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Interaction-induced directed transport in quantum chaotic subsystems
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Quantum directed transport can be realized in noninteracting, deterministic, chaotic systems by appropriately
breaking the spatiotemporal symmetries in the potential. In this work, the focus is on the class of interacting
two-body quantum systems whose classical limit is chaotic. It is shown that one subsystem effectively acts as
a source of “noise” to the other leading to intrinsic temporal symmetry breaking. Then, the quantum directed
currents, even if prohibited by symmetries in the composite system, can be realized in the subsystems. This
current is of quantum origin and does not arise from semiclassical effects. This protocol provides a minimal
framework—broken spatial symmetry in the potential and presence of interactions—for realizing directed
transport in interacting chaotic systems. It is also shown that the magnitude of directed current undergoes
multiple current reversals upon varying the interaction strength and this allows for controlling the currents. It
is explicitly demonstrated in the two-body interacting kicked rotor model. The interaction-induced mechanism
for subsystem directed currents would be applicable to other interacting quantum systems as well.
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I. INTRODUCTION

Basic physics teaches us that a particle can display di-
rected motion only if it is acted upon by a net force F �= 0.
Ratchet effect is a counterintuitive phenomenon that arises
as an exception to this general rule [1–4]. A diffusing parti-
cle, maintained away from equilibrium, can exhibit directed
motion or ratchet effect even if the suitably averaged net
force acting on it is zero, provided certain spatiotemporal
symmetries are broken. This amounts to extracting useful
work out of thermal fluctuations in nonequilibrium systems
and is not prohibited by the second law of thermodynamics.
Apart from clarifying the foundational principles of ther-
modynamics [2], ratchet mechanisms drive many biological
processes—the intracelluar transport of molecules along mi-
crotubules and movement of bacteria in a suspension fluid
[5]. Such natural processes have inspired a plethora of ratchet
models and experiments [3,6–17] in all the areas of physical
sciences. This includes a general class of dissipative ratchets
[3,4,18,19], electron ratchets [20,21], and recent applications
for enhancing the efficiency of photovoltaic cells [22–24].

These developments have largely focused on exploiting
thermal noise for extracting useful work. However, noise-free
ratchets can also be created using Hamiltonian systems if
they display chaotic dynamics. In these models, the inher-
ent classical chaos formally plays the role of thermal noise
within the framework of deterministic dynamics. This has
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led to explorations of classical and quantum ratchets using
chaotic Hamiltonian models such as the kicked rotor. In
general, two distinct types of Hamiltonian models can gener-
ate directed currents. One approach requires bounded classical
phase space and a coexistence of regular and chaotic dynamics
[25–28]. These are subject to a semiclassical sum rule and
directed momentum current arises due to the net difference be-
tween the currents carried by regular and chaotic phase space
regions. In the h̄ → 0 limit, this carries over to the quantum
regime as well. The second approach accommodates nearly
complete chaotic phase space and the external forcing must be
suitably manipulated to break the temporal symmetry [29,30].
It supports saturated quantum ratchet current if dynamical
localization occurs, with the quantum kicked rotor being a
prime example. Another variant is the ratchet accelerators
in which directed currents increase linearly with time under
conditions of quantum resonance [31–33].

In the past two decades, the classical and quantum dy-
namics of single particle chaotic Hamiltonian ratchets were
extensively studied [25,28,31,32,34]. In contrast, despite the
exploding interest in interacting quantum many-body sys-
tems, ratchet dynamics in them largely remains unexplored
[35,36]. Theoretical proposals based on periodically kicking
the condensates indicate that the mean-field interactions can
induce directed current [37,38]. Quantum directed current
was also experimentally observed in a driven Bose-Einstein
condensate in a toroidal trap when spatiotemporal symmetries
were broken [39]. Recently, it was shown that quantum-
classical correspondence in the ratchet regime differs from
the generically expected delocalization of states and maximal
entanglement applicable for a many-body quantum chaotic
system [40,41].

In all these examples, the interacting atoms form a con-
densate represented by a macroscopic quantum state within
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mean-field approximation. This implies that the subsystems—
the individual atomic species—that constitute the condensate
cannot be probed. Further, the time evolution of the con-
densate is governed by a nonlinear Schrödinger equation.
Ironically, within the scope of linear quantum dynamics, the
precise role of interactions and quantum chaos in generat-
ing directed currents remains unknown. In particular, it is
not known if interactions generically enhance or suppress di-
rected currents. Unlike condensates, interacting many-particle
systems governed by a linear Schrödinger equation provide
access to constituent subsystem dynamics. Then, a physically
relevant question is the possibility to generate directed cur-
rents in the subsystems. In this work, we show that, in a
classically chaotic interacting system, the interactions intrin-
sically break the temporal symmetry and generate directed
quantum currents in the subsystems, even though the compos-
ite system might prohibit directed currents.

