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Intensity statistics inside an open wave-chaotic cavity with broken time-reversal invariance
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Using the supersymmetric method of random matrix theory within the Heidelberg approach framework we
provide statistical description of stationary intensity sampled in locations inside an open wave-chaotic cavity,
assuming that the time-reversal invariance inside the cavity is fully broken. In particular, we show that when
incoming waves are fed via a finite number M of open channels the probability density P (I ) for the single-point
intensity I decays as a power law for large intensities: P (I ) ∼ I−(M+2), provided there is no internal losses. This
behavior is in marked difference with the Rayleigh law P (I ) ∼ exp(−I/I ), which turns out to be valid only in
the limit M → ∞. We also find the joint probability density of intensities I1, . . . , IL in L > 1 observation points,
and then we extract the corresponding statistics for the maximal intensity in the observation pattern. For L → ∞
the resulting limiting extreme value statistics (EVS) turns out to be different from the classical EVS distributions.
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I. INTRODUCTION

This work aims to contribute toward understanding the
statistics of intensity of a monochromatic wave field inside
an irregularly shaped enclosure (cavity) which could be fed
with incoming waves through M open channels (antennae), as
illustrated in Fig. 1.

According to the standard paradigm of quantum chaos,
we assume that the shape of the enclosure ensures chaotic
ergodization of a single classical particle motion in the
same scattering domain. At this ergodic situation universal
properties of closed wave-chaotic systems can be, following
the famous Bohigas-Giannoni-Schmidt (BGS) conjecture [1],
effectively modeled by replacing the microscopic system’s
Hamiltonian (or wave operator) by random matrices Ĥ of
large dimension N � 1. The standard choice is to use three
ensembles with Gaussian-distributed entries, GOE, GUE, and
GSE, composed of real symmetric, complex Hermitian and
real quanternionic matrices, respectively, and labeled by the
Dyson parameter β = 1, 2, 4. The choice β = 1 is used to
describe time-reversal invariant systems, β = 2 corresponds
to broken time-reversal symmetry, and β = 4 to systems with
Kramers degeneracy of energy levels.

The ensuing statistical characteristics of closed quantum-
chaotic systems turn out to be universal, i.e., independent of
microscopic details, when studied in the energy and frequency
intervals of the length comparable to the typical distance �
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between neighboring energy and frequency levels. It is ex-
pected that essentially the same statistics should be observed
in regularly shaped cavities with a finite density of randomly
placed scatterers inside, provided one neglects the effects of
Anderson localization. The scale � is assumed to be much
smaller than the energy scale of the order of inverse relaxation
time te ensuring full ergodization in the chaotic enclosure. In
the context of systems with disorder such time is controlled
by classical diffusion and the corresponding energy scale is
known as the Thouless time. Although proving BGS conjec-
ture remains one of the great challenges in mathematics, see,
e.g., Ref. [2], its validity at the level of theoretical physics is
beyond any reasonable doubt, being supported by extensive
numerics, as well as by elaborate field theory [3,4] and semi-
classical computations [5,6].

Chaotic wave scattering in enclosures is an object of in-
tensive research effort extending over several decades, with
application to studies in compound nucleus scattering [7],
transport properties in mesoscopic electronic systems [8], and
more recently in lasing [9] as well as in manipulating light in
complex media for energy deposition and imaging purposes
[10]. One of the central objects in both theory and experiments
is the energy-dependent (or, rather, in the classical wave scat-
tering context, frequency-dependent) unitary scattering matrix
(or simply Ŝ matrix) Ŝ(E ), the elements of which describe the
relationship between the vector a = (a1, . . . , aM ) of ampli-
tudes of M incoming waves in all open channels to the vector
b = (b1, . . . , bM ) of the amplitudes of outgoing waves. Since
the scattering process is essentially random, the properties of
Ŝ matrix must be described using statistical language, i.e.,
probability distributions and correlation functions. In devel-
oping this description the random matrix theory (RMT) plays
the central role.
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FIG. 1. A schematic sketch of a chaotic wave scattering in a
cavity, with ψl , l = 1, . . . , M being the wave in lth channel/antenna,
with xl being the coordinate along the channel. An operator
describing wave dynamics in the system decoupled from the chan-
nels/antennae is assumed to be effectively described by a large
random matrix Ĥ . The M × M unitary scattering matrix Ŝ can be
related to Ĥ in the framework of the Heidelberg approach.

The modern use of RMT for describing chaotic wave
scattering statistically goes back to the seminal work of the
Heidelberg group [11] who suggested to model the scattering
matrix elements in the form

Scc′ (E ) = δcc′ − 2i
N∑

x,y=1

W ∗
cx

[
1

E − Ĥeff

]
xy

Wyc′, (1)

where Ĥeff = Ĥ − i
∑

c wc ⊗ w†
c , with Ĥ being N × N ran-

dom matrix replacing true Hamiltonian of the closed cavity,
and the energy-independent vectors of coupling amplitudes
wc = (Wc1, . . . ,WcN ) relate N inner states in the chosen basis
to M open channels. Without restricting generality, one can
take vectors wc as fixed orthogonal satisfying

w†
cwc′ = γcδcc′, γc > 0 ∀c = 1, . . . , M. (2)

The orthogonality condition ensures that the ensemble-
averaged scattering matrix can be assumed to be diagonal

〈Ŝ(E )〉 = diag(〈S1(E )〉, . . . , 〈SM (E )〉), (3)

where as N → ∞ at fixed M one finds that 〈Sc(E )〉 =
1−iγc〈G〉
1+iγc〈G〉 and we introduced the mean value 〈G〉 :=
limη→0〈G(r, r, E + iη)〉 = 〈Re G〉 − iπρ(E ) for the diagonal
entry of the (retarded) Green’s function of the underlying
closed cavity: G(r, r′, E + iη) := 〈r|(E + iη − Ĥ )−1|r′〉.
This implies that ρ(E ) is the mean density of states in the
cavity, which at the level of RMT is given as N → ∞ by the
Wigner semicircle: ρ(E ) = 1

2π

√
4 − E2, |E | < 2. Writing

〈G〉 = |〈G〉|e−iα and defining γ̃c := γc|〈G〉| one finds

|〈Sc(E )〉|2 = 1 − 2 sin α γ̃c + γ̃ 2
c

1 + 2 sin α γ̃c + γ̃ 2
c

, (4)

implying

gc = 1 + |〈Sc(E )〉|2
1 − |〈Sc(E )〉|2 = 1

2 sin α

(
γ̃c + 1

γ̃c

)
� 1. (5)

The set of parameters gc, c = 1, . . . , M provides the complete
description of coupling of the medium to scattering channels
in the universal regime, with the “perfect coupling” value

gc=1 (happening when sin α = 1 and γ̃c = 1) corresponding
to |〈Sc〉| = 0. The latter condition physically implies absence
of short-time (also known as “direct”) scattering processes
at the channel c entrance: all the incoming flux penetrates
inside the medium and participates in formation of long-living
resonant structures. This situation is thus most interesting
from theoretical point of view, and is frequently described by
most elegant formulas. In the RMT model the perfect coupling
may occur only at the center of the spectrum E = 0, where
〈G〉 = −i, and we restrict our calculations henceforth to that
point. Let us mention also the opposite limit gc → ∞ corre-
sponding to the channel c closed for incoming and outgoing
waves.

