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Lorenz-like systems and Lorenz-like attractors: Definition, examples, and equivalences
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Since the early 1970s, numerous systems exhibiting an algebraic structure resembling that of the 1963 Lorenz
system have been proposed. These systems have occasionally yielded the same attractor as the Lorenz system,
while in other cases, they have not. Conversely, some systems that are evidently distinct from the Lorenz system,
particularly in terms of symmetry, have resulted in attractors that bear a resemblance to the Lorenz attractor. In
this paper, we put forward a definition for Lorenz-like systems and Lorenz-like attractors. The former definition is
based on the algebraic structure of the governing equations, while the latter relies on topological characterization.
Our analysis encompasses over 20 explicitly examined chaotic systems.

DOI: 10.1103/PhysRevE.108.044209

I. INTRODUCTION

The Lorenz system [1] is the most-known chaotic system.
Its success results from a few specificities which are, among
others, (i) it is the first published chaotic system actually rec-
ognized for its aperiodic solution which is sensitive to initial
conditions, (ii) it is a quite simple set of quadratic equations,
(iii) it has strong—although oversimplified—connection with
the physical experiment known as the Rayleigh-Bénard ex-
periment [2], and (iv) it produces a very suggestive chaotic
attractor which may be viewed as the two wings of a butterfly,
thus providing a direct connection with the so-called “butterfly
effect.” [3] In fact, Rikitake had previously published a sys-
tem that exhibits remarkably similar dynamics [4]. However,
unlike in Lorenz’s paper, Rikitake did not provide a visual rep-
resentation of the attractor in a state space projection, and the
analysis of the chaotic solution was not as comprehensive. It
was only in the early 1970s that a more thorough examination
of its chaotic solution was carried out [5]. An experimental
realization of the Lorenz dynamics was proposed by Malkus
two years later [6] and, then, a slightly different version was
derived from laser equations [7]. Many other systems with the
same kind of algebraic structure and dynamics were hereafter
proposed.

Before proceeding, it is essential to establish a clear
distinction between the system—the set of differential
equations—and the chaotic attractor itself. On the one hand,
the designation “Lorenz-like system” is used when the gov-
erning equations being studied share specific characteristics
with the Lorenz system, as outlined in detail in Sec. II. On
the other hand, for an attractor to be classified as a Lorenz

*christophe.letellier@univ-rouen.fr
†emmendes@ufmg.br
‡jmmalasoma@gmail.com

attractor, it must display topological equivalence to the at-
tractor analyzed in the seminal 1963 Lorenz paper [1], which
will be explored in Sec. IV. It is crucial to emphasize that a
Lorenz-like attractor can be produced by a system that is not
inherently Lorenz-like. Conversely, a Lorenz-like system does
not necessarily yield an attractor that is classified as a Lorenz
attractor (refer to the definition in Sec. IV).

Multiple distinct approaches exist for defining a gener-
alized Lorenz-like system, as evidenced by various studies
[8–11]. Frequently, these approaches result in systems with
a considerably larger number of monomials than the original
Lorenz system’s seven. In Sec. III, we will delve into the
topic and explore how a system with an excessive number
of monomials can produce various types of attractors that are
not characteristic of a Lorenz attractor. To illustrate this point,
we will present two examples of the same system structure
capable of producing both Lorenz and Rössler attractors.

II. LORENZ-LIKE SYSTEMS

The Lorenz system was proposed by Lorenz as a strong
truncation of a Fourier expansion of the Navier-Stokes equa-
tions for describing Rayleigh-Bénard convection [1]. In our
analysis, we will only consider this system as a dynamical
system, disregarding its physical interpretation. The system
consists of quadratic monomials in the right-hand side of the
governing equations and exhibits rotational invariance around
the z axis. For the sake of simplicity, we adopt the convention
that the rotation axis corresponds to the z axis. The chaotic
attractor obtained by Lorenz is better known than the corre-
sponding governing equations but, as we will see, most often
only its general shape is considered, that is, its two “wings”
(sometimes also called “scroll”). Therefore, certain attractors
are referred to as Lorenz attractors even though they are
not topologically equivalent to the original Lorenz attractor
(see, for example, Ref. [12]). Thus, it is important to make
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a clear distinction between Lorenz-like systems and Lorenz
attractors.

The term “Lorenz-like attractor” will be introduced for des-
ignating the attractors often produced by Lorenz-like systems.
The present section is devoted to define Lorenz-like system
and Sec. IV will discuss what should be meant by Lorenz
attractor and, more generally, by Lorenz-like attractor. We will
see that the number of singular points is not a key property for
producing a two-wing attractor. This is not therefore retained
in our definition.

We will begin by presenting a definition of what is meant
by a Lorenz-like system in this context.

Definition 1. A Lorenz-like system is a quadratic three-
dimensional system with an order-2 rotation symmetry and
whose part of the rotation axis has a transverse stability of the
saddle type.

While the origins of the first two properties are obvious, the
third property, namely, the transverse stability of the saddle
type, is required for getting the tearing mechanism involved
in the production of an attractor bounded by a genus-3 torus
(see below) [13,14].

Remark 1. In Sec. III, it will be shown that a system with
more than seven monomials in the right-hand side of the gov-
erning equations can produce a Lorenz attractor as well as a
Rössler attractor. The presence of too many monomials allows
the equations to produce a wide range of dynamics and we
argue that it becomes meaningless to speak of a Lorenz-like
system. We will therefore add a restriction to our definition:
only system with less than eight monomials are considered.

Remark 2. As a convention, the z axis is designated as the
rotation axis. When a linear governing equation is present
(such as in the first equation of the Lorenz system), it is
consistently associated with the x variable. This association
is chosen because it provides the simplest jerk function when
it exists (this is always the case in the examples here con-
sidered), which corresponds to the best observability of the
state space [15]. Therefore, comparing the jerk function Fx is
sufficient to determine the jerk-equivalence between Lorenz-
like systems [16]. Let us designate this form as the standard
form.

Remark 3. It is known that at least five monomials are
required for producing chaos. The Lorenz system itself has
seven monomials and it cannot be considered as not being
a Lorenz-like system! When a system has more than seven
monomials, it can produce a huge variety of chaotic attractors
which are very often much more complex than the Lorenz
or the Burke and Shaw systems. To us, these systems thus
lose their specificities and there is no longer any interest in
considering them as having some specific properties of the
Lorenz system.

Consequently, a Lorenz-like system has the form

ẋ = α11 x + α12 y + α16 xz + α18 yz,

ẏ = α21 x + α22 y + α26 xz + α28 yz,

ż = α30 + α33z + α34x2 + α35xy + α37y2 + α39z2,

(1)

where the first two equations are made of odd monomials and
the third equation with at least one even monomial of the
form xiy j with i + j even. This is the general form already
retained by one of us [17]. Given our limitation to systems

with fewer than eight monomials, it implies that no more
than seven of the αi j coefficients are zero. The resulting form
automatically ensures that a Lorenz-like system is equivariant
under a rotation symmetry Rz(π ), that is, it obeys to [18]

� · f(x) = f(� · x), (2)

where

� =

⎡
⎢⎣

−1 0 0

0 −1 0

0 0 +1

⎤
⎥⎦. (3)

Note that we cannot introduce the constant monomial α20

in the second equation, as was done in Refs. [19] and [20],
since it would break the rotation symmetry. The second part
of the definition can be checked by using the set of 1-regular
points as introduced by two of us [21] for determining the
range of the rotation axis which has a transverse stability of
the saddle type, that is, the required condition for having a
tearing mechanism in the neighborhood of the rotation axis
[22]. Typically, a tearing is induced by a saddle point and is
responsible for a nondifferentiable critical point as the cusp
point of the Lorenz map. Therefore, to proceed, we will begin
by verifying whether the Lorenz system can be classified as a
Lorenz-like system.