Another motivation arises from the fact that it is not easy
to realize directed currents in a chaotic system, and even more
difficult to sustain the currents. All the earlier realizations of
directed currents in chaotic systems are either in a regime
of mixed phase space [25–28] or require manipulation of an
external kick sequence such as more than one kick in a cycle
[29,30]. The latter approach is equivalent to changing the
system itself. In contrast to these approaches, the interacting
model presented in this work displays sustained directed cur-
rents without relying on mixed phase space or manipulated
kick sequences. The ability to generate directed currents in a
chaotic system without distorting the system of interest by ap-
plying additional fields is a question of considerable interest.
Thus, in the spirit of this question, we emphasize that inter-
actions provide a natural mechanism to realize and sustain
directed currents in chaotic subsystems without the require-
ment of additional external fields to break temporal symmetry.

Hence we consider a simple prototype of a chaotic system
composed of two interacting particles (regarded as subsys-
tems), whose quantum dynamics is governed by a linear
Schrödinger equation. Then, one of the subsystems plays the
role of “environment” to the other [42]. Thus an interacting
system effectively includes its own “environment,” implying
that violation of spatial symmetries alone generates directed
currents. This is because, as we analytically show below, the
subsystem temporal symmetries are intrinsically broken by
the interactions. There had been earlier works on convex bil-
liards of constant width which display unidirectional motion
due to peculiar interaction with the walls of billiard potential.
Unlike our interacting model studied in this paper, this class
of billiards (and also certain classes of reflectionless quan-
tum graphs) provides examples of single-particle dynamics
in which time-reversal symmetry is respected in the classical
sense but is broken by quantum tunneling [43–46]. These are
not interacting many-particle systems. For this class of sys-
tems, due to dynamically induced breaking of time-reversal
symmetry in the quantum regime, the correspondence with
random matrix level spacing distributions differ from what is
expected based on the presence or absence of time-reversal
symmetry.

Remarkably, the interacting models provide another
paradigm for generating directed currents in quantum sys-
tems whose classical counterparts display complete chaos. It

FIG. 1. [(a)–(c)] Image plot of the effective potential Veff =
K1 cos q1 + K2 cos q2 + εVint (q1, q2) for ε = 5 and (a) Vint = 0,
(b) Vint = cos(q1 − q2), and (c) Vint = sin(q1 − q2). Note that
(c) lacks spatial symmetry. Parameters for CKR are K1 = 1.5 and
K2 = 0.8.

discards the requirement of mixed classical phase space or
manipulation of kick sequences or parameter sets for quantum
resonances. To emphasize the generic nature, we demon-
strate ratchet currents in two distinct interacting potentials;
one obeys the assumptions of the Kolmogorov-Arnold-Moser
(KAM) theorem [47], while the other violates one of the
assumptions [48–51].

II. COUPLED KICKED ROTOR

We propose an interacting model as a natural candidate for
realizing directed quantum currents. A general two-particle
Hamiltonian of the form

H = H1(q1, p1, t ) + H2(q2, p2, t ) + ε Vint (q1, q2) f (t ) (1)

is considered, where Hi(qi, pi, t ) with i = 1, 2 represents
a single-particle periodically kicked subsystem labeled 1
and 2 and f (t ) = ∑∞

n=−∞ δ(t − n). The interaction potential
Vint (q1, q2) of strength ε is such that, if ε = 0, the system
reduces to two independent noninteracting systems. In this
paper, we show that, if Vint (q1, q2) is chosen to break the
spatial symmetry, then a directed quantum current emerges as
a result of interactions without requiring an explicit temporal
symmetry breaking. This is demonstrated in a chaotic cou-
pled kicked rotor (CKR) model defined in a cylindrical phase
space. The corresponding subsystem Hamiltonians, labeled by
i = 1 and 2, are given by

Hi(qi, pi, t ) = p2
i /2 + Ki cos qi

∑

n

δ(t − n). (2)

Kicked rotor is a well-studied model of Hamiltonian chaos
[52–54] and corresponds to a particle receiving periodic kicks.
In the quantum regime, a generic feature is the emergence
of dynamical localization that suppresses classical diffusive
dynamics for kick strengths K � 1. This is analogous to the
Anderson localization observed in disordered lattices [55]. In
this work, we fix the kick strengths of CKR as K1 = 1.5 and
K2 = 0.8. To remain in the chaotic regime, the interaction
strength is chosen to be ε = 5 since as ε → 0 semiclassical
effects arising in the near-integrable regime, rather than purely
quantum effects, might drive the directed currents. By taking
together kicking terms and interaction, the effective potential
of the CKR turns out to be

Veff = K1 cos q1 + K2 cos q2 + ε Vint (q1, q2). (3)

Figures 1(a), 1(b) and 1(c) display the image plot of
the effective potential Veff of Eq. (3) corresponding to the
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Hamiltonian in Eq. (1). For the kicking potentials in Eq. (2),
three distinct cases arise: (i) no interactions, ε = 0, and spa-
tial symmetry preserved [Fig. 1(a)], (ii) cosine interaction,
ε �= 0 and Vint (q1, q2) = cos(q1 − q2), and spatial symme-
try maintained [Fig. 1(b)], and (iii) sine interaction, ε �= 0
and Vint (q1, q2) = sin(q1 − q2), and spatial symmetry broken
[Fig. 1(c)]. Thus we notice that, depending on the form of
interaction, the spatial symmetry of the effective potential can
be broken.