The above-described choice for the model provides the
most convenient framework for studying statistics of the
scattering matrix on small energy and frequency scales, com-
parable with separation � between neighboring resonant
frequencies and energy levels of a closed system by utilizing
the powerful supersymmetry approach developed earlier by
Efetov [12] in the context of disordered electronic systems.
Over the years it allowed to compute explicitly many statis-
tical characteristics of the Ŝ matrix and other closely related
objects; see, e.g., Refs. [13–17] and references therein.

Nowadays the model experimental setups to test the the-
oretical predictions based on random matrix theory (RMT)
are mainly systems of classical waves (acoustic or electro-
magnetic) scattered from specially built resonators, shaped in
the form of the so-called chaotic billiards or/and with added
scatterers inside; see, e.g., Refs. [18,19]. Under appropriate
conditions, the associated Helmholtz equation for the electric
field strength is scalar and mathematically identical to the
two-dimensional Schrödinger equation of a particle elastically
reflected by the contour of the microwave resonator, i.e., of a
quantum billiard. Alternatively, experiments on chaotic wave
scattering are performed on systems built with microwave
graphs; see, e.g., Ref. [20].

Whereas a lot of efforts was devoted to study of trans-
mission and reflection of waves, which pertains to measuring
the wave field outside of the scattering medium (or at its
boundary with external world), an interesting question is
also to understand the statistics of wave patterns inside the
chaotic enclosure. This question is especially natural in view
of growing interest in various aspects of coherent manipu-
lations of wave propagation in complex media for imaging,
light storage, electromagnetic compatibility tests, etc.; see,
e.g., Refs. [10,21–25] and references therein. The study of
statistics of radiation intensity in random medium has a long
history. In particular, it has been suggested to model the wave
pattern as a random superposition of running plane waves with
complex coefficients [26,27]:

u(r) =
∑

k

a(k)eikr, (6)

where all wave vectors k have the same length, while the
amplitudes a(k) are chosen as random gaussian complex num-
bers. While in closed systems with preserved time-reversal
invariance one has to assume a∗(k) = a(−k), the corre-
lations between a(k) and a(−k) gradually diminish with
increased degree of openness of the scattering system. The
simplest prediction of such a model was a one-parameter
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family of possible distributions for the point intensity I =
|u(r)|2, reducing to the simple exponential/Rayleigh distri-
bution P (I ) ∝ e−I/I for completely uncorrelated a(k) and
a(−k). Despite favourably agreeing with some experimental
results [28], the use of simple Gaussian model Eq. (6) looks
largely phenomenological, and certainly calls for a proper
microscopic justification.

Motivated by this, the present paper aims to investigate
statistics of the intensity of wave field at a given point r inside
a chaotic cavity relying on the same assumptions as RMT-
based model Eq. (1) for the Ŝ matrix. We will demonstrate that
the framework of the Heidelberg approach gives a possibility
to derive P (I ) for any fixed number M of open channels
without further assumptions, at least in the simplest case of
chaotic systems with fully broken time-reversal invariance.
The latter is described at the level of RMT by Ĥ taken from the
Gaussian unitary ensemble. We note that for such systems the
eigenfunctions of the closed cavity are already complex, with
independent, identically distributed complex and imaginary
parts. Hence when applying the Gaussian wave ansatz Eq. (6)
to the open system with broken time-reversal invariance one
would naturally expect that a(k) and a(−k) are uncorrelated,
implying the Rayleigh law as the reference for the intensity
distribution. We will indeed see how such a law emerges in
the limit of very open system, with the number of scattering
channels tending to infinity. However, for any finite number
of channels the ensuing distribution P (I ) of local intensity
is found to be very different and shows a power law rather
than exponential decay. As scattering systems with broken
time-reversal invariance are now routinely realized both in
“billiard-type” scattering experiments [29–33] and in chaotic
scattering in microwave graphs, see, e.g., Refs. [34,35], one
may expect that the predicted behavior may be eventually
tested experimentally.

II. FORMULATION OF THE PROBLEM AND THE MAIN
RESULTS

We recall that the incoming waves are fed into the cavity
via M channels c = 1, . . . , M, with amplitudes given by the
vector a = (a1, . . . , aM ). This creates a field inside the cavity
which we think of as a vector u in the N-dimensional inner
Hilbert space. In particular, for our purpose it is convenient to
think of the position basis |r〉, associated with an appropriate
coordinate system inside the cavity domain, so that the quanti-
ties u(r) ≡ 〈r|u〉 give precisely the amplitude of the wave in a
point r inside the cavity. The corresponding intensity is given
by Ir = |u(r)|2. In the framework of the Heidelberg model one
can relate the vector u at a given value of the energy/frequency
to the scattering matrix as (see, e.g., Ref. [14] or Eq. (27) in
Ref. [13])

u = 1

2

1

E − Ĥ
Ŵ (1̂M + Ŝ)a, (7)

where 1̂M stands for the identity matrix and Ĥ is the random
matrix representing the inner Hamiltonian, while Ŵ is the
matrix whose M columns are channel vectors wc. Further,
using an equivalent form of the scattering matrix given by

Ŝ = (1̂M − iK̂ ) × (1̂M + iK̂ )−1, K̂ = Ŵ † 1

E − Ĥ
Ŵ , (8)

one can bring Eq. (7) to another well-known form, cf., e.g.,
Eq. (38) in Ref. [36], conveniently written in the bra-ket
notations as

|u〉 = 1

E − Ĥ + iŴŴ †
|wa〉, |wa〉 ≡

M∑
c=1

ac|wc〉 (9)

and implying for the intensity a representation

Ir = 〈r| 1

E − Ĥ + iŴŴ †
|wa〉〈wa| 1

E − Ĥ − iŴŴ †
|r〉. (10)

This formula is the starting point of our calculation of the
probability density P (I ) for the single-point intensity I = Ir.
Relegating the technical part of the calculation, largely in-
spired by the methods of the works [16,17], to the body of
the paper, we start with presenting and discussing our main
results below.