The Lorenz system is associated with three governing
equations composed of seven monomials, with its algebraic
structure described below [1]:

ẋ = α11x + α12y,

ẏ = α21x + α22y + α26xz,

ż = α33z + α35xy. (4)

The system has actually the properties required for a Lorenz-
like system since: (i) it is equivariant [condition (2)] under the
matrix � which defines a rotation symmetry Rz(π ) around the
z axis, and (ii) the set of 1-regular points defined by ẋ = ẏ = 0
is the z axis whose transverse stability is of a saddle type for
some z values. This is determined from the Jacobian matrix
[21]

Jxy =
[ −σ +σ

R − z −1

]
. (5)

The corresponding eigenvalues

λ± = −(σ + 1) ±
√

(σ − 1)2 + 4σ (R − z)

2
(6)

are real when

z � R + (σ − 1)2

4σ
= 30.025 (7)

and

λ+ λ− = σ (z − R + 1) (8)

implies that they are of opposite signs if and only if

z < R − 1. (9)

Since Eq. (9) implies Eq. (7), the Lorenz system (4) is indeed a
Lorenz-like system. Considering the typical parameter values
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FIG. 1. The chaotic attractor generated by modifying some of the
parameter values in the original Lorenz system (4): α11 = 10, α12 =
25, α21 = 28, α22 = 3.5, α26 = 0.001, α33 = 8

3 , and α35 = 2.0

[1],

α11 = −σL = −10, α12 = σL = 10,

α21 = RL = 28, α22 = −1, α26 = −1,

α33 = −bL = − 8
3 , α35 = +1,

(10)

the rotation axis has a transverse stability of a saddle type
when z < 27.

There are no specific constraints on the parameter values,
allowing for the possibility of random modifications. For in-
stance, although the values of α22, α26, and α35, are commonly
set to the unity in the Lorenz system (4), we changed them to
α22 = 3.5, α26 = 0.001, and α35 = 2.0, and broke the equality
between α11 and α12 by changing the second parameter to
α12 = 25: the chaotic attractor still has the typical shape of the
Lorenz attractor (Fig. 1). In this example, the coefficient α26

is quite small, but it is not possible to set it to zero. In fact, if
α26 is set to 0, then the subsystem in x and y is linear and z can
be written as a function of time t in the third equation: chaos
is therefore not possible in this case. Indeed, the monomial
α26xz is present in all the Lorenz-like systems investigated
here. This example demonstrates the robustness of the Lorenz
attractor in the Lorenz system—which will be defined in the
subsequent sections of this paper—against certain variations
in the parameter values.

III. RELEVANCE OF PARSIMONIOUS SYSTEMS

When the differential embedding is constructed from the
variable x, the Lorenz system can be expressed in a canonical
(or jerk) form

Ẋ = Y,

Ẏ = Z,

Ż = Fx,

(11)

with

Fx = (α11α22 − α12α21)α33X − (α11 + α22)α33Y

+ (α11 + α22 + α33)Z − α11α26α35X 3 + α26α35X 2Y

− (α11 + α22)
Y 2

X
+ Y Z

X
, (12)
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FIG. 2. The chaotic attractor produced by the Lorenz system
rewritten in the jerk form (4). Same parameter values as in Fig. 1.

where X = x, Y = ẋ, and Z = ẍ. In this case, the rotation
symmetry Rz(π ) is transformed into an inversion symme-
try with respect to the origin of the state space (Fig. 2)
[13,18]. According to the definition 1, the jerk form in-
duced by the variable x of the Lorenz system (4) is not
a Lorenz-like system because it has (i) an inversion sym-
metry, (ii) two cubic monomials, and (iii) two rational
monomials.

Since the coordinate transformation

�x =

∣∣∣∣∣∣∣∣∣

X �→ x,

Y �→ α11 x + α12 y,

Z �→ (
α2

11 + α12α21
)

x + (α11α12 − α12α21) y
−α12α26 xz

(13)

has a Jacobian matrix whose determinant vanishes in X = 0,
�x defines a local diffeomorphism. In that case, the singular
observability manifold correspond to a single plane x = 0
which allows to change the nature of the symmetry.

Let us now consider the coordinate transformation

� =

∣∣∣∣∣∣∣
x �→ x,

y �→ ξ3 y + ξ4 z,

z �→ ξ5 + ξ7 y + ξ8 z

(14)

whose Jacobian matrix is

J� =

⎡
⎢⎣

1 0 0

0 ξ3 ξ4

0 ξ7 ξ8

⎤
⎥⎦. (15)

The determinant is given by

Det J� = ξ3 ξ8 − ξ7ξ4

and is only null for a set of coefficients with null measure.
In general, � defines a diffeomorphism that possesses the
property of leaving the variable x unaltered.

When this coordinate transformation is applied to the
Lorenz system (4), the following model is obtained

ẋ = −σ x + σξ3 y + σξ4 z,

ẏ = [+bξ4ξ5 + ξ8(R − ξ5) x + (bξ4ξ7 − ξ3ξ8) y

+ξ4ξ8(b − 1) z − (ξ3ξ4 + ξ7ξ8) xy

− (
ξ 2

4 + ξ 2
8

)
xz

]/
(ξ3ξ8 − ξ4ξ7),
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ż = [−bξ3ξ5 + ξ7(ξ5 − R) x + ξ3ξ7(1 − b) y

+(ξ4ξ7 − bξ3ξ8) z + (
ξ 2

3 + ξ 2
7

)
xy

+ (
ξ3ξ4 + ξ7ξ8

)
xz

]/
(ξ3ξ8 − ξ4ξ7), (16)

which is therefore diffeomorphically equivalent to the original
Lorenz system when ξ3ξ8 �= ξ7ξ4. This system has the alge-
braic structure

ẋ = β11 x + β1,2 y + β13 z,

ẏ = +β20 + β21 x + β22 y + β23 z

+ β25 xy + β26 xz,

ż = β30 + β31 x + β32 y + β33 z

+ β35 xy + β36 xz, (17)

with 15 monomials, among which four are nonlinear. The
rotation symmetry is broken (for instance by the monomial
β13z). It is important to note that there are constraining re-
lationships between the parameters βi: some of them are
not independent of the others as seen in Eq. (16). Strictly
speaking, this system does not align with our definition of a
Lorenz-like system due to the excessive number of monomials
with interdependent coefficients.

