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First-order transition to oscillation death in coupled oscillators
with higher-order interactions
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We investigate the dynamical evolution of Stuart-Landau oscillators globally coupled through conjugate
or dissimilar variables on simplicial complexes. We report a first-order explosive phase transition from an
oscillatory state to oscillation death, with higher-order (2-simplex triadic) interactions, as opposed to the
second-order transition with only pairwise (1-simplex) interactions. Moreover, the system displays four distinct
homogeneous steady states in the presence of triadic interactions, in contrast to the two homogeneous steady
states observed with dyadic interactions. We calculate the backward transition point analytically, confirming the
numerical results and providing the origin of the dynamical states in the transition region. The results are robust
against the application of noise. The study will be useful in understanding complex systems, such as ecological
and epidemiological, having higher-order interactions and coupling through conjugate variables.
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I. INTRODUCTION

The dynamics of interacting systems are usually modeled
using the concept of complex networks [1]. The units of each
system are denoted as nodes, and the interactions by links
joining the nodes form networks. Most of the studies on
networks deal with pairwise interactions between the nodes.
However, such a simplified version of pairwise interactions is
not justified while dealing with systems such as those formed
by coauthors of research articles, multiple species competing
for food in an ecosystem, or phenomena of diseases and
rumors in society, etc. In nature, systems such as those gov-
erned by social [2,3], biological [4,5], neuroscience [6,7], or
ecological dynamics [8,9] are reigned by group interactions.
The mathematical framework of pairwise links in networks is
insufficient to represent such systems. Simplicial complexes
are one of the simplest candidates for encoding higher-order
interactions mathematically. A simplex of N dimensions can
be conceptualized as a set of (n + 1) nodes.

The node set D may be written as D = [x0, x1, ....xn], in
which the individual elements of the set denote each vertex
(node) of the simplex. A one-dimensional simplex repre-
sents a link between two nodes, while a two-dimensional
simplex represents a triangle (denoting interaction between
three nodes). Hence, simplicial complexes may be considered
topological constructions constituting simplices of different
dimensions [10].

Further, dynamical processes evolving on complex net-
works have been shown to exhibit collective emergent
phenomena such as synchronization [11], self-organization
[12], oscillation quenching [13], and chimera states [14].
Among these, oscillation suppression in dynamical systems
is a well documented and interesting behavior arising due to
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interactions in complex systems. The onset of suppression
of oscillations has been observed through various coupling
schemes such as mean-field diffusive [15], through dissimilar
or conjugate [16] and environmental variables [17], and with
attractive-repulsive links [18] in networks of both limit-cycle
and chaotic oscillators.

Suppression of oscillations can occur through two routes:
amplitude death (AD) [19] and oscillation death (OD) [20].
For AD the coupled oscillators stabilize to a common
steady state which is also a stable global fixed point of the
system, whereas in OD they can settle to different fixed
points referred to as in-homogeneous (IHSS) steady state via
symmetry-breaking bifurcation or to a same fixed point re-
ferred as homogeneous (HSS) steady states. The suppression
of oscillations is relevant in various places, for instance, in
medical science in controlling diseases like Parkinson’s and
Alzheimer’s. Other examples include neuron models [21],
lasers [22], and climate systems [23].

Further, the transition from oscillations to the quenching of
oscillations may be either continuous and smooth or discon-
tinuous and explosive. There have been extensive studies on
first-order transition to synchronization, referred to as explo-
sive synchronization [24,25], explosive percolation [26], and
explosive death [27], on networks with dyadic interactions.
Bi et al. reported the phenomenon of explosive death in a
network of Stuart-Landau oscillators coupled through pair-
wise similar variables [28]. Explosive death (ED) [29–35] and
semiexplosive death [36] were also observed in a network of
conjugate-coupled limit-cycle oscillators. The phenomenon of
ED brings with it a hysteresis or bistable region, i.e., a region
in the parameter space where the oscillatory and the steady
states coexist. Such bistability has been observed in several
physical [37] and chemical systems [38].

With the advent of studies on higher-order interac-
tions, collective dynamics, such as synchronization [39–44],
and chimera states [45] have been reported for coupled
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dynamics on simplicial complexes. In explosive transitions to
synchronization, systems evolving on simplicial complexes
have been shown to suddenly experience a transition to syn-
chronization from an incoherence state and vice versa [46].
Further, multilayer networks of simplicial complexes have ex-
hibited multiple routes to explosive synchronization [47,48].
Recently, a sudden transition to antiphase synchronization on
adaptive simplicial complexes has also been explored [49].
Recently, amplitude death has also been reported in networks
with additive triadic conjugate interactions [50].