A. Single-point intensity distribution

Given the set of coupling parameters gc � 1, c =
1, . . . , M, define for a given I > 0 the parameter λ1 > 1 as
the (unique) solution of the equation

I = λ1 − 1

2

M∑
c=1

|ac|2
(

1 − gc − 1

λ1 + gc

)
. (11)

The existence and uniqueness of the solution follows from the
fact that the right-hand side of Eq. (11) is positive, monoton-
ically increasing to infinity function of λ1 in the whole range
λ1 ∈ [1,∞), and is equal to zero when λ1 = 1. The intensity
distribution in a single spatial point is then characterized by
the probability density given explicitly in terms of λ1 as

PM (I ) = d

dI
I

d

dI
FM (I ), with FM (I ) =

M∑
c=1

|ac|2Fc(I ),

(12)
with Fc(I ) given by

Fc(I ) = λ1 − 1[
2I + (λ1 − 1)2

∑M
i=1 |ai|2 gi−1

(λ1+gi )2

] M∏
j=1

(λ1 + g j )

×
∫ 1

−1
dλ2

λ2 + g̃c

λ1 − λ2

M∏
k �=c

(λ2 + gk ), (13)

where we introduced the notation

g̃c = 1 + gcλ1

gc + λ1
. (14)

There are two special cases when the solution to Eq. (11) can
be explicitly written. The first one pertains to the situation
when the incoming wave is incident only via a single channel,
which we can choose to correspond to the channels index
c = 1, whereas all other channels with 2 � c � M may only
support outgoing waves. Indeed, setting a1 = 1 for simplicity,
and ac = 0, ∀c = 2, . . . , M we see that Eq. (11) becomes
quadratic and one immediately finds that

λ1 = I +
√

1 + 2g1I + I2, (15)
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which after some manipulations allows us to show that

g̃1 = −I +
√

1 + 2g1I + I2 (16)

and

λ1 + g1

λ1 − 1
= I + 1 +

√
1 + 2g1I + I2

2I
,

which further implies

λ1 + g1

λ1 − 1

[
2I + (λ1 − 1)2 g1 − 1

(λ1 + g1)2

]
= 2
√

1 + 2g1I + I2.

(17)
Correspondingly, Eq. (13) takes very explicit and rather ele-
gant form

FM (I ) = 1

2
√

1 + 2g1I + I2

1∏M
j=2(I +

√
1 + 2g1I + I2 + g j )

×
∫ 1

−1
dλ2

λ2 − I +
√

1 + 2g1I + I2

I +
√

1 + 2g1I + I2 − λ2

M∏
k=2

(λ2 + gk ).

(18)

The remaining integral, hence the probability density for the
intensity I , can be evaluated in a closed form for any coupling
strengths but general results are quite cumbersome. In the
simplest case of a single open channel one gets

PM=1(I ) = 1

(1 + 2g1I + I2)3/2

×
[

2g1 − 3(g2
1 − 1)

I

1 + 2g1I + I2

]
, (19)

whereas for the two-channel case the cumulative distribution
of intensities is given by∫ ∞

I
PM=2(Ĩ ) dĨ = − g2I (λ1 + g1)

(λ1 + g2)2(1 + 2g1I + I2)

+ 1

(1 + 2g1I + I2)1/2

[
1 − 2I (λ1 + g1)

(λ1 + g2)2

]

− 1

(1 + 2g1I + I2)3/2

g2I (I + g1)

λ1 + g2
, (20)

with λ1 defined in Eq. (15). The second special case cor-
responds to all scattering channels being of equal strength:
gc = g � 1 for all c = 1, . . . , M. Defining the total incoming
flux in all channels as

I =
M∑

c=1

|ac|2, (21)

and further introducing the ratio J = I/I one finds that

λ1 = J +
√

1 + 2gJ + J2, (22)

implying that again g̃ = −J +
√

1 + 2gJ + J2, and further
finding

FM (I ) = 1

2
√

1 + 2gJ + J2

∫ 1

−1

λ2 − J +
√

1 + 2gJ + J2

J +
√

1 + 2gJ + J2 − λ2

×
(

λ2 + g

J +
√

1 + 2g1J + J2 + g

)M−1

dλ2. (23)

Evaluating the integral in the closed form, we may assume
M � 2 as we already considered M = 1 case above. We then
find

FM (I ) = − ln
λ1 − 1

λ1 + 1
− 1√

1 + 2gJ + J2

+
M−2∑
p=0

(
M − 1
p + 1

)
(−1)p

(λ1 + g)p+1
fp(I ), (24)

where we defined

fp(I ) = 1

2(p + 2)

(λ1 + 1)p+2 − (λ1 − 1)p+2√
1 + 2gJ + J2

− 1

(p + 1)
[(λ1 + 1)p+1 − (λ1 − 1)p+1], (25)

with λ1 defined in Eq. (22).
The probability density PM (I ) is then obtained by substi-

tuting Eq. (24) into Eq. (12). The most elegant result emerges
if all channels are perfectly coupled, with g = 1 implying
λ1 = 2J + 1. After some algebra we get in that case

FM (I ) = − ln
J

J + 1
−

M∑
p=1

(
M
p

)
(−1)p

p

[(
J

J + 1

)p

− 1

]
,

(26)
and after substituting into Eq. (12) the probability density for
the intensity I takes an especially simple form:

PM (I ) = (M + 1)
IM+1

(I + I )M+2
. (27)

In fact, for any coupling the tail behavior can be easily ex-
tracted from Eqs. (12) and (23) and has the same power-law
form: setting I → ∞ at a fixed value of g one finds the tail
P (I ) ∼ I−(M+2). We conclude that for any finite number of
channels the ensuing power-law-tailed distribution is quite
different from the Rayleigh law predictions of the “Gaussian
random wave” model. Note however that setting in Eq. (30)
the number of channels to infinity in such a way that the
incoming flux per channel remains finite: limM→∞ I/M =
I < ∞ restores the Rayleigh law

lim
M→∞

PM (I ) = 1

I
e−I/I . (28)

This fact supports the view that the Gaussian wave model
is asymptotically accurate if scattering system is open in an
essentially semiclassic way, with many incoming channels
supporting finite flux per channel.