Setting the values of ξi to arbitrary values, the resulting
transformation, expressed as follows:

� =

∣∣∣∣∣∣∣
x′ �→ x,

y′ �→ − 59
10 y + 83

10 z,

z′ �→ 23
10 + 83

10 y − 177
10 z,

(18)

can be applied to the original Lorenz system (4) with the
common parameter values (10) to get

ẋ′ = −10 x′ − 59 y′ + 83 z′,

ẏ′ = + 7636
5331 − 45489

3554 x′ + 23783
10662 y′ − 24485

3554 z′

+ 9794
1777 x′y′ − 19109

1777 x′z′,

ż′ = 5428
5331 − 21331

3554 x′ + 24485
10662 y′ − 20959

3554 z′

+ 5185
1777 x′y′ − 9794

1777 x′z′. (19)

The coordinate transformation � defines a global diffeomor-
phism since Det J� = − 59

10 × 177
10 − 87

10 × 84
10 �= 0, ∀x ∈ R3.

Since variable x of this transformed Lorenz system is left
unchanged by the coordinate transformation �, the jerk form
of system (19) is necessarily the same as the jerk function
(12) obtained for the Lorenz system and its parameter values
are also the same. Therefore, these two systems are jerk-
equivalent and, consequently, diffeomorphically equivalent.

According to definition 1, the system (19) is not a Lorenz-
like system due to the monomial 9794

1777 xy in the equation fy and
the monomial − 9794

1777 xz in the equation fz, since both break
the rotation symmetry. Although the rotation symmetry is no
longer present, there is still a relationship between the two
wings, as exhibited by the differential embedding induced by
variable x. A plot of the attractor in one of the plane projection
of the state space R3(x′, y′, z′) reveals the two wings but not
the symmetry that they may have (Fig. 3, left). Nevertheless,
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-100
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FIG. 3. The transformed Lorenz system (19) with the coordinate
transformation � (18). The attractor is diffeomorphically equivalent
to the original Lorenz attractor but its rotation symmetry is broken.
Nevertheless, the relationship between the two wings can still be
exhibited in the x-differential embedding (right).

since variable x′ = x an order-2 symmetry may still be ex-
hibited (Fig. 3, right). This representation of the attractor is
in fact exactly the same as the one induced by the variable
x of the Lorenz system. Consequently, a system which is not
Lorenz-like can produce a Lorenz attractor.

Now, let us shift our focus to the Rössler system [23]

ẋ = α12y + α13z,

ẏ = α21x + α22y,

ż = α30 + α33z + α36xz,

(20)

with α22 = −1, α23 = −1, α21 = 1, α22 = a, α30 = b, α33 =
−c, α35 = −1 to produce the common Rössler attractor
(Fig. 4). This system is obviously not a Lorenz-like system.
When the coordinate transformation

�x =

∣∣∣∣∣∣∣∣∣

X �→ x,

Y �→ α12 y + α13 z,

Z �→ α13α30 + α12α21 x + α12α22 y

+α13α33 z + α13α36 xz

(21)
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-20
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10

20

y

FIG. 4. Rössler attractor produced by the Rössler system (20).
Parameter values: α22 = −1, α23 = −1, α21 = 1, α22 = a = 0.1,
α30 = b = 0.1, α33 = −c = −14, and α35 = −1.
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is applied to the Rössler system, it can be rewritten in the
canonical form (11) with

Fx = [K0 + K1 X + K2 Y + K3 Z + K4 X 2

+ K5 XY + K6 XZ + K7 Y 2 + K8 Y Z

+ K10 X 3 + K11 X 2Y + K12 X 2Z] / (β1 + β2X ), (22)

which has obviously a different structure from the jerk func-
tion (12) obtained for the Lorenz system.

Let us now apply the coordinate transformation

� =

∣∣∣∣∣∣∣
x �→ x,

y �→ ξ2 x + ξ3 y + ξ4 z,

z �→ ξ7 y + ξ8z

(23)

to the Rössler system (20). The Jacobian matrix is

J� =

⎡
⎢⎣

1 0 0

ξ2 ξ3 ξ4

0 ξ7 ξ8

⎤
⎥⎦, (24)

and the determinant is equal to

Det J� = ξ3 ξ8 − ξ7ξ4,

that is, it is is only null for a set of coefficients with null
measure. In general, � defines a diffeomorphism that presents
the characteristic of leaving the variable x unchanged. The
Rössler system thus becomes

ẋ = −ξ2 x − (ξ3 + ξ7) y − (ξ4 + ξ8) z,

ẏ = −bξ4 + ξ8(1 + (a + ξ2)ξ2) x

+ (ξ8(aξ3 + (ξ3 + ξ7)ξ2) + cξ4ξ7) y

+ ξ8(ξ4(a + c + ξ2) + ξ2ξ8) z

− ξ4ξ7 xy − ξ4ξ8 xz]/(ξ3ξ8 − ξ4ξ7),

ż = +bξ3 − ξ7(1 + (a + ξ2)ξ2) x

− ξ7(ξ3(a + c + ξ2) + ξ2ξ7) y

− (ξ7(ξ2(1 + ξ8) + aξ4) + cξ3ξ8) z

+ ξ3ξ7 xy + ξ3ξ8 xz]/(ξ3ξ8 − ξ4ξ7),

(25)

that is, a system which has the same algebraic structure as
system (16) but with different interplay between the parameter
values. To state about a possible equivalence between two sys-
tems, it is therefore relevant to investigate how their parameter
values are inter-related.

Let us now apply the particular coordinate transformation

� =

∣∣∣∣∣∣∣
x �→ x,

y �→ 1
5 x + 42

5 y − 19
5 z,

z �→ − 3
10 y + 98

5 z

(26)

to the Rössler system (20). We thus obtain the system

ẋ = − 1
5 x + 87

10 y − 79
5 z,

ẏ = − 19
8289 − 5194

41445 x + 2884
13815 y + 247058

41445 z

+ 19
2763 xy − 3724

8289 xz,

ż = + 14
2763 − 53

27630 x + 2003
9210 y − 384299

27630 z

− 14
921 xy + 2744

2763 xz,

(27)
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FIG. 5. The rewritten Rössler system (20) with the coordinate
transformation � (26). The attractor is diffeomorphically equivalent
to the original Rössler attractor.

which has the same algebraic structure as the system (19)
but which produces a Rössler attractor (Fig. 5) rather than
a Lorenz attractor. Since the Lorenz attractor is not diffeo-
morphically equivalent to the Rössler attractor, this result
shows that, when the number of monomials in the govern-
ing equations is sufficiently large, it is possible to produce
any kind of attractor with a given algebraic structure: what
counts is the relationships between the parameter values. The
consequences of this are as follows. First, as the number of
monomials in the governing equations increases, the algebraic
structure becomes less meaningful. Second, since systems
(19) and (27) have the same algebraic structure, both have
the same jerk form but with different coefficient values: they
are therefore not jerk-equivalent and, consequently, not dif-
feomorphically equivalent. It is important to emphasize that
the class of equivalence determined by the structure of the
jerk function, in this case, the function (12), encompasses a
larger set of systems than the class of diffeomorphic equiv-
alence. Since the Lorenz and the Rössler systems lead to
different constraints on the coefficients, their governing equa-
tions cannot be diffeomorphically equivalent [16]. With the
two examples treated in this section, we showed that the
equivalence of the algebraic structure of jerk functions de-
fines a too wide class of dynamical systems. The structure
of the system (17) [or equivalently of the system (27)] has
15 monomials: this structure is already too “flexible,” as it
encompasses various types of dynamics that can be produced.
This is why only parsimonious systems, characterized by no
more than seven monomials in their governing equations, are
considered here.