Extensive studies have been conducted on mathematical
models having dissimilar or conjugate variables couplings
capturing pairwise interactions [51]. A few examples of sit-
uations that demand conjugate coupling include electronic
circuits [52], ecological models [53], and models of chem-
ical kinetics [54]. In ecological networks, multiple species
compete with each other for food. The phenomenon of cross-
predation within ecological systems occurs when the predator
of one predator-prey system consumes the prey of another
similar system. Such networks cannot be modeled accurately
by dyadic or pairwise links. Hence, models simulated on net-
works with higher-order interactions lead to a more accurate
representation of such complex systems. In another scenario,
interactions between the chemical film on a metal surface and
the metal ions have been studied using pairwise conjugate
coupling. Nevertheless, due to the presence of some impurities
in the chemical film, the impurities may also interact with
the metal ions or the film itself. The products of these unde-
sired reactions may further interact with the original chemical
species or among themselves. Such types of interactions will
require mapping beyond pairwise links, and therefore models
with conjugate higher-order interactions should be considered
for an accurate representation of such phenomena.

In this study we extend the mathematical framework of
triadic interactions as proposed by Gambuzza et al. [55]
to induct conjugate coupling or coupling through dissimilar
variables. We investigate the effect of such a higher-order
conjugate coupling on Stuart-Landau oscillators and discover
a first-order phase transition from oscillatory to steady state in
the presence of triadic interactions instead of the continuous
second-order phase transition observed with only pairwise in-
teractions. We perform linear stability analysis for all the fixed
points and derive the condition for the transition point from
oscillation to steady state to further confirm the numerical
results. The robustness of our model has been checked against
the application of a noise signal of appropriate strength.

A. Model

Our model system, with 1-simplex (pairwise) and 2-
simplex (triadic) interactions with conjugate or dissimilar
variables, has been mathematically formulated in the follow-
ing way:

Ẋi = F(Xi) + εp

N

N∑
j=1

fp(Xi, X∗
j )

+ εh

N2

N∑
j=1

N∑
k=1

fh(Xi, X∗
j , Xk ), (1)

where X∗
i is the conjugate variable of the state variable Xi. The

w-dimensional state vector Xi denotes the dynamics of each
unit i where i = 1, 2, ....N . The dynamics of each isolated
node are assumed to be identical and described by F : Rw →
Rw. fp : R2×w → Rw, and fh : R3×w → Rw denotes the con-
jugate coupling functions for the 1-simplex and 2-simplex
interactions, respectively. εp illustrates the coupling strength
for the pairwise interactions and εh for the triadic ones.

We consider a globally connected network of N Stuart-
Landau (SL) limit-cycle oscillators, interacting with each
other through pairwise and triadic interactions. The equa-
tions governing the dynamics of the system are

ẋi = (
1 − x2

i − y2
i

)
xi − wyi + εp

N

N∑
j=1

(y j − xi )

+ εh

N2

N∑
j=1

N∑
k=1

(
x jy

2
k − x3

i

)
,

ẏi = (
1 − x2

i − y2
i

)
yi + wxi + εp

N

N∑
j=1

(x j − yi )

+ εh

N2

N∑
j=1

N∑
k=1

(
y jx

2
k − y3

i

)
, (2)

with i = 1, 2, ...N , and ω is the intrinsic frequency of the
oscillators. The N nodes in the network are coupled to each
other by “conjugate” variables. εp and εh are the coupling
strengths associated with 1-simplex (pairwise interaction) and
2-simplex (triadic interaction), respectively.

The dynamical equations [Eq. (2)] have been solved nu-
merically using the RK4 method with a step size of 0.01 after
removing transients of the order of 105. The initial conditions
were randomly chosen within the interval [−1, 1]. To char-
acterize the nature of the transition from the oscillatory state
to the death state in our model system, we adopt an order
parameter in terms of average amplitude [56],