III. CLASSICAL DYNAMICS

The classical dynamics of CKR in Eq. (1) can be reduced
to a stroboscopic map on a cylinder. The stroboscopic map is
generated using the Hamilton equations of motion and for the
CKR it is expressed as

pn+1
1 = pn

1 + K1 sin
(
qn

1

) − ε
∂Vint (q1, q2)

∂q1

∣∣∣∣
qn

1,q
n
2

,

pn+1
2 = pn

2 + K2 sin
(
qn

2

) − ε
∂Vint (q1, q2)

∂q2

∣∣∣∣
qn

1,q
n
2

,

qn+1
1 = (

qn
1 + pn+1

1

)
mod 2π,

qn+1
2 = (

qn
2 + pn+1

2

)
mod 2π, (4)

where qn
i (pn

i ) represents the position (momentum) of the ith
rotor at discrete time n with i = 1, 2. For sufficiently large
kick strengths, the classical dynamics of CKR is strongly
chaotic [54,56]. Further, chaos dominates even for small kick
strengths if ε � 1 [57]. In this regime, the classical mean
energy of either subsystem displays diffusive growth, i.e.,
〈E〉 ∼ Dcln, where Dcl is the classical diffusion coefficient.

The object of interest is the classical mean current in sub-
system 1 denoted by 〈p1〉cl, where 〈.〉 represents averaging
over initial conditions. To obtain 〈p1〉cl, first let us consider the
specific case of cosine interaction Vint (q1, q2) = cos(q1 − q2)
in Eq. (4). Then, starting from the equation for pn+1

1 [in
Eq. (4)] and by iterating over n from 0 to N − 1, it can be
rewritten in terms of initial conditions at n = 0 as

N−1∑

n=0

pn+1
1 − pn

1 = pn+1
1 − p0

1

= K1

N−1∑

n=0

sin qn
1 − ε

N−1∑

n=0

sin
(
qn

1 − qn
2

)
. (5)

By dividing throughout by N and taking the limit N → ∞,
this reduces to

〈p1〉 = K1〈sin q1〉 − ε〈sin q1 cos q2〉 + ε〈cos q1 sin q2〉. (6)

Under conditions of chaotic dynamics and in the absence
of terms that could break time-reversal symmetry in the
equation of motion, each of the averages on the right hand
side vanishes and hence we obtain that 〈p1〉 = 0. By the
same argument, classical mean momentum vanishes even for
Vint (q1, q2) = sin(q1 − q2).

Figure 2 shows the classical mean current 〈p1〉cl simulated
using Eq. (4). This current fluctuates about 〈p1〉cl = 0 and
indicates the absence of the net classical current for both the
interacting and noninteracting cases. The magnitude of these

FIG. 2. Absence of averaged classical current 〈p1〉cl is shown for
CKR and for three different interaction potentials with ε = 5: (i)
noninteracting (Vint = 0) (black cure), (ii) Vint = cos(q1 − q2) (red),
and (iii) Vint = sin(q1 − q2) (blue). The averaging is done over 106

initial samples taken from an interval qi ∈ [0, 2π ] and pi = 0. Other
parameters are K1 = 1.5 and K2 = 0.8.

fluctuations about 〈p1〉cl = 0 can be reduced by increasing
the number of initial conditions used to estimate the aver-
age classical current. In Fig. 2, though it might appear that
〈p1〉cl �= 0, due to the frequent reversals of current direction
it cannot be regarded as a sustained directed current in one
particular direction. The absence of such a sustained net clas-
sical current is due to the presence of near-complete chaos in
the system and the absence of an explicit temporal symmetry
breaking term in the effective potential, Veff . Thus, in a classi-
cally chaotic interacting system, without a temporal symmetry
breaking, a sustained net directed current is not generated. As
we show in the rest of this paper, notwithstanding the absence
of a classical directed current, it is possible to realize sustained
directed currents in the quantum regime.