IV. TOPOLOGY OF LORENZ-LIKE ATTRACTORS

According to the recently developed dynamical taxonomy
by Letellier and co-workers [24], a dynamical taxon achieves
complete characterization when a three-dimensional attractor
produced by a dissipative is provided with the template. Con-
sequently, in this study, the templates for the typical chaotic
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attractors encountered in Lorenz-like systems will be pre-
sented. Since the rotation symmetry is considered as a relevant
property for Lorenz-like systems, it must also be present in the
Lorenz-like attractors.

A. The Lorenz attractor

For the Lorenz attractor initially investigated by Lorenz
in 1963, an important ingredient is the “Lorenz map”
[Fig. 10(a)], that is, a unimodal map with a cusp at the
critical point [1]. This is the first-return map that Lorenz com-
puted from the successive maxima of the z variable. Strictly
speaking, this Lorenz map is the first-return map to the two-
component Poincaré section [18],

Pzmax ≡
{

(yn, zn) ∈ Rn | x+ = +
√

b(R − 1), ẋn < 0
}

∪
{

(yn, zn) ∈ Rn | x− = −
√

b(R − 1), ẋn > 0
}

(28)

There is one component in each wing of the Lorenz attractor.
These two components are merged into a single one because
the z variable is invariant under the rotation symmetry: As a
consequence, it is not possible to determine, from this map, in
which wing is the trajectory. This is unveiled by plotting yn+1

as a function of yn rather than zn+1 as a function of zn: For
an optimized representation, the two intervals are normalized
within unit interval each, one wing within ] − 1, 0[ and the
other within ]0,+1[ [Fig. 6(c)].

The need for a two component Poincaré section can be
derived from a general approach characterizing attractors with
bounding tori [14,25]. Indeed, the Lorenz attractor [Fig. 6(a)]
is bounded by a genus-3 torus [Fig. 6(b)] as follows. The
central hole of this torus is associated with the rotation axis
which has a transverse stability of the saddle type in the
neighborhood of the attractor, the two other holes are each
shaped by the unstable manifold of one of the two symmetry-
related singular points which is of the focus type. According
to the structure of bounding tori [14], the former hole is of
the saddle type and is drawn as a square, and the latters are of
the focus type and are drawn as circle. It can be shown that the
Poincaré section of an attractor, bounded by a genus-g torus,
has (g − 1) components, when g > 2, drawn between the pe-
ripheral boundary and the boundary of one of the holes of a
focus type [14]. Running along the peripheral boundary, there
is one component each time there is a hole of the focus type
(after one hole of the saddle type, when g > 2). It may happen
that there are more than one component between a hole of
the focus type and the peripheral boundary (see examples in
Ref. [14]). Thus, a genus-3 torus requires a two-component
Poincaré section defined, for instance, as Pzmax with the y
variable or as

P± ≡ {(xn, yn) ∈ R2 | zn = R − 1, żn > 0, xn ≷ 0}. (29)

The first-return map is conveniently computed with a normal-
ized variable ρn obtained from variable xn (yn) projected in
the unit interval ] − 1; 0[ for P− and the unit interval ]0; +1[
for P+, the left boundary of each interval being associated
with the interior of each wing [22,26]. According to this map
[Fig. 6(c)], the branches are ordered as

0̄� 1̄� 0� 1,
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+
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FIG. 6. (b) Genus-3 torus bounding the Lorenz attractor (a):
(c) the first-return map to the two-component Poincaré section built
from the normalized variable ρn (see the main text), and (d) the
template describing the topology of the Lorenz attractor produced
by the Lorenz system (4). The periodic orbits (10̄1̄) and (10̄1̄0)
are drawn in the template. Parameter values: RL = 28, σL = 10, and
bL = 8

3 .

where 0̄� 1̄ means branch 0̄ is at the left of branch 1̄. Branch
0̄ (1̄) is mapped into 0 (1) under the rotation symmetry.

A chaotic attractor can be viewed as a branched manifold
is exhibited by Lorenz when he drew the surface associated
with the isopleths (see Fig. 3 in Ref. [1]). Branched manifolds
were then formally introduced by Williams and then devel-
oped by Rössler [27], Birman and Williams [28], Mindlin and
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Gilmore [29–31], and Tufillaro [32]. Chaotic attractors were
thus sketched as template made of splitting chart, strips which
are twisted and permuted, and joining charts. We showed that
the Lorenz attractor has two joining lines (one per component
of the Poincaré section) [26,33]. Between two joining lines,
there are one splitting chart, strips, and one joining chart. In
the template, there is one strip per branch of the first-return
map. If we adopt the convention that from the joining line J1

are issued the strips 0̄ and 1̄ and from the joining line J2 there
are strips 0 and 1, thus strips 0̄ and 1 (0 and 1̄) are joined at
the joining line J1 (J2). The template for the Lorenz attractor is
drawn in Fig. 6(d) [13] and can be described by the following
linker:

LL =

⎡
⎢⎢⎢⎣

0 0 0 0

0 +1 0 0

0 0 0 0

0 0 0 +1

∣∣∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎦, (30)

where on-diagonal element Lii is the local torsion of the ith
strip, and Li j is the permutations between the ith and the jth
strips [32,34].

For a genus-1 attractor, this Ns × Ns matrix is sufficient to
encode the way the strips are merged at the joining lines when
the standard insertion convention is adopted [32,35]: strips are
squeezed from the left to the right, and from the bottom to
the top [33]. This is a Ns × Ns matrix where Ns the number
of strips, equal to the number of branches of the first-return
map. When the attractor is characterized by a multicomponent
Poincaré section, the linker must have a companion, a joining
matrix describing how the different strips are merged at each
joining chart Ji. This is a Nj × Ns matrix where Nj is the num-
ber of joining charts. By considering the template depicted in
Fig. 6(d), the following is obtained:

Ji j = [1 · · 2|],
[· 2 1 ·|], (31)

where i is the label of the ith joining chart and j the label of
the jth branch. Thus, J10̄ = 1 and J11 = 2 mean that the strips
0̄ (bottom) and 1 (top) are squeezed at the first joining chart
J1. Similarly, strip 0 (bottom) and 1̄ (top) are squeezed at J2.
The template of Fig. 6(d) determine completely the topology
of the Lorenz attractor.

B. The Burke and Shaw attractor

As explained in Sec. II, there is another attractor which is
topologically inequivalent to the Lorenz attractor and often
observed in Lorenz-like systems. This is the Burke and Shaw
attractor [36] which was discovered in the system proposed
by Bill Burke and Robert Shaw [37] (see Table I). It is also
found in the Lorenz system for RBS = 278.56, σBS = 30, and
bBS = 1 [38]. A route from the Lorenz attractor to the Burke
and Shaw attractor in the Lorenz system can be obtained using
a single parameter μ as

R = RL (1 − μ) + RBS μ,

σ = σL (1 − μ) + σBS μ,

b = bL (1 − μ) + bBS μ. (32)

0 0.2 0.4 0.6 0.8 1

Birfurcation parameter μ

-40

-20

0

20

40

60

yn

FIG. 7. Bifurcation diagram between the Lorenz attractor (μ =
0) and the Burke and Shaw attractor (μ = 1) in the Lorenz system.