A(ε) = a(ε)

a(0)
,

where a(ε) = ∑N
i=1

1
N (〈xi,max〉t − 〈xi,min〉t ), with 〈...〉t repre-

senting the average over long time. a(ε) is a measure of the
difference of the global maxima and minima of the time-series
data of all the oscillators, computed over a long time after
discarding a sufficient amount of transients at a particular cou-
pling strength ε. a(0) is the average amplitude at ε = 0. The
normalized order parameter A(ε) is greater than 0 when the
coupled system is in the oscillatory state; however, when the
system attains a steady state, A(ε) = 0. This order parameter
has been calculated adiabatic by varying the value of ε (εp

or εh) in forward and backward continuation. This process is
termed “adiabatic” since the system’s state in the previous
run is used as the initial conditions of the next run of the
simulations [27]. During the forward continuation process,
the coupling strength ε increases slowly in steps of δε. When
a specified value of ε is reached, the backward continuation
process starts where ε is now decreased slowly in a simi-
lar fashion and continued until the minimum value of ε is
reached.
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FIG. 1. Amplitude order parameter A for (a) pairwise and (b) tri-
adic interactions. The fraction of oscillators Nd/N is calculated
for (c) 1-simplex interactions and (d) 2-simplex interactions. Here,
ω = 1 and N = 100. The curves in red have been computed in
forward continuation, and the black ones have been calculated in
backward continuation.

B. Numerical results for 1-simplex (dyadic) interactions

We set εh = 0 in Eq. (2) to investigate the dynamics with
only pairwise interactions. The coupling strength εp varies
adiabatically in steps of 0.02 in both forward and backward
continuation. Figure 1(a) exhibits a second-order transition
from oscillation to death of oscillations. The order parameter
A(εp) gradually decreases to zero, indicating suppression of
oscillations in the system with a gradual increase in coupling
strength. The forward and backward continuations show no
change in the transition point, i.e., in both cases the critical
value of εp remains the same, as observed in Fig. 1(a). Hence,
in the presence of only conjugate dyadic links, the system
shows a continuous and reversible second-order phase transi-
tion from oscillation to the death state, without any hysteresis
via supercritical Hopf bifurcation.

Next we discuss the dynamics of the system at the transi-
tion points. The bifurcation diagram for the SL oscillators with
pairwise interactions has been illustrated in Fig. 2(a). Here a
supercritical Hopf bifurcation destroys the oscillations from
the stable limit cycle, displayed in green. A subsequent super-
critical pitchfork bifurcation also occurs immediately, giving
rise to the two stable solutions which have been displayed in
red in Fig. 2(a).

C. Numerical results for 2-simplex (triadic) interactions

Next we consider the case of εp = 0 in Eq. (2), i.e., only the
triadic interactions are prevalent in the model. εh is varied in
an adiabatic manner, from 0 to εh,max in steps of δεh = 0.02 for
the forward continuation. During this process the magnitude
of the order parameter A(εh) suddenly drops to 0, indicating an
explosive transition from oscillatory to steady state, as shown
in Fig. 1(b). The transition point from oscillatory to death state
occurs for a critical εh = 5.2. For the backward continuation
process, we decrease εh from εh,max to 0 similarly and observe
that the amplitude order parameter jumps from 0 to nonzero
values at around εh = 4.82. Hence, it is clear that the forward
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FIG. 2. The bifurcation diagram of the coupled SL oscillators is
plotted. (a) For 1-simplex interactions and (b) for 2-simplex interac-
tions. The red solid lines correspond to the stable fixed points, the
dashed black lines correspond to the unstable ones, and the green
solid lines indicate the oscillatory solutions from the stable limit
cycle. i = 1, 2.....N .

and backward transition points do not coincide. This indicates
a hysteresis region in the parameter space, i.e., a bistable
region where both oscillatory and HSS states coexist. Such
an abrupt and sudden transition with a hysteresis region can
be categorized as a first-order transition.

To investigate whether all the oscillators are going to death
state simultaneously or some oscillators may attain death state
faster than others, we define a parameter Nd/N , where Nd

is the number of oscillators going to steady state and N is
the total number of oscillators. This parameter is also com-
puted in a similar adiabatic way of forward continuation, as
described previously. Figures 1(c) and 1(d) depict the abrupt
jump from 0 to 1 for pairwise and triadic interactions, respec-
tively. This indicates that the oscillators attain a death state
simultaneously after crossing a threshold value of εh. We note
that this value of εh agrees well with our results for forward
continuation.