IV. DIRECTED QUANTUM TRANSPORT

Quantum dynamics of the CKR in Eq. (1) can be con-
veniently generated by the unitary period-1 time-evolution
operator U = (U1 ⊗ U2)Uint, where Ui = e−iHi/h̄s with i =
1, 2 represents the evolution operator for subsystems 1 and

2, respectively, while Uint = e−iε Vint
h̄s arises from the interac-

tion and h̄s is the scaled Planck constant which is set to 1
throughout this paper. With kicked rotor in Eq. (2) as sub-
systems, the evolution operator can be decomposed as Ui =
U free

i (pi )U kick
i , with i = 1, 2 labeling the respective subsys-

tems. In this, U free
i (pi ) and U kick

i correspond, respectively,
to free propogation part and kicking part. In numerical sim-
ulations, an arbitrary initial state is evolved using the split
operator technique, which is exact in this case due to time de-
pendence in the form of a delta function term. This technique
requires applying one fast Fourier transform and its inverse in
every iteration to transform from position to momentum rep-
resentation and back [58]. In Eq. (2) due to spatial periodicity
of the potential, momentum pi takes values pi = (ni + βi ),
with ni ∈ Z and βi being the conserved quasimomentum for
subsystems labeled i = 1, 2. The operator U free

i is the free
evolution operator, while U kick

i corresponds to the kicking
part. The dynamics at later time is generated by operating

044208-3



PAUL, KANNAN, AND SANTHANAM PHYSICAL REVIEW E 108, 044208 (2023)

FIG. 3. (a) Mean current 〈p1〉 in subsystem 1 for CKR with Vint =
0 (black line), Vint = cos(q1 − q2) (red), and Vint = sin(q1 − q2)
(blue). (b) Plot shows current 〈p〉 in composite CKR as a function of
time. These numerical results are averaged over 200 quasimomenta
β chosen randomly in the interval [−0.1, 0.1]. (c) Time evolving
momentum distribution f (p1) (scaled by its peak value) is shown for
Vint = sin(q1 − q2). Vertical blue line at p1 = 0 is a guide to the eye.
Parameters for CKR are K1 = 1.5, K2 = 0.8, ε = 5, and subsystem
basis size, N = 211.

U on an initial state |ψ (0)〉 to get the time evolved state
|ψ (t )〉 = U t |ψ (0)〉.

In the following, the initial state is chosen to be a direct-
product state |ψ (0)〉 = |φ1(0)〉 ⊗ |φ2(0)〉, where |φi(0)〉 =
1/

√
2π (i = 1, 2) is a zero momentum state. We focus on the

generation of mean current 〈p1〉 in subsystem 1 evaluated as
〈p1〉 = 〈ψ (n)|p1|ψ (n)〉. The mean current in the composite
system is denoted by 〈p〉 = 〈p1 + p2〉.

For the three distinct interaction potentials shown in Fig. 1,
Fig. 3(a) displays the respective 〈p1〉. Surprisingly, even in the
absence of explicit temporal symmetry breaking in the system,
subsystem directed current, 〈p1〉 �= 0, emerges in the case of
sine interactions that breaks spatial symmetry while, for the
other interaction potentials with spatial symmetry preserved,
directed current is absent, 〈p1〉 = 0. The directed current in
the composite system 〈p〉 = 〈p1 + p2〉 also vanishes with the
identical symmetry-breaking sine interactions as shown in
Fig. 3(b). The absence of mean current 〈p〉 can be attributed
to the lack of temporal symmetry breaking in the composite

system. Thus Figs. 3(a) and 3(b) indicate that subsystem di-
rected currents can be intrinsically engineered—even in the
absence of directed currents in the composite system—by
appropriate choice of interaction potential without requiring
explicit temporal symmetry breaking.

The time evolving subsystem momentum distribution
f (p1) for Vint (q1, q2) = sin(q1 − q2) is shown in Fig. 3(c).
The quantity f (p1) is the diagonal elements of the reduced
density matrix of the subsystem 1. The distributions lack
symmetry about any arbitrary reference value. The asymmetry
freezes quickly leading to a saturated directed current seen in
Fig. 3(a). The sign of the generated current—negative in these
cases in Fig. 3(a)—depends on the choice of parameters.

V. BROKEN TIME-REVERSAL SYMMETRY

A natural question is about the mechanism that generates
such subsystem directed quantum current even if prohibited
by symmetries in the corresponding composite system. As we
demonstrate below, in the chaotic limit, one subsystem acts
as a source of “noisy environment” to the other, leading to
temporal symmetry breaking at subsystem level but not in
the composite system. This can be seen as follows. By using
trigonometric identity to expand Vint (q1, q2) = sin(q1 − q2)
and rearranging terms, the effective potential becomes

Veff = cos q1(K1 − ε sin q2) + cos q2(K2 + ε sin q1). (7)

By isolating the terms within the brackets, an effective kicking
strength for the ith subsystem can be identified as