The corresponding bifurcation diagram is plotted in Fig. 7(a).
When μ > 1, it is seen that the route to the Burke and Shaw
attractor is as in the Burke and Shaw system, that is, there is a
period-doubling cascade [36].

When μ is decreased, two simultaneous period-doubling
cascades are observed, one being the symmetric of the other
under the action of the rotation symmetry (a single one is
plotted in Fig. 7). After an accumulation point for μ∞ ≈
1.068, the behavior becomes chaotic. Depending on the ini-
tial conditions, two coexisting symmetry-related attractors are
observed. This feature persists up to an attractor merging
crisis (μc ≈ 1.045) [36]. It corresponds to a boundary crisis
between the two asymmetric attractors which merge into a
symmetric one: there is therefore a sudden increase in the
size of the attractor. This crisis appears when each attractor
is characterized by a complete unimodal map, that is, when
all periodic orbits predicted by the symbolic dynamics are
actually realized within the attractor. Within this interval for
the μ values, the bifurcation diagram can be fully predicted
from the unimodal order [39,40].

The Burke and Shaw attractor [Fig. 8(a)], which is the
symmetric attractor observed after the merging attractor crisis,
is bounded by a genus-1 torus [Fig. 8(b)]. Consequently, the
Poincaré section has a single component. We adjusted the
R-parameter to have a first-return map made of four branches
[Fig. 8(c)] and associated with a complete symbolic dynamics.
It was shown that, when the symmetry is modded out, it
corresponds to a complete unimodal map, [36] ensuring a
certain kind of universality to this attractor. There are two
joining lines in this attractor which can justify the use of
a two-component Poincaré section [36]. Using the Poincaré
section Pzmax with the y variable, we obtained the first-return
map plotted in Fig. 8(c): The important difference with the
map computed for the Lorenz attractor is the lack of a branch
crossing the first bisecting line, a signature of this symmetric
genus-1 attractor. The two smooth unimodal maps are with
a minimum due to an odd global torsion in each wing of
the attractor. Indeed, the template for the Burke and Shaw
[Fig. 8(d)] can be constructed from the template of a double-
cover of the Rössler attractor with a global torsion of a π -twist
in each wing. Note that the strip 1 and 1̄ are identical to those
of the template for the Lorenz attractor. By merging these
two template [Figs. 6(d) and 8(d)] lead to a six-strip template
[Fig. 9] which describes most of the attractors produced by
Lorenz-like system. It contains the Lorenz attractor, the Burke
and Shaw attractor and all those which can be produced with
six strips in the bifurcation diagram plotted in Fig. 7.
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TABLE I. Governing equations and range of the rotation axis for which the transverse stability is of the saddle type; the structure of the
jerk function induced by the variable x is also reported. Systems are ranked by increasing complexity.

Jerk function

Ref. n Equations nsp Range X Y Z X 3 X 2Y X 2Z XY 2 Y 2

X
Y Z
X

Malasoma [17] 52

{ẋ = −ax + y
ẏ = xz
ż = 1 − x2

2 z > 0 • — • • — — — • •

Malasoma [17] 52

{ẋ = y
ẏ = −ay + xz
ż = 1 − x2

2 a > 0 • — • • — — — • •

Sprott B [48] 52

{ẋ = −x + ay
ẏ = xz
ż = 1 − xy

2 z > 1
a • — • • • — — • •

Sprott C [48] 52

{ẋ = −x + ay
ẏ = xz
ż = 1 − y2

2 z > 1
a • — • • • — • • •

Shimizu & Morioka [49] 62

{ẋ = y
ẏ = x − ay − xz
ż = −bz − x2

3 z < 1 • — • • — — — • •

Liu & Yang [50] 62

{ẋ = −ax + ay
ẏ = bx − xz
ż = −cz + xy

3 z < a
4 + b • • • • — — — • •

Kim & Chang [47] 62

{ẋ = −ax + ay
ẏ = by − xz
ż = −cz + x2

3 z < b • • • • — — — • •

Burke & Shaw [37] 62

{ẋ = −ax − ay
ẏ = −y − axz
ż = b + axy

2 z > 1
a • — • • • — — • •

Lü & Chen [51] 62

{ẋ = −ax + ay
ẏ = by − xz
ż = −cz + xy

3 z < 0 • • • • • — — • •

Lorenz [1] 72

{ẋ = −ax + ay
ẏ = bx − y − xz
ż = −cz + xy

3 z < R − 1 • • • • • — — • •

Wang [52] 72

{ẋ = −ax + ay
ẏ = −y − xz
ż = b − z + xy

3 z < −1 • • • • • — — • •

Vallis [6,53,54] 72

{ẋ = −ax + by
ẏ = −y + xz
ż = 1 − z − xy

3 z > a
b • • • • • — — • •

Chongxin et al. [55] 73

{ẋ = −ax + by
ẏ = bx − xz
ż = −cz + x2 + dy2

3 z < b • • • • • — — • •

Rikitake [4] 73

{ẋ = −ax + yz
ẏ = −bx − ay + xz
ż = 1 − xy

2 z ∈ R \ [λ−; λ+] • • • • • • • • •

λ± = b±
√

b2+4a2

2

The template shown in Fig. 9 is described by the linker

LgL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 +1 +1 0 0 0

0 +1 +2 0 0 0

0 0 0 0 0 0

0 0 0 0 +1 +1

0 0 0 0 +1 +2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (33)

with

Ji j = [1 · · · 3 2|],
[· 3 2 1 · ·|]. (34)

Definition 2. A Lorenz-like attractor is globally invariant
under a rotation symmetry and has at least four strips among
the six of the template described by the linker LgL.
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FIG. 8. (b) Genus-1 torus bounding the Burke and Shaw attractor
(a) produced by the Lorenz system (4): (c) the first-return map to the
one-component Poincaré section built from the normalized variable
ρn (see the main text), and (d) the template describing its topology.
The periodic orbits (10̄1̄) and (1̄012) are drawn in the template.
Parameter values: RBS = 278.56, σBS = 30, and bBS = 1.

C. The proto-Lorenz attractor

The Lorenz attractor can be viewed as the twofold cover
of the proto-Lorenz attractor, that is, of an attractor without
any residual symmetry. This was introduced by Miranda and
Stone [41]. It can be easily obtained by using the coordinate
transformation

ϒκ =

∣∣∣∣∣∣∣
u = Re(x + iy)κ ,

v = Im(x + iy)κ ,

w = z,

(35)

2
_

1
_

2

1

0

0
_

FIG. 9. Template for most of the Lorenz-like attractors produced
by Lorenz-like systems.

where

ϒ2 =

∣∣∣∣∣∣∣
u = x2 − y2,

v = 2xy,

w = z,

(36)

when κ = 2, thus producing an attractor without any symme-
try and bounded by a genus-1 torus [Fig. 10(a)]. It is called
the image attractor of the Lorenz attractor. A first-return map
to the Poincaré section

Pproto = {(un, vn) ∈ R2 | wn = R − 1, ẇn > 0} (37)

of the attractor produced by the proto-Lorenz system is the
Lorenz map [Fig. 10(b)]: according to the terminology used
in the taxonomy [24], this is a torn unimodal map. The topol-
ogy of the proto-Lorenz attractor is described by a template
with a single joining chart [Fig. 10(c)] and described by
the linker

LpL =
[

0 0

0 +1

∣∣∣∣
]
. (38)

This template is in fact a subtemplate of the template for the
Lorenz attractor [Fig. 6(d)].