The dynamics at the transition point for the triadic interac-
tions differ from that of the 1-simplex ones. The oscillations of
the system remain in complete synchronization until a critical
value of εh is reached. At this point the system stabilizes to
newly created fixed points through saddle-node bifurcations.
Due to the bifurcations, two pairs of stable and unstable fixed
points appear. The oscillations from the stable limit cycle
continue and collide with the unstable fixed points. This leads
to the disappearance of the limit cycle, and the system settles
down to any of the stable fixed points, depending on the
initial conditions. This scenario of a stable limit cycle being
destroyed by an unstable fixed point is the mechanism of a
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FIG. 3. Time series of the coupled SL oscillators with 2-simplex
interactions is plotted. (a) At εh = 2.45, i.e., in the oscillatory region
(b) at εh = 6.11, i.e., at steady-state region, one set of fixed points
(xi ≈ ±0.55) which are displayed in dark purple and the other set
of fixed points (xi ≈ ±0.68) which are displayed in dark green also
appear, depending on the choice of initial conditions for the same
value of εh = 6.11. The other parameters are ω = 1, N = 100, and
i = 1, 2.....N .

subcritical Hopf bifurcation. The entire dynamics of the model
system at the transition point are illustrated in Fig. 2(b).

Figure 3 demonstrates the transition of the model system
from oscillation to oscillation-quenching. The system shows
periodic and completely synchronous oscillations [Fig. 3(a)]
for coupling strengths below the critical value of εh for which
the transition to a steady state takes place. The system goes
to a fixed point as εh increases beyond this point. Depending
on the choice of initial conditions, the oscillators may settle
down to any of the four homogeneous steady states shown in
Fig. 3(b). Figure 3(b) exhibits the fixed points x∗

i ≈ ±0.55,
displayed in dark purple, and x∗

i ≈ ±0.68, illustrated in dark
green. It is interesting to note that the system has a kind of
mirror-image symmetry. That is to say, the dynamics occur-
ring in the phase space above the origin are mirrored in the
phase space below the origin. Figure 4(a) displays the basin
of attraction at the hysteresis region. The numerical results
have been calculated for εh = 5.0. since the hysteresis region
stretches from εh ≈ 4.82 to εh ≈ 5.25. Here we confirm the
presence of bistability through the two regions illustrated in
the figure. The pink region corresponds to the initial condi-
tions triggering the oscillatory state, and the light blue region
denotes the ones for the death state. The initial conditions
xi and yi have been varied from −1 to 1. In Fig. 4(b) the
basin of attraction for the four fixed point attractors in the
system is displayed. The value of the coupling strength has
been fixed at around 5.6, since we are exploring the basin
after the system achieves a steady state. In this figure each
of the four differently shaded (colored) regions is populated
by the initial conditions for the four different fixed points
that the oscillations settle down to during the steady state.
In Fig. 4 we consider x = xi and y = yi, since the system is
in either complete synchronization or HSS in the hysteresis
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FIG. 4. Basin of attraction illustrating the stable states in the
system. (a) At the hysteresis region εh = 5.0. The pink color rep-
resents the initial conditions for the oscillatory state and light blue
for the homogeneous steady state (b) at the death region εh = 5.6.
The four distinct colors represent the four choices of fixed points for
the system at a steady state. Here N = 100, ω = 1. i = 1, 2.....N.

region. We further explore the impact of the parameter ω on
the dynamics of the SL oscillators with 2-simplex interactions.
The parameter-space (εh − ω) diagram of Fig. 5(a) illustrates
that the transition from oscillatory to steady state occurs for
ω � 1 via first-order transition. It is important to note that
here in HSS, the system may stabilize to any of the four fixed
points, as depicted in Fig. 3(b).

D. Both pairwise and triadic interactions

We also study a case where SL oscillators interact through
1- and 2-simplex interactions. For a weak 1-simplex interac-
tion (εp � 0.8), the system manifests a first-order transition
from the oscillatory to the steady state with an increase in εh.
For intermittent values, 1 < εp < 0.8, a region of bistability
or hysteresis is observed regardless of εh values. The system
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FIG. 5. Different dynamical domains of N coupled SL oscilla-
tors are plotted in the parameter plane (a) (εh − ω) for εp = 0 and
(b) (εh − εp) for ω = 1. Here OS, HA, and HSS denote oscillatory
state, hysteresis area, and homogeneous steady state.
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with stronger εp � 1.0 always attains a steady state and has
no additional effect of 2-simplex interaction. Hence, we can
conclude that the triadic conjugate interactions lead to more
complex dynamics with the first-order transition from oscil-
latory to steady state in the globally coupled Stuart-Landau
oscillators as compared to the second-order transition in the
presence of 1-simplex conjugate interaction.