In Fig. 2 we show the results for a direct numerical
simulations of the Heidelberg model against our theoretical
predictions, with a very satisfactory agreement between the
two. A few remarks are now in order.

Remark 1. The one-point intensity distribution presented
in Eqs. (12) and (13) has been obtained under a physical as-
sumption of the observation point location r to be chosen “far
enough” (much further away than the wavelength at a given
energy and frequency) from the point of attached antenna and
channel. Mathematically this condition has been implemented
by considering the value of all scalar products 〈r|wc〉 to be
negligible in comparison with the norms γc = |wc|2 for every
c = 1, . . . , M.
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FIG. 2. The histogram shows numerically evaluated probability
density P(I ) of the single-point intensity I in the Heidelberg model
for an M-channel system, with the incoming flux present only in the
first channel. The intensity data are generated according to Eq. (10)
in a given realization of GUE matrix of size N = 100. Statistics
is built using 10 000 different GUE matrix realizations. The solid
line is the theoretical prediction given by Eq. (19) for M = 1 with
the coupling constant g1 = 2.067, by Eq. (20) for M = 2 and the
coupling constants g1 = 2.067, g2 = 1.551, and Eq. (27) for M = 5
perfectly coupled channels with gi = 1

Remark 2. In the course of derivation it has been also
assumed that no irreversible losses of flux occur inside the
cavity domain. In real microwave experiments this is hardly
a realistic assumption, unless resonator walls made of super-
conducting material, like, e.g., in Ref. [33]. It is, however, well
known how to account for the uniform absorption in cavity
walls in the framework of the Heidelberg approach; see, e.g.,
Refs. [15,37]. The idea is that absorption can be treated as

loss of flux in the multitude of unobserved open channels,
very weakly coupled to the cavity. From this angle, one can
add to M observed channels a big number M̃ � 1 of channels
numbered by channel indices c = M + 1, . . . , M + M̃, all
with the same coupling strength: gM+1 = . . . = gM̃+M := ga

and consider the limits M̃ → ∞ and ga → ∞ while keeping
M̃/ga = ε fixed. It is easy to check the result of this pro-
cedure amounts to adding to the integrand, in expressions
like Eq. (13), an extra factor e−ε(λ1−λ2 ). The dimensionless
parameter ε should be then interpreted as the effective rate of
absorption. An alternative procedure for arriving to the same
result amounts to adding a small positive imaginary part iη
to the energy E in the formulation of Heidelberg model, see
Eq. (1) or its equivalent formulation Eq. (8). In particular, it
is evident from Eq. (8) that the change E → E + iη entails
the loss of S-matrix unitarity, indicating that such a procedure
accounts for the irreversible loss of incoming flux in the cavity
due to absorption. One then finds that at the level of final
formulas the net result is exactly the same factor e−ε(λ1−λ2 )

in the integrands, with the parameter ε given by the ratio of
the imaginary part η to the mean level spacing �. This fact
shows the equivalence of the two methods. It is easy to see that
the additional exponential factor in the integrand immediately
converts the most distant tails of the intensity distribution P (I )
from power law to exponential ones, so that the power-law
behavior can be observed only in a finite interval of intensities
1 � I/I � ε−1.

Remark 3. If the incoming flux is nonvanishing only in a
single channel c = 1, then the density [Eq. (19)] coincides
with M = 1 case of the distribution of the photodissociation
cross-section σ (E ) in quantum chaotic systems studied in
Ref. [38], see Eq. (18) in that paper. Such coincidence is not
at all accidental and is to be expected. Namely, in the Heidel-
berg approach the cross-section can be represented as σ (E ) ∝
Im〈m|(E − Ĥeff )−1|m〉, with Ĥeff defined after Eq. (1) and |m〉
being a fixed nonrandom vector, related to a dipole moment
operator. However, for M = 1 one may use the identity

|wa〉〈wa| = |a1|2|w1〉〈w1|

= |a1|2
2i

[(E − Ĥeff ) − (E − Ĥeff )
†], (29)

which, when substituted to Eq. (10), shows that the local
intensity in this case is proportional to the diagonal element
of the resolvent:

I = |a1|2Im〈r|(E − Ĥeff )
−1|r〉. (30)

We see that indeed intensity for M = 1 is statistically equiv-
alent to the photodissociation cross-section σ (E ), up to a
constant proportionality factor. If incoming fluxes are nonva-
nishing in more than one channel, then

|wa〉〈wa| =
∑

c

|ac|2|wc〉〈wc| +
∑
c,c′

ac′ac|wc〉〈wc′ |

and is never proportional to∑
c

|wc〉〈wc| = 1

2i
[(E − Ĥeff ) − (E − Ĥeff )

†]. (31)

As the result, the correspondence between the diagonal part of
the resolvent and the local intensity is lost, hence for M > 1
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the distribution in Eq. (27) is different from the corresponding
distribution for the normalized cross-section q = σ

〈σ 〉 at perfect
coupling, derived originally in Ref. [39]. The latter can be
given for systems of any symmetry β = 1, 2, 4 as

PM (q) ∝ q
βM

2 −1

(1 + q)βM+1
. (32)

Note however that for β = 2 the same tail behavior is shared
by Eqs. (27) and (32).

Remark 4. Finally, in the case when the waves are fed
via a single channel c = 1 one may consider the limit g1 �
gc,∀c = 2, . . . , N describing the case of extremely weak
coupling of the feeding channel. In such a limit the point
intensity studied in this paper should coincide, after appro-
priate normalization, with the so-called “transmitted power,”
whose distribution for β = 2 chaotic systems has been re-
covered in the Heidelberg approach framework in Ref. [40]
by the method of moments. One can indeed check that our
Eq. (18) in this limiting case reproduces the distribution found
in Ref. [40].

Following the same logic, one should expect Eq. (18) to be
itself deducible as a limiting case from the distribution of the
modulus of the off-diagonal element of the scattering matrix
found in Refs. [16,17]. We check in Appendix B that this is
indeed the case. Let us however stress that (i) the distribution
of intensity in the general case, Eq. (13), cannot be deduced in
such a way, and (ii) our computation despite being inspired by
Refs. [16,17] was implemented somewhat differently which
helped to arrive to the final results in a rather economic way.