The coordinate transformation ϒκ is used to modd out
an order-κ rotation symmetry Rz( 2π

κ
). When it is inserted,

υ−1
κ can be used to introduce such a symmetry, the z axis

being the rotation axis. Consequently, every attractor being
the κ-fold cover of the proto-Lorenz attractor is a Lorenz-like
attractor. Some examples are treated elsewhere [41–43]. We
will here limit ourselves to the case κ = 2. If the coordinate
transformation (35) is applied to the Burke and Shaw attractor,
then a smooth unimodal map is obtained (not shown). If it
is applied to the attractor produced by the Lorenz system
with the parameter values defined as in Eq. (32) and with
μ = 0.5, then a first-return map with more than two branches
is obtained [Fig. 11(b)].

As introduced by Letellier and Gilmore [13], the location
of the rotation axis with respect to the image attractor may
induce inequivalent topologies. There are two typical cases:
when the rotation axis is located at the critical point of the
first-return map or in the nonvisited domain at the center of
the attractor. The former leads to the Lorenz attractor and the
latter will be discussed in Sec. IV D [13]. Only these two cases
will be detailed here. Then, as suggested by Ghrist et al. [44],
global torsion can be added to obtain Lorenz-like templates:
this will be also briefly discussed.
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FIG. 10. Chaotic attractor (a) without any residual symmetry
produced by the proto-Lorenz system with its torn unimodal map
(b) and its template (c). Parameter values: R = 28, σ = 10, and
b = 8

3 .

D. A genus-1 Lorenz attractor

To obtain the Lorenz attractor, the rotation axis crosses the
attractor at a location which corresponds to the critical point
of the map [13]. When the proto-Lorenz attractor is shifted,
for instance, with the coordinate transformation U �→ u − 85,
the rotation axis is in the nonvisited domain in the center
of the proto-Lorenz attractor, and the two-fold cover is an
attractor bounded by a genus-1 torus [Fig. 12(a)] [43]. This
attractor has two joining charts resulting from the conjugation
of two torn unimodal maps since, in a twofold cover, the
dynamical units associated with the image is copied twice.
A two-component Poincaré section is therefore justified and a
four-branch first-return map is obtained [Fig. 12(c)]: This map
has a structure resembling to the structure of the first-return
map of the Burke and Shaw attractor [Fig. 8(d)], but the two
unimodal maps are with a maximum (and not a minimum)
since there is no odd global torsion in each wing. Moreover,
each critical point is a cusp, a signature of the tearing and not
a smooth extremum. Without any global torsion, the template
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20 30 40wn
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w
n+
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1

0

2

(c)

FIG. 11. Chaotic attractor (a) with its first-return map (b) pro-
duced by the proto-Lorenz system for μ = 0.5. See Eq. (32) for the
corresponding parameter values. The template (c) is drawn with the
first three strips.

[Fig. 12(c)] is simpler than the template for the Burke and
Shaw attractor [Fig. 8(d)], and can be described by the linker

LLg1 =

⎡
⎢⎢⎢⎣

0 0 0 0

0 +1 0 0

0 0 +1 +1

0 0 +1 +2

∣∣∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎦, (39)

with

Ji j = [· · 1 2|],
[1 2 · ·|]. (40)

As it is derived from the proto-Lorenz attractor by introducing
a rotation symmetry, this attractor can also be classified as a
Lorenz-like attractor. Unfortunately, as far as our knowledge
extends, this specific attractor has not been observed as being
produced by a Lorenz-like system. There is an infinite number
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FIG. 12. A genus-1 Lorenz-like attractor (a) obtained from the
twofold cover of the proto-Lorenz attractor whose rotation axis is
close to the saddle-focus point around which the trajectory circles.
(b) First-return map to a two-component Poincaré section. (c) Tem-
plate. Parameter value as in Fig. 10.

of ways for constructing κ-fold cover of the proto-Lorenz
attractor. The corresponding attractors are also Lorenz-like
attractors; however, we encourage the reader to refer to the
existing literature for further details [35,41,43].

E. The Moore-Spiegel attractor

There is an attractor which was first observed in a system
proposed by Moore and Spiegel [45] and whose template was
provided by Letellier [46]. The Moore-Spiegel system has an
inversion symmetry and, consequently, it is not a Lorenz-like
system. We therefore prefer to investigate this type of attractor
in the Lorenz-like system in which we found it, that is, in the
Kim and Chang system [47] (see Table I) whose complexity
n = 62 is simpler than those of the Lorenz system.

The attractor—that we will designate as the Moore-Spiegel
attractor—is potted in Fig. 13(a). It is bounded by a genus-3
torus as the Lorenz attractor (Fig. 6(b)] and, consequently, a
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FIG. 13. The Moore-Spiegel attractor (a) produced by the Kim
and Chang system. The two components of the Poincaré section are
displayed as red thick lines, in each of the two wings of the attractor.
The insert in panel (b) corresponding to the first-return map reveals a
third branch in each wing whose corresponding strips are not drawn
in the template (c). Parameter values: a = 30, b = 15.89, and c = 11.

two-component Poincaré section defined, for instance, as

PKC ≡ {(yn, zn) ∈ R2 | xn = ±
√

bc, ẋn ≶ 0, zn > 26.5}
(41)

is required. The z variable is thus normalized within the two
unit intervals ] − 1, 0[ and ]0,1[. For the retained parameter
values, there are six branches in the first-return map as those
associated with the generalized template [Fig. 9]. A direct
template is drawn in the x-y plane with only the four most
developed strips labeled by 0̄, 1̄, 0, and 1 [Fig. 13(c)]. There
is one positive global torsion in each wing. In the central part
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FIG. 14. Ghrist’s Lorenz-like template (a) and its symmetrized
versions for k even (b) and k odd (c).

(within the dotted square), put the East and West strips along
the rotation axis (perpendicular to the x-y plane) and leave the
North and South strips in the x-y plane; then, rotate the central
part by −π . Only the East and West strips gained a negative
π twist which can be moved to moved toward the positive
π -twist up to their cancellation through a Reidemeister move
I. It then remains a template which is topologically equivalent
to the template drawn for the Lorenz attractor [Fig. 6(d)].
The Moore-Spiegel attractor is therefore topologically equiv-
alent to the Lorenz attractor. This equivalence leads us to
the conclusion that the Moore-Spiegel attractor is obviously
a Lorenz-like attractor.

F. Ghrist’s Lorenz-like template

In a study on universal template—a template which con-
tains all the types of knots—Ghrist introduced the concept of
Lorenz-like template as drawn in Fig. 14(a) [44]. Since we
only considered symmetric attractors, we retained the sym-
metrized Lorenz-like template as drawn in Figs. 14(b) and
14(c). Note the dependence on the parity of the number k of
π twists. The corresponding linker is thus

LLg1 =

⎡
⎢⎢⎢⎣

k k 0 0

k k + 1 0 0

0 0 k k

0 0 k k + 1

∣∣∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎦, (42)

with

Ji j = [1 · · 2|],
[· 2 1 ·|] (43)

for k even and with

Ji j = [· 1 · 2|],
[2 · 1 ·|] (44)

with k odd. In this work, the global torsion can be either
positive or negative since we are not concerned with universal
template. To the best of our knowledge, none of the known
chaotic systems produces such an attractor with k �= 1.