Keff
i = Ki + (i − j)ε sin q j, j = 1, 2, i �= j, (8)

indicating that subsystem i receives inputs from subsystem
j through ε sin q j (and vice versa). The numerical simula-
tions in Fig. 4(a) show that, if the subsystem is chaotic, then
κn = 〈ψ (n)|ε sin q j |ψ (n)〉 is effectively a “noisy” process.
In particular, its autocorrelation function is Cm = 〈κnκn+m〉 ∼
A δ(m) (A is a constant), representing an uncorrelated pro-
cess [see inset in Fig. 4(a)]. Hence, due to interactions, one
subsystem is driven by the noisy dynamics of the other. This
effectively breaks the temporal symmetry in the subsystems.
The role of chaos is to provide a source of “uncorrelated
noise” to the other subsystem. In the absence of chaos, it is not
clear if the terms “directed current” or “ratchet currents” can
be used for net currents (assuming it exists) when the system is
in a near-integrable regime because in such cases the directed
net current does not result from a “fluctuating environment.”

To demonstrate that the interactions induce breaking of
time-reversal symmetry, the following sequence of operations
are performed: the initial state is evolved forward for duration
τ > 0 under the action of H in Eq. (1). Next, subsystem 1 is
evolved backward in time for duration −τ , while subsystem 2
is evolved forward for duration τ . This sequence of operations
can be represented as

|ψ (τ ′)〉 = [(
U −τ

1 ⊗ U τ
2

)
U τ

int

]
[(U1 ⊗ U2)Uint]

τ |ψ (0)〉. (9)

In this, τ ′ indicates successive time duration of (τ,−τ )
for subsystem 1 and (τ, τ ) for subsystem 2. Let ρ(τ ′) =
|ψ (τ ′)〉〈ψ (τ ′)| be the associated density matrix and the re-
duced density matrix for subsystem 1 is ρ1(τ ′) = Tr2 ρ(τ ′).
Due to unitary evolution, we might expect subsystem 1
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(a)

(b)

(c)

FIG. 4. (a) Time series of κn = 〈ψ (n)|ε sin qj |ψ (n)〉. The in-
sets show the numerically computed autocorrelation function Cm =
〈κnκn+m〉. (b) Qτ (n) with no interaction ε = 0 (black symbols), with
interactions Vint = cos(q1 − q2) (red) and Vint = sin(q1 − q2) (blue).
The vertical orange line indicates n = τ about which time-reversal
symmetry is expected. (c) Sτ (n) indicating the existence or absence
of time-reversal symmetry about n = τ . Note that temporal symme-
try is preserved if ε = 0 and it is broken for ε �= 0. All the other
parameters are the same as in Fig. 3.

to retrace its path to the initial state. As shown ex-
actly in Appendix A 1, this expectation is true in the
absence of interactions (ε = 0). Using the definition Qτ (n) =
〈φ1(0)|ρ1(n)|φ1(0)〉, we have that Qτ ′ = 1. In this case, exis-
tence of temporal symmetry about n = τ implies precise time
reversal, i.e.,

Qτ (n) = Qτ (2τ − n), n = 1, 2 . . . , τ. (10)

If the interaction is present for ε �= 0, it can be exactly shown
that (in Appendix A 2)

0 < Qτ (n = τ ′) = 〈φ1(0)|ρ1(τ ′)|φ1(0)〉 < 1. (11)

Indeed, Qτ (n) �= Qτ (2τ − n), confirming that interactions in-
duce time-reversal symmetry violation. It is a general feature
of interacting subsystems and not specific to kicked models
alone.

The numerical simulations for CKR shown in Fig. 4 ex-
plicitly demonstrate the lack of temporal symmetry if ε �= 0.
Figure 4(b) with τ = 50 shows Q50(n) for n = 1, 2, . . . , 2τ

iterations. With ε = 0 (black circles), under time reversal, the

FIG. 5. Quantum current 〈p1〉 generated at fixed time n = 200 by
CKR as a function of coupling strength ε. Other parameters are the
same as in Fig. 3.

state of subsystem 1 retraces its path to the initial state. In par-
ticular, the time evolution is symmetric about τ = 50 (marked
as a magenta line). In contrast, if ε �= 0, then Q50(100) < 1
and temporal symmetry is absent. Figure 4(c) shows a diag-
nostic measure

Sτ (n) = Qτ (n) − Qτ (2τ − n), n = 1, 2, . . . , τ, (12)

to reveal the existence or absence of temporal symmetry.
Clearly, Sτ (n) = 0 if temporal symmetry about n = τ is
present, while Sτ (n) �= 0 if this symmetry is absent. As seen
in Fig. 4(c), Sτ (n) = 0 for ε = 0 and Sτ (n) �= 0 for ε �=
0. With appropriate choice of symmetry-broken interaction
Vint (q1, q2), generically, the directed quantum current will be
generated in subsystems as shown in Fig. 3(a).

