrate the effect
of the magnetized ferrite, which above its cutoff frequency
f cut
F ≈ 4.5 GHz acts like a random potential [41].

IV. CONCLUSIONS

We propose an experimental setup—consisting of a flat
microwave cavity with the shapes of an integrable billiard,

containing ferrite pieces, that are positioned and shaped such
that the integrability is not destroyed as long as they are not
magnetized—for the study of the properties of typical quan-
tum systems, whose classical counterpart experiences a tran-
sition from integrable with preserved T invariance to chaotic
with partially violated T variance. In Sec. II, we demonstrate,
in room-temperature experiments with a flat circle sector-
shaped cavity, that the fluctuation properties of the S matrix
associated with the resonance spectrum of such cavities are
well described by the Heidelberg approach, given by Eq. (1),
with the Hamiltonian replaced by the RP Hamiltonian, given
by Eq. (4). Furthermore, in Sec. III, we show that the spectral
properties of the eigenfrequencies of a circular flat cavity
identified in superconducting experiments agree with those of
the eigenvalues of the RP Hamiltonian, given by Eq. (4). We
confirmed this by comparing them to, and thereby verifying
analytical results derived in, Refs. [22,49,50]. These experi-
ments were performed with a cavity whose bottom plate and
lid are constructed from niobium, a superconductor of type II
[40], thereby achieving high-quality factors. This is a crucial
prerequisite to render possible the determination of a com-
plete sequence of ≈1000 eigenfrequencies. Thereby, we were
able to analyze the spectral properties in various frequency
ranges and thus to observe the gradual transition from Poisson
to GUE. Unfortunately, we are not able to measure wave
functions with our setup, which relies on Slater’s theorem em-
ploying a perturbation body made from magnetic rubber [104]
that is moved along the billiard surface with a guiding magnet,
which would interfere in the vicinity of the ferrite with the
strong magnetic field magnetizing it. However, there the wave
functions show clear distortion from those of the integrable
billiard, as illustrated in Fig. 15. A task for the future is to im-
plement another method which does not use guiding magnets.
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APPENDIX: EXAMPLES OF ELECTRIC- AND
MAGNETIC-FIELD DISTRIBUTIONS

In Fig. 15, we show examples of the intensity distributions
of the electric-field component Ez, which, for B = 0 mT,
corresponds to the wave functions of the ring QB below
f cut = 30 GHz, and for the magnetic-field components Hx and
Hy in the cavity with magnetized ferrite. All other field com-
ponents vanish below f cut. The cutoff frequency of the ferrite
disk beyond which the electric-field distribution becomes
three dimensional equals f cut

F ≈ 4.5 GHz. We demonstrated,
in [41], that then the wave dynamics of the disk becomes
chaotic and T invariance is completely violated. Thus, above
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f = 4.5 GHz, it acts like a random potential. This is illustrated
in this figure. The distributions were computed with COMSOL

MULTIPHYSICS. The patterns exhibit clear distortions with re-
spect to those of the corresponding ring-shaped QB. Indeed,

as demonstrated for the corresponding spectral properties, the
cavity CB1 exhibits, above 10 GHz, clear deviations from
Poisson statistics and is well described by the RP model for
the transition from Poisson to GOE.
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