Through a simple generalization of the Ghrist Lorenz-like
template to include six strips, the following linker is obtained:

LLl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k k k + 1 0 0 0

k k + 1 k + 1 0 0 0

k k + 1 k + 2 0 0 0

0 0 0 k k k + 1

0 0 0 k k + 1 k + 1

0 0 0 k k + 1 k + 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (45)

with

Ji j = [· 3 2 1 · ·|],
[1 · · · 3 2|] (46)

for k even and with

Ji j = [· 2 1 3 · ·|],
[3 · · · 2 1|] (47)

with k odd. The Lorenz attractor corresponds to k = 0 without
the strips k + 2 and k + 2, and the Burke and Shaw attractor
to k = 0 without the strips k and k.

V. LORENZ-LIKE SYSTEMS

In this section, several well-known Lorenz-like systems are
investigated. All of them fulfill the definition 1: the rotation
axis is systematically associated with the z axis. The systems
are reported in Table I. The jerk function induced by the
variable x of each of them is written in the form

Fx = K0 + K1 X + K2 Y + K3 Z + K4 X 2 + K5 XY + K6 XZ

+ K7 Y 2 + K8 Y Z + K9 Z2 + K10 X 3 + K11 X 2Y

+ K12 X 2Z + K13 XY 2 + K23
Y 2

X
+ K24

Y Z

X
. (48)

To the best of our knowledge, none of the known systems
include the monomial α39z2.

The Lorenz system, the Wang system, and the Vallis sys-
tems have jerk functions induced by the variable x which the
same structure. Note that the Vallis system is equivalent to
the system obtained for describing a water wheel [6,54]. The
coefficients βi j of the jerk function for the Wang system can
be expressed as a function of the coefficients αi j of the jerk

044209-12



LORENZ-LIKE SYSTEMS AND LORENZ-LIKE … PHYSICAL REVIEW E 108, 044209 (2023)

function of the Lorenz system as

β11 = α11,

β12 = −α12 α21 α33

β26 β30
,

β22 = α22,

β26 = α26,

β30

β33 = α33,

β35 = α26 α35

β26
,

(49)

where β30 is a free parameter. There is therefore a diffeomor-
phism between the Lorenz and the Wang systems when b = 1;
the Wang system is therefore a system whose parameter space
is a restriction of the parameter space of the Lorenz system.
Nevertheless, it can been shown that for any triplet of param-
eter values (R, σ, b) the Lorenz system can be rewritten as

ẋ = −σ

b
x + y,

ẏ = Rσ

b2
x − 1

b
y − xz,

ż = −z + xy,

(50)

that is, the Lorenz system can be reduced to a two-parameter
system. This means also that the Wang system can produce
every chaotic attractor produced by the Lorenz system.

The jerk equivalence was not found between the Vallis and
the Lorenz systems, but it is possible to apply the coordinate
transformation

� =
∣∣∣∣∣∣
x �→ x,
y �→ y,
z �→ z − α21

α26
,

(51)

with αis being those of the Lorenz system (4) to the Lorenz
system to obtain

ẋ = α11 x + α12 y,

ẏ = α22 y + α26 xz,

ż = α31α33

α26
+ α33 z + α35 xy,

(52)

which is thus rewritten in the form of the Vallis system. When
the coefficients of the Lorenz system (4) are set to

α11 = −a α12 = b,
α21 = 1 α22 = −1 α26 = 1,

α33 = −1 α35 = −1,

(53)

the Vallis system is derived. This establishes the diffeomor-
phic equivalence between the Lorenz and Vallis systems under
�. As a result, the Lorenz, Wang, and Vallis systems are all
considered to be diffeomorphically equivalent.

The two minimal systems proposed by Malasoma are dif-
feomorphically equivalent (y �→ y − bx

a ) [17]. The Sprott B
system is diffeomorphically equivalent to a system later pro-
posed [58]. Among the six-monomials systems, the Lü and
Chen system is the sole to produce a Lorenz attractor (a = 36,
b = 3, and c = 15) but no diffeomorphism was found between

the Lorenz system and the Lü and Chen systems. Neverthe-
less, they can be combined with a single parameter—in a
similar way as we did for the Lorenz attractor and the Burke
and Shaw attractor with Eq. (32)—to switch from the Lorenz
system to the Lü-Chen systems with a single parameter [59].
The Shimizu and Morioka system has the same algebraic
structure as the Rucklidge system [60].

The Gissinger system (see Table II) has an algebraic
complexity n = 73 (seven monomials with three nonlinear
ones) and is equivalent to the system investigated by Lü,
Chen, and Cheng [19], mostly for c = 0. With this null c
coefficient, the symmetry is no longer a rotation symmetry
but a V4 symmetry [61] and therefore the system is not a
Lorenz-like system according to our definition. With c =
0, this system produces a Burke and Shaw attractor (see
Fig. 9(b) in Ref. [61]). With c �= 0, the V4 symmetry is
broken and the system is equivariant under a rotation sym-
metry Rz(π ) and is therefore a Lorenz-like system. This is
further confirmed by the rotation axis that has a transverse
stability of the saddle type for z ∈ [− a+b

2 ; a+b
2 ], which, ac-

cording to our definition, is a characteristic of a Lorenz-like
system.

After a quick search, we found that the system produces a
Burke and Shaw attractor (Fig. 15) but not its symmetric form.
Indeed, the constant monomial c in the third equation breaks
the possibility to find the companion attractor commonly
observed in Lorenz-like systems, leading to the symmetric at-
tractor shown in Fig. 15(a). Here, before the attractor merging
crisis, the two symmetry-related attractor are not close of each
other along a revolution but are located on either side of the
singular point x0 = [0 0 −√

ab]T. Moreover, the merging at-
tractor crisis occurs through a homoclinic bifurcation, leading
to a very different attractor than the one observed in the Burke
and Shaw system, or in the Lorenz system. Most of the attrac-
tors produced by the Gissinger system have the structure of the
attractor plotted in Fig. 15(b), clearly more complex than the
attractors commonly produced by Lorenz-like systems. The
presence of the three nonlinearities combined with four other
monomials unlocks the dynamics to these complex dynamics
and the simple attractors are only observed for small domains
of the parameter space. This system is therefore a Lorenz-like
system which does not produce Lorenz-like attractor, stricto
sensu, since they are only characterized by the sub-template
drawn in Fig. 15(c).