B. Joint probability distribution of intensities at several points

Consider now a finite number L � N of the observation
points at locations r1, . . . rL, each location being both far
enough from each of the M antennae, as well as from each
other. We have found that for the case of ergodic systems
with broken time-reversal invariance the joint probability den-
sity of the corresponding intensities P (L)

M (I1, . . . , IL ) is very
simply related to the previously studied one-point density
P (1)

M (I ) := PM (I ) via

P (L)
M (I1, . . . , IL ) = (−1)L−1 dL−1

dIL−1
PM (I ) |I=I1+...+IL

. (33)

With this relation it is then straightforward to calculate the
probability density pM (I� ) for the sum of the intensities I� =
Il + . . . + IL:

pM (I� ) = (−1)L−1

(L − 1)!
IL−1
�

dL−1

dIL−1
PM (I� ). (34)

In particular, in the case of perfectly coupled channels
Eqs. (34) and (27) imply together:

pM (I� ) = (L + M )!

M!(L − 1)!

(
1 + I

I�

)−L IM+1

I� (I� + I )M+1
. (35)

Introducing the intensity “per point” i� = I�/L one finds that
such object has the finite limiting probability density as L →
∞:

pM (i� ) = 1

L

1

M!

IM+1

iM+2
�

e−(I/i� ), i� = lim
L→∞

I�/L. (36)

Remark 5. Summing up the intensities in Eq. (10) over all
N internal points in the cavity and using the completeness
relation

∑
r |r〉〈r| = 1̂N one finds that

∑
r Ir = a†Q̂a, where

Q̂ = Ŵ † 1

E − Ĥ − iŴŴ †

1

E − Ĥ + iŴŴ †
Ŵ . (37)

The M × M matrix Q̂ is one of most important objects in scat-
tering theory known as the Wigner-Smith time delay matrix.
Various aspects of its statistical properties in wave-chaotic
systems enjoyed intensive research over several decades, both
in the framework of RMT, see the review [41] and references
therein, as well as by semiclassical methods [42–44]. In par-
ticular, for the perfect coupling in all channels the distribution
of Q̂ is known explicitly for all β = 1, 2, 4 [45], see also
Refs. [46,47] for nonperfect couplings. Combining that dis-
tribution with Eq. (37) it is easy to verify that

∑
r Ir/I, with

I defined in Eq. (21), is distributed in the same way as the
diagonal entries Q̂cc of the matrix Q̂. In turn, for the perfect
coupling the latter entries are known to be distributed in the
same way as partial delay times τ [46] whose probability
density is explicitly given by

pM (t ) =
(

β

2

) βM
2 +1

�
(

βM
2 + 1

) 1

t
βM

2 +2
e−( β

2t ), t = τ�, (38)

where � ∼ N−1 is the mean level spacing in the closed cavity.
We then see that the distribution Eq. (36) of intensity per
point i�/I considered in the limit of many observation points
1 � L � N → ∞ coincides for β = 2 with the distribution
of the total scaled intensity �

∑
r Ir/I, i.e., sampled across

the whole cavity. This matching implies that the same result
will be valid for the (properly scaled) sum of intensities over
L ∼ Nε points, for any 0 < ε � 1.

Remark 6. For systems with preserved time-reversal in-
variance with values β = 1, 4 the problem of finding the full
distribution of the local intensity Ir for arbitrary coupling
constants gc, c = 1, . . . , M and its further L-point general-
izations remains largely open, apart from M = 1 case and
L = N case, where distributions of partial time delays are
known even at the crossover between β = 1 and β = 2; see
Ref. [48]. However, one may safely conjecture that the far
tail for all these quantities should be universally given by
P (I � I ) ∼ I− βM

2 +2, as this behavior in all cases is expected
to be controlled by the density of narrow resonances, see
discussion in p. 1967 of Ref. [13].

C. Distribution of the maximal and minimal intensities in a
multipoint observation

Having at our disposal the joint probability density
P (L)

M (I1, . . . , IL ) given by Eq. (33) one can pose a natural
question of the distribution of the maximal and minimal value
in the observed pattern:

Imax = max(I1, . . . , IL ), Imin = min(I1, . . . , IL ). (39)

Note that extreme values of the intensity field in chaotic rever-
beration chambers were studied experimentally in Ref. [49].

The joint probability (33) implies that intensities in differ-
ent spatial points are in general correlated, apart from the only
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case when the single-point intensity is given by the exponen-
tial Rayleigh law PM (I ) ∝ e−I/I . Thus, the posed questions
belong to the domain of extreme value statistics of many
correlated variables Ik , which attracted a lot of attention in
recent years, especially when L → ∞; see Ref. [50] for a
review. One of the most studied cases in this area is one
inspired by the pattern of repelling eigenvalues of large ran-
dom matrices, with correlations induced via the presence of
the Vandermonde factor

∏
k<l |Ik − Il | in the associated joint

probability density, ultimately leading to the famous Tracy-
Widom distribution for the associated extreme values [50]. To
this end it is necessary to stress that the correlations in the
pattern of intensities emerging in our problem are of a very
different nature, and induced rather by the joint probability
density depending on all individual intensities only via their
sum

∑
k Ik . Extreme value statistics for such case was not

much studied, though a special case appeared in Ref. [51],
which in our language would correspond to the particularly
simple choice P (L)(I1, . . . , IL ) ∝ δ(I1 + . . . + IL ), and very
recently also in the context of resetting problems in Ref. [52].
This motivated us to perform the analysis in our case in some
detail.