To obtain a global perspective on the directed quantum
currents in subsystem 1, Fig. 5 displays mean current 〈p1〉
after n = 200 iterations as a function of coupling strength
ε. For this plot, we restrict to the interaction potential Vint =
sin(q1 − q2) that breaks the spatial symmetry. It is clear that
in the absence of spatiotemporal symmetries, generically, for
any ε � 0, directed currents are generated in the subsystem.
Even so, the currents are not guaranteed to be sufficiently
large. It might be emphasized that the term “generically”
does not rule out exceptional points at which mean currents
could vanish despite the broken spatiotemporal symmetries.
Barring such exceptional points, the generated currents are
robust and can be controlled by tuning the interaction strength
ε. However, as Fig. 5 reveals, the currents do not show a
systematic relationship with ε. Previous studies on quantum
ratchets and accelerators have observed such a nonsystematic
relationship between current and a system parameter [59–63]
and are attributed to choice of initial states, effects due to tiny
regular classical regions in phase space, and changes in the
effective Planck’s constant as a parameter is varied. A deeper
understanding of the net currents (such as shown in Fig. 5)
in a chaotic regime based on statistical approaches requires
special choice of initial states (as done in Ref. [63]) and a
general theoretical framework is absent for an arbitrary choice
of localized initial states. Thus the interactions provide a mini-
mal framework—requiring only broken spatial symmetry—to
realize a directed quantum current in subsystems.

044208-5



PAUL, KANNAN, AND SANTHANAM PHYSICAL REVIEW E 108, 044208 (2023)

FIG. 6. Mean quantum current 〈p1〉 shown as a function of time
for the interaction potential Vint = −2ε|q1||q2| in the system repre-
sented by Eq. (1). Other parameters are the same as in Fig. 3.

Nonanalytic interaction potential

We emphasize that the results presented here are gen-
eral and not specific to the choice of Veff , except for the
requirement that Veff must break the spatial symmetry. To
underscore this point, Fig. 6 displays quantum currents ob-
tained for Veff (q1, q2) = K1 sin q1 + K2 sin q2 + Vint, where
Vint = −2ε|q1||q2|. This interaction potential is nonanalytic
and violates one of the assumptions of the KAM theorem
(non-KAM system) [49–51]. The classical limit of this system
is chaotic and the interaction breaks the spatial symmetry of
the potential. As shown in Fig. 6, 〈p1〉 �= 0 in this case as well.
This illustrates that, generically, a directed quantum current
in the subsystem is generated as long as spatial symmetry of
the interacting system is broken. Throughout this work, we
have demonstrated quantum currents generated by subsystem
1, though similar results would be obtained had subsystem 2
been chosen.

VI. CONCLUSIONS

Directed currents are usually generated if the relevant spa-
tiotemporal symmetries in the potential are explicitly broken.
In the earlier results on chaotic quantum ratchets, especially
in the context of kicked systems, this condition was met by
manipulating both the potential and the kick sequences. In
contrast, we have shown that, for a classically chaotic interact-
ing quantum system, explicitly breaking the spatial symmetry
alone can generate directed currents in the subsystems. This
is achieved without modifying the potential or the kick se-
quences at the subsystem level and the only requirement is
that the subsystems display chaotic dynamics. This provides a
natural framework to realize directed currents in subsystems
using interactions to break the temporal symmetry. As shown
analytically, the time-reversal symmetry breaking is intrinsi-
cally induced by the interaction potential acting between the
two subsystems. Effectively, one part of the system acts as the
“environment” for the other and subsystem directed currents
can exist even if the directed quantum currents are absent in
the composite system.

This is demonstrated in a chaotic coupled system—namely,
the coupled kicked rotor in a regime of predominant clas-
sical chaos. Thus chaos in the subsystems and presence of
interactions among them leads to directed quantum currents,
even when the classical currents average to zero. The current

arises from purely quantum rather than semiclassical effects
in the integrable or near-integrable regimes. Another signif-
icant feature is the tunability of the directed current. For
any proposal for directed currents, tunability is an important
criteria. We have shown through simulations that by varying
the interaction strength ε multiple current reversals take place,
i.e., current changes sign multiple times. This implies that di-
rected currents arise over a large range of parameters. Further,
this provides a mechanism to tune for and obtain a desired
magnitude of directed current.

This interaction induced mechanism is sufficiently general
and would also be applicable to other interacting quantum sys-
tems. As shown in this paper, this mechanism for generating
directed currents in the quantum domain works even for the
interacting potential that is nonanalytic in nature. We believe
that it might be feasible to realize a coupled kicked rotor in
experiments by subjecting atomic matter waves to flashing
incommensurate optical lattices; the interactions arise during
the free evolution when the lattices are off [64,65].