Finally, it was shown that there are 17 different “ansatz”
systems leading to the same jerk function induced by the
variable x of the Lorenz system [10]. Among these 17 ansatz
systems, some of them provide only the correct structure for
the jerk function, but their coefficients cannot be expressed
as a function of those from the Lorenz system; consequently,
there is no proof for a diffeomorphism between these ansatz
systems and the Lorenz system [16]. In this discussion, we
will only consider the ansatz systems that exhibit diffeomor-
phic equivalence to the Lorenz system (4). This means that
we will focus on systems where the relationships between the
coefficients of the Lorenz system and the ansatz system can
be expressed. Systems that are already known and equivalent
to others will be excluded from the discussion. For instance,
the ansatz system A11 reported in Table 1 of Ref. [10] is the
Vallis system discussed above. It is thus possible to add seven

044209-13



LETELLIER, MENDES, AND MALASOMA PHYSICAL REVIEW E 108, 044209 (2023)

TABLE II. Lorenz-like systems with a broken V4 symmetry.

Lü, Chen & Cheng [19] 63

{ẋ = ab
a+b x − yz

ẏ = −ay + xz
ż = −bz + xy

1 z ∈ [−a
√

b
a+b ; a

√
b

a+b ]

Gissinger [56] 73

{ẋ = ax − yz
ẏ = −by + xz
ż = c − z + xy

5 z ∈ [− a+b
2 ; a+b

2 ]

Leipnik & Newton [57] 83

{ẋ = −ax + y + byz
ẏ = −x − ay + bxz
ż = cz − bxy

5 z ∈ R \ [−
√

a2+1
a+b ;

√
a2+1

a+b ]

Lorenz-like systems (Table III) which are diffeomorphically
equivalent to the Lorenz system. All the systems with an
algebraic complexity n = 73 only differ by their linear parts.
Indeed, all of them have the three nonlinearities as follows: the
monomial xy in the second equation and the monomials x2 and
xy in the third equation. The ansatz system A10 and A11 only
differ from the constraints between the coefficients: strictly
speaking, they should be considered as the same system. The
ansatz A14 has the same algebraic structure as the Lorenz
system but with different constraints on the coefficients: this
is not exactly a new system. In summary, there are five ad-
ditional Lorenz-like systems that can be included alongside
those listed in Table I.

VI. A NON-LORENZ-LIKE SYSTEM

There is a cubic system which was introduced by Arnéodo,
Coullet, and Tresser to describe a different route to a Lorenz
attractor [62]. The system reads

ẋ = ax − ay,

ẏ = −4ay + xz + bx3,

ż = −acz + xy + dz2. (54)

With eight monomials, it exceeds the maximum limit set by
our definition of Lorenz-like systems. The jerk function of the

TABLE III. Governing equations of some ansatz systems which are diffeomorphically equivalent to the Lorenz system with the same jerk
function Fx . The range of the rotation axis for which the transverse stability is of the saddle type is reported when the free parameters are set
to 1.

Equations Range

A7

{ẋ = α12 y
ẏ = −(σ + 1) y + α26 xz
ż = bσ (R−1)

α12 α26
− bz − σ

α12 α26
x2 − 1

α26
xy

z > − (σ+1)2

4

A8

{ẋ = α12 y
ẏ = σ (R−1)

α12
x − (σ + 1) y + α26 xz

ż = −bz − σ

α12 α26
x2 − 1

α26
xy

z > −σR + 3
4 − (σ+1)2

4

A9

{ẋ = −(σ + 1) x + α12 y
ẏ = α26 xz
ż = bσ (R−1)

α12 α26
− bz + 1

α12 α26
x2 − 1

α26
xy

z > − (σ+1)2

4

A10

{ẋ = λ± x − λ±
α26α34

y
ẏ = λ± y + α26 xz
ż = −bz + α34 x2 − 1

α26
xy

A11

{ẋ = −σ x + bRσ

α26α30
y

ẏ = −y + α26 xz
ż = −bz + α34 x2 − 1

α26
xy

A12

{ẋ = −(σ + 1) x + α12 y
ẏ = σ (R−1)

α12
x + α26 xz

ż = −bz + 1
α12α26

x2 − 1
α26

xy

A14

{ẋ = −σ x + σR
α21

y
ẏ = α21 x − y − 1

α35
xz

ż = −bz + α35 xy

λ± = −(σ+1)±
√

4σρ+(σ−1)2

2
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FIG. 15. Burke and Shaw attractor (a) before (a = b = 0.2806)
and (b) after (a = b = 0.2807) the merging attractor crisis produced
by the Gissinger system. The template (c) for the attractor before
the merging attractor crisis is a sub-template of the template for the
Burke and Shaw attractor [Fig. 8(d)]. Other parameter value: c = 0.1.

ACT system (54) is

Fx = κ1X + κ2Y + κ3Z + κ4X 3 + κ5X 2Y + κ6X 2Z + κ7X 5

+ κ8
Y 2

X
+ κ9

Y Z

X
+ κ10

Z2

X
, (55)

which is a function more complex (higher degree, more nu-
merous monomials) than the jerk function observed for the
Lorenz-like systems. Such complexity enables the genera-
tion of three Lorenz-like attractors: the Lorenz attractor itself
[Fig. 16(a)], the Burke and Shaw attractor [Fig. 16(b)], and
the Moore-Spiegel attractor [Fig. 16(c)].
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FIG. 16. Lorenz-like attractors produced by the ACT system.
(a) Lorenz: b = 0.000517, and c = 1.7. (b) Burke and Shaw: b =
0.0001, and c = 1.425. (c) Moore and Spiegel: b = 0.00517, and
c = 1.7. Other parameter values: a = 1.8 and d = −0.02.

VII. CONCLUSION

The exploration of systems exhibiting algebraic structures
resembling the Lorenz system has been a prominent area of
research since its emergence in the 1970s. These systems have
presented intriguing outcomes, with some yielding attractors
identical to the Lorenz system, while others showcasing dis-
tinct attractor dynamics. Surprisingly, certain systems that
deviate significantly from the Lorenz system have produced
attractors reminiscent of the iconic Lorenz attractor.

To provide a systematic approach to these phenomena,
a definition was proposed for Lorenz-like systems. These
systems are characterized by sets of ordinary differential
equations that share a similar algebraic structure with the
original Lorenz equations. Three specific properties were con-
sidered: (i) no more than seven monomials, (ii) quadratic
nonlinearities, and (iii) a rotation symmetry of π . Thirteen
chaotic systems from the literature and five additional systems
resulting from an ansatz library were listed.

The systems discussed in this context all generate chaotic
attractors that possess global invariance under the rotation
symmetry and exhibit certain topological properties. These
properties can often be synthesized using a six-strip tem-
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plate. To designate these attractors, we propose the term
“Lorenz-like attractors.” Among these attractors, there are
three commonly represented types: the Lorenz attractor, the
Burke and Shaw attractor, and the Moore-Spiegel attractor.
Each of these reference attractors can be seen as a twofold
cover of an attractor characterized by a unimodal map, which
can have either a differentiable extremum or a cusp.

These three types of attractors serve as a basis, with other
attractors often interpreted as combinations of two reference
attractors. It is important to note that the first-return map of
these attractors should be computed using a two-component
Poincaré section due to the presence of two joining lines in
the attractor. Furthermore, the computation should involve
an equivariant variable, meaning a variable that is mapped

to its opposite under the rotation symmetry. To enhance the
readability of the map, normalizing this variable onto two unit
intervals is recommended.

We strongly encourage dynamicists to verify these proper-
ties before classifying an attractor as a Lorenz-like attractor.

The data used in this work were generated by basic code
that integrates the systems under study using a Runge-Kutta
integration scheme.
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