After some computations explained in detail in Sec. IIIB
one finds the general relation in terms of the single-point
density PM (I ):

Prob(Imax < Y ) =
L∑

l=0

(−1)l

(
L
l

)∫ ∞

lY
PM (I ) dI, (40)

whereas Prob(Imin > Y ) = ∫∞
LY PM (I ) dI . In particular, for the

perfect coupling case one can use Eq. (27) and get

Prob(Imax < Y ) =
L∑

l=0

(−1)l

(
L
l

)
1(

1 + l Y
I
)M+1 (41)

and

Prob(Imin > Y ) = 1(
1 + L Y

I
)M+1 . (42)

We see that in such a pattern of L observation points the
typical minimal intensity scales as I typ

min ∼ IL−1 and the limit-
ing density of the variable σmin = L Imin

I is given by ρ(σmin) =
(M + 1)(1 + σmin)−(M+2), thus of the same form as the density
of the one-point intensity. The statistics of Imax is somewhat
more interesting. To start with, consider the simplest case of
the Rayleigh law P (I ) = 1

I
e−I/I obtained in the limit of many

open channels, keeping the incoming flux per channel finite:
lim

M→∞
I/M = I < ∞; see Eq. (28). In this case it is easy to see

that

Prob(Imax < Y ) = (1 − e−Y/I )L. (43)

Setting Y/I = ln L + q we then recover in the limit L → ∞
the Gumbel distribution:

Prob[Imax < I (ln L + q)] = exp(−e−q), (44)

smoothly interpolating between zero at q → −∞ and one for
q → ∞. The Gumbel law is one of the classical extreme value
statistics (EVS) and is fully expected here as the intensities Il

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4

FIG. 3. The histogram shows numerically evaluated probability
density of the maximum intensity in a pattern of L = 2, L = 6, and
L = 25 internal points in the Heidelberg model for a single perfectly
open channel system. The intensity data are first generated according
to Eq. (10) at 200 randomly chosen inner points in a given realization
of GUE matrix of size N = 200. Statistics is built using 100 random
subsets of L points per every realization, and the displayed data
correspond to 1000 different GUE matrix realizations. The solid line
for a fixed L is the theoretical prediction given by Eq. (45).

at different points are uncorrelated. Note also that the thresh-
old of extreme values is located to the leading order sharply at
Imax/I = ln L + o(1). Turning our attention now to the finite
number of channels, Eq. (41) can be alternatively represented
as

Prob(Imax < Y ) = 1

M!

∫ ∞

0
dv vMe−v

(
1 − e−v Y

I
)L

. (45)

In the Fig. 3 below we compare the probability density asso-
ciated with Eq. (45) to the results of numerically generated
intensity pattern in the Heidelberg model for the simplest case
of a single-channel system. The results show a reasonable
overall agreement.

Setting in Eq. (45) Y = σmaxI ln L and considering σmax >

0 fixed as L → ∞ one first notices that

lim
L→∞

(1 − e−σmaxv ln L )L =
{

0, if 0 < v < σ−1
max,

1, if v > σ−1
max.

It is now straightforward to see that the typical maximal in-
tensity in a pattern of many points is scaled logarithmically
with the number L of observation points: I (typ)

max ∼ I ln L, and
the limiting distribution for the properly rescaled maximum
intensity is given by

lim
L→∞

Prob(Imax < I ln Lσmax) = 1

M!

∫ σmax

0

dt

tM+2
exp

(
−1

t

)
,

(46)
implying that the probability density for the scaled maximal
intensity σmax = Imax

I ln L converges in the limit of many observa-
tion points to

ρ(σmax) = 1

M!σmax
M+2

exp − 1

σmax
, (47)

as long as cavity with broken time-reversal invariance
is perfectly coupled to antennas. This type of extreme
value statistics resembles the Frechet law density ρ(σ ) =
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ασ−α−1e−σ−α

arising in random patterns of independent, iden-
tically distributed random variables Ik , each distributed with a
power-law density P(I ) ∼ I−(α+1). Comparing with Eq. (27)
we may identify α = M + 1, and see that had the intensi-
ties be independent, the associated Frechet density for the
maximum would be different from Eq. (47), replacing σ−1

with σ−(M+1) in the exponential factor. Equation (47) does
not seem to appear in the literature on extreme values before.
Note that it is the same law as the limiting intensity per point,
Eq. (36), or partial delay times, Eq. (38). An interesting open
question is to verify if this property still holds for systems with
preserved time-reversal invariance.

To make contact with the previously considered Rayleigh
case, one may consider M → ∞ limit in Eq. (46). Recalling
that in this limit we assume I = MI we further introduce
σmaxM = σmax and assume it to remain finite in the limit
M → ∞. We also rescale t = τ/M, which gives

lim
M→∞

lim
L→∞

Prob(Imax < σmax I ln L)

= lim
M→∞

MM+1

M!

∫ σmax

0
dτe−M(ln τ+ 1

τ ), (48)

which upon evaluating the integral by the Laplace method
yields

lim
M→∞

lim
L→∞

Prob(Imax < σmax I ln L)

=
⎧⎨
⎩

1 if σmax > 1
1/2 if σmax = 1
0 if σmax < 1

. (49)

This agrees with the fact that the threshold of extreme values
in this case is sharply at Imax = I ln L, but such interchange
of limits (first L → ∞, then M → ∞) misses the fine-scale
Gumbel distribution, replacing it by the step function. To
improve on that one has to consider the following double
scaling limit in Eq. (45): both M and L tending to infinity in
such a way that ln L√

M
= c, with c ∈ [0,∞) kept constant, and

also lim
M→∞

I/M = I < ∞. In such a limit one finds that

lim
L→∞

Prob[Imax < I (ln L + q)]

=
∫ ∞

−∞

dw√
2π

e− w2

2 exp(−e−q−cw ), (50)

providing a family of interpolating distributions and reducing
to Gumbel for c = 0.

III. OUTLINE OF THE METHOD AND DERIVATIONS
OF THE MAIN RESULTS

A. Distribution of one-point intensity

To characterize the distribution of one-point intensity Ir we
use the method of Laplace transform generating functions and
aim to calculate for p > 0 the function

L(p) := 〈e−pIr 〉 = 〈e−pu∗(r)u(r)〉, (51)

where u(r) := 〈r|u〉 is the amplitude of the wave in a point
r inside the cavity, and angular brackets stand for averaging
performed over the random matrix Hamiltonian Ĥ , assumed
to be represented by a GUE matrix. As the first step of the

evaluation we find it to be expedient to use a variant of the
Gaussian (Hubbard-Stratonovich) transformation, represent-
ing L(p) as

〈
e−pu∗(r)u(r)〉 = ∫ dq∗dq

π
e−q∗qR(q, q∗), (52)

where we defined

R(q, q∗) := 〈e−i
√

p(q∗u(r)+qu∗(r))
〉
, (53)

which by using Eq. (56) below can be equivalently written as

R(q, q∗)

=
〈
e
−i

√
p
(

q∗〈r| 1
E−Ĥ+iŴŴ † |wa〉+q〈wa| 1

E−Ĥ+iŴŴ † |r〉
)〉

. (54)

We also recall a more general Gaussian identity∫
e−z†Âz−(a†z+z†b)dzdz† = πN

det Â
exp(a†Â−1b) (55)

valid, as long as the integral over z ∈ CN is convergent, for
any N × N matrix Â and any complex-valued N-component
vectors a, b.