The presence of classical chaos provides the required
“stochasticity” in the problem. Yet, it will be of interest to
explore the question of directed currents when one of the
subsystems is not chaotic. While the interactions will induce
temporal symmetry breaking, studying subsystems with vari-
ous degrees of nonintegrability will give further insights into
the crucial role played by chaotic dynamics in generating
subsystem directed currents. Given the earlier debates on this
topic, this will also help refine our ideas on what consti-
tutes a ratchet current. Finally, we might also remark that
this approach for directed currents for a two-particle system
can be extended to interacting many particle systems that
display chaotic dynamics. In the backdrop of current interests
in chaotic many-particle systems (for example, see Ref. [66]
for a closely related phenomenon dubbed as the boomerang
effect), these studies might add other possibilities for dynam-
ical phases in such systems.
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APPENDIX: TIME-REVERSAL SYMMETRY BREAKING

Let us consider a coupled system consisting of two subsys-
tems which are interacting with one another. In this section,
we analytically show the effect of interaction in breaking the
time-reversal symmetry of a subsystem in the presence of the
other. The formalism introduced is general, not limited to the
models considered in the main paper, and can be extended
to many-body systems as well. To begin with, let us first
understand the situation in the absence of interaction and
then discuss the role of interaction in time-reversal symmetry
breaking. The subsequent subsections discuss both situations.
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1. Without interaction

Here, we discuss the time-reversal symmetry of the indi-
vidual subsystems in the absence of interactions. To this end,
we consider the initial state |ψ (0)〉 of the interacting system
at time t = 0 to be a product state of the subsystems

|ψ (0)〉 = |φ1(0)〉 ⊗ |φ2(0)〉 =
∑

i

ai|i〉1 ⊗
∑

j

b j | j〉2, (A1)

where |i〉1 (| j〉2) represents the basis of subsystem 1 (sub-
system 2). The coefficients ai (b j ) satisfy the normalization
condition

∑
i |ai|2 = 1 (

∑
j |b j |2 = 1).

In the case of an uncoupled system, the time evolution
operator of the entire system U can be written as the tensor
product of the individual unitary time evolution operators U1

and U2 at all times

U = U1 ⊗ U2. (A2)

The time evolved state of the composite system at time τ >

0 is given by

|ψ (τ )〉 = U τ |ψ (0)〉 = U τ
1 |φ1(0)〉 ⊗ U τ

2 |φ2(0)〉. (A3)

If a subsystem has a time-reversal symmetry, the exact
initial state of the subsystem can be obtained by evolving the
subsystem backward in time for t = −τ . Thus, to examine the
time-reversal symmetry of the subsystem 1 in the presence of
subsystem 2, we evolve subsystem 1 backward in time for the
duration −τ , while the subsystem 2 is evolved forward for
duration τ ; the state obtained is

|ψ (τ ′)〉 = (
U −τ

1 ⊗ U τ
2

)|ψ (τ )〉
= (

U −τ
1 ⊗ U τ

2

)
U τ

1 |φ1(0)〉 ⊗ U τ
2 |φ2(0)〉

= U −τ
1 U τ

1 |φ1(0)〉 ⊗ U τ
2 U τ

2 |φ2(0)〉
= |φ1(0)〉 ⊗ |φ2(2τ )〉. (A4)

The density matrix of the composite system at τ ′ [where τ ′
indicates successive time duration of (τ,−τ ) for subsystem 1
and (τ, τ ) for subsystem 2] can be estimated using the time
evolved state obtained in (A4) and is expressed as

ρ(τ ′)=|ψ (τ ′)〉〈ψ (τ ′)| = |φ1(0)〉〈φ1(0)| ⊗ |φ2(2τ )〉〈φ2(2τ )|.
(A5)

The reduced density matrix of the subsystem 1 can be
obtained from ρ(τ ′) by tracing out the subsystem 2 at τ ′ and
is given by

ρ1(τ ′) = Tr2[ρ(τ ′)]

=
∑

j

2〈 j|φ1(0)〉〈φ1(0)| ⊗ |φ2(2τ )〉〈φ2(2τ )| j〉2

= |φ1(0)〉〈φ1(0)| ⊗
∑

j

2〈 j|
∑

j′, j′′
b j′ (2τ )b∗

j′′ (2τ )| j′〉2

×2 〈 j′′| j〉2

= |φ1(0)〉〈φ1(0)|
∑

j

|b j (2τ )|2

= |φ1(0)〉〈φ1(0)|, (A6)

where b j = 〈 j|φ2(2τ )〉 and
∑

j |b j (2τ )|2 = 1. Now, to inves-
tigate the time-reversal symmetry, we calculate the expecta-
tion value of ρ1(τ ′) with respect to the initial state of the
subsystem 1. In this paper, we call this quantity Qτ (n) =
〈φ1(0)|ρ1(n)|φ1(0)〉. Evaluating Qτ (n = τ ′) leads to

〈φ1(0)|ρ1(τ ′)|φ1(0)〉 = 〈φ1(0)|φ1(0)〉〈φ1(0)|φ1(0)〉 = 1.