E. Analytical calculations

By analyzing Eq. (2) and putting εh = 0 along with εp = ε

we derive the following stable fixed point:

x∗ =
√

1 − ε + ω − ω
ε

+ η

2

y∗ =
ε(ε − ω)(ε + ω)

√
1 + ω + ε2η−ε(ε2+ω)

ε2√
2ηε2

, (3)

where η =
√
ε2(ε − ω)3(ε + ω)

ε2 . To find the condition of the
transition from oscillatory to death state, the Jacobian W is
written in the form of block circulant matrices [57], i.e., J =
circ(ζ1, ζ2, ...ζ2):

ζ1 =
[

1 − ε − 3x2 − y2 ε
2 − ω − 2xy

ε
2 + ω − 2xy 1 − ε − x2 − 3y2

]

and ζ2 =
⎡
⎣0

ε

2ε

2
0

⎤
⎦.

A 2(N − 1) degeneracy exists for 2(N − 1) eigenvalues
of W . These eigenvalues are equal to the eigenvalues of the
matrix (ζ1 − ζ2). The other eigenvalues of W will equal to
those of the matrix ζ1 + (N − 1)ζ2. The characteristic equa-
tion corresponding to the matrix ζ1 + (N − 1)ζ2 is given by

λ2 + d1λ + d0 = 0, (4)

where d1 = −2 + 2ε + 4x∗2 + 4y∗2
and d0 = 1 − 2ε + ω2 −

4x∗2 + 4εx∗2 + 3x∗4 + 4εx∗y∗ − 4y∗2 + 6x∗2
y∗2 + 3y∗4

. The
condition for the Hopf bifurcation point is derived according
to the Routh-Hurwitz criterion [58] by putting d1 = 0. Hence,
the critical value of ε for the transition of the system from the
oscillatory to OD state through Hopf bifurcation is given by

εHB = 1
3 (−1 + 2

√
1 + 3ω2). (5)

The condition for pitchfork bifurcation may also be derived
by putting d0 = 0:

εPB = 1
2 (1 + ω2). (6)

Putting ω = 1 in Eqs. (5) and (6), εHB and εPB are both
found to be 1, which is in exact agreement with our numerical
results.

We analyze Eq. (2) again, and this time by considering
only the triadic interactions, i.e., εp = 0 and εh is generalized
to ε. Numerical simulations reflect that the coupled system
stabilizes at the HSS. Hence, the backward transition point
for the explosive transition can be computed by the stability
analysis of HSS. The stable fixed points for this system are,

x∗
i = x∗, y∗

i = y∗,∀i = 1, ..., N , where,

x∗ = ±1

2

√
2 + ε + α ± √

2(1 + ε)β

1 + ε
,

y∗ = ± 1

4(1 + ε)w
(±ε ± α +

√
2εβ +

√
2ε2β )x∗, (7)

where α =
√
ε2 − 4(1 + ε)w2 and β =

√
ε+2w2+2εw2−α

ε(1+ε)2 .
2N×2N Jacobian matrices can be written in the form of
block circulant matrices J = circ(M1,M2, ...M2).

M1 =

⎡
⎢⎢⎣1 − 
x2 + y2

3
κ −ω + 2

3
κxy

ω + 2

3
κxy 1 − 
y2 + x2

3
κ

⎤
⎥⎥⎦ and M2 =

⎡
⎢⎢⎣

εy2

3

2εxy

3
2εxy

3

εx2

3

⎤
⎥⎥⎦ with 
 = 3(1 + ε) and κ = (−3 + ε).

As explained earlier, there will be 2(N − 1) eigenvalues of
J with 2(N − 1) degeneracy. These eigenvalues are equal
to the eigenvalues of the matrix (M1 − M2). The rest of the
eigenvalues will be equal to the eigenvalues of the matrix
M1 + (N − 1)M2 and can be analyzed to know the stability
of the HSS state. The characteristic equation corresponding to
this matrix is given by

λ2 + c1λ + c0 = 0, (8)

where c1 = −2 + 4x∗2 + 2εx∗2 + 4y∗2 + 2εy∗2
and

c0 = 1 + ω2 − 4x∗2 − 2εx∗2 + 3x∗4 − 3ε2x∗4 − 4y∗2 −
2εy∗2 + 6x∗2

y∗2 + 24εx∗2
y∗2 + 6ε2x∗2

y∗2 + 3y∗4 − 3ε2y∗4
.