Let us recall the definition:

u(r) := 〈r| 1

E1N − Ĥ + i�̂η

|wa〉, (56)

where we defined

�̂η = η1N + π

M∑
c=1

wc ⊗ w†
c , ε > 0, (57)

with η > 0 being a regularization parameter, physically cho-
sen to be proportional to the uniform absorption in the sample.

Now we use Eq. (55) for Â = −i(E − Ĥ + i�̂η ) to observe
that

e−i
√

pq∗u(r) ∝ det(E1N − Ĥ + i�̂η )

×
∫

dz1dz†
1 eiz†

1(E1N −Ĥ+i�̂η )z1−ip1/4(q∗〈r|z1〉+〈z1|wa〉). (58)

Similarly, for Â = i(E − Ĥ − i�̂η ) we may see that

e−i
√

pqu∗(r) ∝ det (E1N − Ĥ − i�̂η )

×
∫

dz2dz†
2 e−iz†

2(E1N −Ĥ−i�̂η )z2+ip1/4(q〈wa|z2〉−〈z2|r〉). (59)

Note that here and below we systematically disregard the
proportionality constants, restoring them in final expressions
by normalization conditions, and also find it convenient inter-
mittently use the bra-ket notations for the scalar products, e.g.,
〈z|wa〉 ≡ z†wa. Another useful remark is that there is a certain
freedom in choosing the arrangement of the variables q, q∗ in
front of scalar products in the exponents, and we exploited it
in two different ways in Eqs. (58) and (59). This choice will
be a posteriori justified by very essential simplification of the
forthcoming calculations.

However, the determinant factors entering Eqs. (58) and
(59) can be represented as Gaussian integrals over anticom-
muting N vectors χσ and χ∗

σ with σ = 1, 2:

det(E − Ĥ ± �̂η ) =
∫

dχσ dχ∗
σ exp[−iχ†

σ (E − Ĥ ± �̂η )χσ ],
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with no issues of convergence arising in this case by defi-
nition. It is convenient to combine vectors with commuting
and anticommuting components in a single 4N-dimensional
supervector � defined as

� =

⎛
⎜⎜⎝

z1

χ1
z2

χ2

⎞
⎟⎟⎠, d�d�† = dz1dz†

1dχ1dχ†
1dz2dz†

2dχ2dχ†
2,

(60)
and also introduce supermatrices L̂ =
diag(1, 1,−1, 1), �̂ = diag(1, 1,−1,−1). To shorten
the notation we in most cases do not distinguish between the
number 1 and identity matrix 1N when the dimensions are
evident from the context.

As the result, we can rewrite the function R(q, q∗) in
Eq. (54) as

R(q, q∗) =
∫∫

d�d�†〈ei�†((E−Ĥ )L̂+iL̂�̂�̂η )�〉

× e−ip1/4(�†ξ1+ξ†
2�), (61)

where the supervectors ξσ are given by

ξ1 =

⎛
⎜⎜⎝

wa
0N

r
0N

⎞
⎟⎟⎠, ξ†

2 = (q∗r†, 0T
N ,−q w†

a, 0T
N

)
. (62)

Closely following a variant of the supersymmetry approach as
exposed, e.g., in Ref. [13] (one may consult also the lectures
[53] for the detail of similar procedures), one can perform the
average over GUE matrices Ĥ and, after exploiting a super-
matrix version of the Hubbard-Stratonovich transformation
and peforming the Gaussian integrals over the supervectors
�, arrive at the following representation in terms of a 4 × 4
supermatrix R̂ (see the above references for its structure moti-
vated by convergence arguments):

R(q, q∗)

=
∫

dR̂ e− N
2 StrR̂2

Sdet−1[(1N ⊗ L̂1/2)Ĝ(1N ⊗ L̂1/2)]

× e−p1/2ξ†
2(1N ⊗L̂1/2 )Ĝ(1N ⊗L̂1/2 )ξ1 , (63)

where we introduced the 4N component supermatrix Ĝ =
−i1N ⊗ (E − R̂) + �̂η ⊗ �̂. In what follows we assume the
scaling η = ε/2N , with ε fixed as N → ∞, and in the limit
N � 1 perform the R̂ integral in Eq. (63) by the saddle-point
method, assuming the number of channels M being fixed.
Repeating the same steps as in Ref. [13], the R̂ integral is
reduced to one over a saddle-point manifold parametrized
by a 4 × 4 supermatrix Q̂ = T̂ �̂T̂ −1 where supermatrices
T̂ satisfy T̂ †L̂T̂ = L̂. In the Appendix A we give an ex-
plicit parametrization of these matrices for convenience of
the reader. To simplify the presentation we also assume for
simplicity E = 0, the results for general E are obtained via the
well-known rescaling using the semicircular density of GUE
eigenvalues as in Ref. [13]. After all these steps one arrives at

the following representation:

R(q, q∗) =
∫

dμ(Q̂) e− 1
2 εStrQ̂�̂

M∏
c=1

Sdet[14 + γc(�̂Q̂)]

× exp

{
−p1/2ξ†

2

[ ∞∑
k=0

(−�̂)k ⊗ τ̂k

]
ξ1

}
, (64)

where we introduced the short-hand notation τ̂k ≡
L̂−1/2Q̂(�̂Q̂)kL̂−1/2 and used the parameters γc as defined in
Eq. (2).

To evaluate the expression in the exponent of Eq. (64) we
use the definition Eq. (62) of supervectors ξ1,2 to write the kth
term in the sum as

ξ†
2(�̂k ⊗ τ̂k )ξ1 = q∗〈r|�̂k|wa〉(τ̂k )b1b1 − q〈wa|�̂k|wa〉(τ̂k )b2b1

+ q∗〈r|�̂k|r〉(τ̂k )b1b2 − q〈wa|�̂k|r〉(τ̂k )b2b2.