(A7)

Qτ (n = τ ′) = 1 implies that subsystem 1 retraces its path to
the initial state after time τ ′. Thus we see that the time-reversal
symmetry is preserved in subsystem 1 in the presence of sub-
system 2. This is an expected result as there is no interaction
between the subsystems and is also a property of unitary evo-
lution. Using a similar formalism discussed above, it can be
shown that time-reversal symmetry is preserved in subsystem
2 in the presence of subsystem 1.

2. With interaction

In this subsection, we show that the interaction between
two subsystems breaks the time-reversal symmetry of the
individual subsystems. For that, consider the initial state at
time t = 0 of the interacting system to be a product state,

|ψ (0)〉 = |φ1(0)〉 ⊗ |φ2(0)〉 =
∑

i

ai|i〉1 ⊗
∑

j

b j | j〉2

=
∑

i, j

ci j (0)|i, j〉, (A8)

where ai, |i〉1, b j , and | j〉2 have the same meaning as in (A1).
The time evolution operator for the interacting system of

two subsystems can be written as

U = (U1 ⊗ U2)UI , (A9)

where U1 and U2 are the time evolution operators for subsys-
tem 1 and subsystem 2, respectively, and UI is the unitary time
evolution operator corresponding to the interaction between
the subsystems. The time evolved state at τ is given by

|ψ (τ )〉 = U τ |ψ (0)〉 = [(U1 ⊗ U2)UI ]
τ
∑

i, j

ci j (0)|i, j〉

=
∑

i, j

di j (τ )|i, j〉. (A10)

Now, to investigate if the time-reversal symmetry of the sub-
system 1 in the presence of subsystem 2 is broken or not,
we evolve subsystem 1 backward in time, i.e., −τ , while
subsystem 2 and the interaction term move forward for the
same time τ . The evolved state thus obtained is

|ψ (τ ′)〉 = (
U −τ

1 ⊗ U τ
2

)
U τ

I |ψ (τ )〉
= [(

U −τ
1 ⊗ U τ

2

)
U τ

I

]
[(U1 ⊗ U2)UI ]

τ
∑

i, j

ci j (0)|i, j〉

= [
U 0

1 ⊗ U 2τ
2

]
U 2τ

I

∑

i, j

ci j (0)|i, j〉

=
∑

i, j

di j (τ
′)|i, j〉. (A11)
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The density matrix of the total system at τ is given by

ρ(τ ′) = |ψ (τ ′)〉〈ψ (τ ′)| =
∑

i, j,i′, j′
di j (τ

′)d∗
i′ j′ (τ

′)|i, j〉〈i′, j′|.

(A12)

The reduced density matrix of subsystem 1 obtained by trac-
ing out subsystem 2 from the total density matrix ρ(τ ′) in
(A12) is

ρ1(τ ′) = Tr2[ρ(τ ′)]

=
∑

j′′
2〈 j′′|

∑

i, j,i′, j′
di j (τ

′)d∗
i′ j′ (τ

′)|i, j〉〈i′, j′| j′′〉2

=
∑

i,i′
1|i〉〈i′|1

∑

j

di j (τ
′)d∗

i′ j (τ
′). (A13)

Now to understand if the time-reversal symmetry is pre-
served or not, we evaluate Qτ (τ ′) = 〈φ1(0)|ρ1(τ ′)|φ1(0)〉,
which is

Qτ (τ ′) =
∑

i′′
a∗

i′′ (0)1〈i′′|
∑

i,i′
|i〉11〈i′|

×
∑

j

di j (τ
′)d∗

i′ j (τ
′)

∑

i′′′
ai′′′ (0)|i′′′〉1

=
∑

i′′,i,i′,i′′′
a∗

i′′ (0)ai′′′ (0)1〈i′′|i〉1〈i′|i′′′〉1

×
∑

j

di j (τ
′)d∗

i′ j (τ
′)

=
∑

i,i′
a∗

i (0)ai′ (0)
∑

j

di j (τ
′)d∗

i′ j (τ
′)

� 1. (A14)

In this last equation, equality holds if there is no inter-
action between the subsystems. Otherwise, Qτ (n = τ ′) < 1.
This implies that, in the presence of interaction, subsystem
1 does not retrace its path to the initial state after time τ ′.
This indicates that the time-reversal symmetry is broken in
subsystem 1 due to the interaction between the subsystems.
In fact, this inequality, Qτ (n = τ ′) < 1, is very general and
holds true at the subsystem level for any interacting system.
This can be understood in the following sense: that the sub-
system dynamics is governed by a nonunitary operator and,
being a non-Hamiltonian dynamics, the subsystem displays
irreversibility. If the dynamics is chaotic, then one subsystem
provides an uncorrelated noise to the other and effectively acts
as a noisy environment. Owing to this property, even in the
chaotic limit without an explicit time-reversibility breaking
term, we observe ratchet effect.
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