Solving Eq. (8), we have two eigenvalues:

λ1,2 = 1

2(1 + ε)
(−2 − 2ε − ε2 − 2α − εα ± γ ), (9)

where γ =
√

2[2 − 4α + 8ω2 + ε(4 + 16ω2 − 6α) + ε2ξ ],
where ξ = 2 + 6ω2 + ε(α + ε − 2ω2) and α =√
ε2 − 4(1 + ε)ω2. Equating the real parts of the eigenvalues

to zero, we obtain the an expression for the backward
transition point through saddle-node bifurcation:

εSN = 2(ω2 +
√

ω2 + ω4). (10)

Hence, we confirm that this model system stabilizes to a
homogeneous steady state through a saddle-node bifurcation.
The calculated backward transition point from Eq. (10) after
considering ω = 1 is found to be 4.82, which agrees with our
numerical results.

F. Effect of noise on model

We have also checked the robustness of our results in
the presence of Gaussian noise. In most real-world systems,
stochasticity or noise is omnipresent. To make our model more
realistic, we introduce additive noise into the system. Hence,
our model equation is modified as follows:

ẋi = (
1 − x2

i − y2
i

)
xi − wyi + εp

N

N∑
j=1

(y j − xi )

+ εh

N2

N∑
j=1

N∑
k=1

(
x jy

2
k − x3

i

) + Dξ (t ),
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εp = 0.

ẏi = (
1 − x2

i − y2
i

)
yi + wxi + εp

N

N∑
j=1

(x j − yi )

+ εh

N2

N∑
j=1

N∑
k=1

(
y jx

2
k − y3

i

) + Dξ (t ), (11)

where ξ (t ) denotes the Gaussian white noise with zero mean
and unit variance with the intensity of the noise signal repre-
sented by D. ξ (t ) ∈ R is the additive noise with 〈ξ (t )〉 = 0
and 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′)∀i, j. Equation (11) is inte-
grated using the stochastic Euler-Maruyama scheme with an
integration step size of 0.001. The noise is added to the system
at each value of εh, as we sweep it in forward and backward
continuation. We apply a noise signal of intensity D = 0.001
and observe that the first-order nature of the transition from
oscillation to steady state persists. In Fig. 6 the backward
and forward continuation diagrams have been denoted by
the black and red curves, respectively. The pairwise coupling
strength εp has been considered to be 0, while only the 2-
simplex coupling strength εh has been varied in the adiabatic
way. The backward transition point is noted to be at εh ≈ 4.83
and the forward transition point is at εh ≈ 5.19. Hence we
conclude that in the presence of stochastic fluctuations, our
model system is robust and the nature of the transition, along
with the phenomenon of an abrupt transition to death state
remains intact.

II. CONCLUSION

Here we have investigated the SL oscillators coupled
through conjugate variables and having higher-order inter-
actions. We report the first-order transition, an irreversible

transition from oscillation to steady state, by considering tri-
adic conjugate-coupled interactions instead of the reversible
and continuous transition for pairwise conjugate interactions.
As expected, triadic connections yield more complex dynam-
ics with the coexistence of oscillatory and steady states in the
transition region. We have observed a thin hysteresis region
in the parameter space. This region contains two stable states;
oscillatory and steady state. This bi-stability in the hystere-
sis region has important applications in the natural systems
where oscillatory and steady states have been found to coexist,
such as fruit flies in eclosion rhythm [59] and injection of
stimulus pulse to restart the activity in the sino-arterial node
[60] among others. After the transition to the steady state, the
system stabilizes at four different fixed points, depending on
the choice of the initial conditions. We analyzed the basins
of attraction in the hysteresis and steady-state regions and
confirmed our numerical results analytically by performing
linear stability analysis. The analytical calculations have fur-
ther allowed us to derive the backward transition point that
matches the numerical results. We have reported the occur-
rence of consecutive saddle-node bifurcations at the transition
region, leading the system to settle down to HSS. Numerical
simulations here have been performed for N = 100, which
match fairly well with the analytical results which are inde-
pendent of N . Hence, it is safe to conclude that the results
presented here are valid for large-size networks as well. Also,
we have demonstrated that the nature of the transition from
oscillatory to death state is robust against the addition of
finite noise level. The present study can be extended for net-
work topologies such as Erdös-Rèyni random networks and
small-world networks, etc. Further, this study is restricted to
only dyadic and triadic interactions. Including higher-order
simplicial structures is a straightforward extension of the
present work. A network of heterogeneous oscillators with
distributions of intrinsic frequencies ω might garner further
interesting emerging dynamics in conjugate higher-order cou-
pling. To conclude, the study may be used to understand
the origin of hysteresis and oscillation suppression phenom-
ena in biological, ecological, and chemical systems, which
have multiple agents interacting and need to be mapped with
higher-order interactions.
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