(65)

Due to the condition of orthogonality of channels, see Eq. (2),
we have �̂k|wc〉 = γ k

c |wc〉 and

�̂|wa〉 =
(

M∑
c=1

wc ⊗ w†
c

)
|wa〉 =

M∑
c=1

acγc|wc〉

iterating, which implies �̂k|wa〉 =∑M
c=1 acγ

k
c |wc〉, hence

〈wa|�̂k|wa〉 =
M∑
c

|ac|2γ k+1
c . (66)

Next important assumption is to consider only the observation
of intensity in points far from the channel entrances. Such
a condition is taken into account assuming that 〈wc|r〉 =
0, ∀c = 1, . . . , M, implying that 〈r|�̂k|r〉 = 〈r|r〉δk,0. In prin-
ciple, here one may put 〈r|r〉 = 1, but we leave it in this form
as it will help to understand some arising structures later on.

Further, using the identity
∞∑

k=0

[(−1)kγ k
c (�̂Q̂)k] = (1 + γc�̂Q̂)−1,

one can obtain

ξ†
2

[ ∞∑
k=0

(−�̂)k ⊗ τ̂k

]
ξ1

= −q
M∑

c=1

|ac|2γcD̂c(Q)b2b1 + q∗〈r|r〉(L̂−1/2Q̂L̂−1/2)b1b2,

(67)

where we introduced the supermatrices

D̂c(Q̂) = L̂−1/2Q̂(1 + γc�̂Q̂)−1L̂−1/2 ∀ c = 1, . . . , M.

(68)
Substituting Eq. (67) into Eq. (68) gives

R(q, q∗) =
∫

dμ(Q) e− 1
2 εStrQ̂�̂

M∏
c=1

Sdet[14 + γc(�̂Q̂)]

× e−p1/2[−q
∑M

c=1 |ac|2γcD̂c (Q̂)b2b1+q∗〈r|r〉(L̂−1/2Q̂L̂−1/2 )b1b2].

(69)
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Substituting further such a R(q, q∗) into Eq. (53) one may
notice that the integral over q, q∗ can be easily performed

resulting in the following Laplace transformed density of the
single-point intensity:

L(p) := 〈e−pIr 〉 =
∫

dμ(Q) e− 1
2 εStrQ̂�̂

M∏
c=1

Sdet[14 + γc(�̂Q̂)] × exp

[
−p〈r|r〉

M∑
c=1

|ac|2γc(L̂−1/2Q̂L̂−1/2)b1b2 D̂c(Q̂)b2b1

]
. (70)

We see that the dependence on the Laplace parameter p in
Eq. (70) is extremely simple, which is a direct consequence of
the specific choice made by us in Eqs. (58) and (59). This fact
allows us to invert the Laplace transform immediately, getting
the probability density for the single-point intensity via

PM (I ) := 〈δ(I − Ir )〉

=
∫

dμ(Q) e− 1
2 εStr�̂Q̂

M∏
c=1

Sdet[14 + γc(�̂Q̂)]

× δ[I −
M∑

c=1

|ac|2γc(L̂−1/2Q̂L̂−1/2)b1b2 D̂c(Q̂)b2b1],

(71)

where we eventually replaced 〈r|r〉 = 1. Explicit evaluation
of such an integral is sketched in the Appendix A, and leads
to the form featuring in Eq. (12).

B. Joint probability of intensities at L observation points
and extreme value statistics

Let us now consider the computation of the joint prob-
ability density P (L)

M (I1, . . . , IL ) of wave intensities I1 =
|u(r1)|2,..., IL = |u(rL )|2, where u(rl ) := 〈rl |u〉 is the ampli-
tude of the wave in a point rl inside the cavity, l = 1, . . . , L.
To start with, we define for the parameters p1>0, . . . , pL>0
the joint Laplace transform:

L(p1, . . . , pL ) := 〈e−∑L
l=1 pl u∗(r1 )u(rl )

〉
, (72)

which after applying Gaussian (Hubbard-Stratonovich) trans-
formations L times takes the form

L(p1, . . . , pL ) =
∫ ∏L

l=1 dq∗
l dql

(π )L
e−∑L

l=1 q∗
l qlR({ql , q∗

l }),

(73)
where

R(q1, q∗
1, . . . , qL, q∗

L ) := 〈e−i
∑L

l=1
√

pl (q∗
l u(rl )+ql u∗(rl ))〉. (74)

Now one may notice that Eq. (9) implies

L∑
l=1

√
pl q∗

l u(rl ) = 〈X| 1

E − Ĥ + iŴŴ †
|wa〉, (75)

where we defined

〈X| =
L∑

l=1

√
pl q∗

l 〈rl|, |X〉 =
L∑

l=1

√
pl ql |rl〉 (76)

and similarly

L∑
l=1

√
pl u∗(rl ) = 〈wa| 1

E − Ĥ + iŴŴ †
|X〉. (77)

Using the above one can see that we need to evaluate

R(q1, q∗
1, . . . , qL, q∗

L )

= 〈e−i〈X| 1
E−Ĥ+iŴŴ † |wa〉−i〈wa| 1

E−Ĥ+iŴŴ † |X〉〉
. (78)

Now, comparing Eq. (78) with Eq. (54) one may notice that
putting p = q = 1 in the later, and replacing also |r〉 → |X〉
makes the two expressions identical. Moreover, assuming that
all observation points to be located far from every channel
entrance implies that the vector |X〉, being a linear combina-
tion of |rl〉, will be orthogonal to all channel vectors |wc〉.
Therefore, the evaluation of ensemble average in Eq. (78)
should be simply read off from the expression Eqs. (69) for
R(q1, q∗

1 ), implying that

R(q1, q∗
1, . . . , qL, q∗

L )

:= R̃(〈X|X〉)

=
∫

dμ(Q̂) e− 1
2 εStrQ̂�̂

M∏
c=1

Sdet[14 + γc(�̂Q̂)]

× e−〈X|X〉(L̂−1/2Q̂L̂−1/2 )b1b2+
∑M

c=1 |ac|2γcD̂c (Q̂)b2b1, (79)

where we made explicit the fact that R depends on the vari-
ables ql , q∗

l for all l = 1, . . . , L (as well as on the Laplace
parameters pl ) only via the norm:

〈X|X〉 =
L∑

l=1

plq
∗
l ql , (80)

where in the above we exploited the inner basis orthogonal-
ity: 〈rl1 |rl2〉 = δl1l2 . Substituting such dependence back into
Eq. (73), passing to polar coordinates: ql = √

Rleiθl , and fi-
nally rescaling Rl → p−1

l Rl leads to

L(p1, . . . , pL ) =
∫

R̃
(

L∑
l=1

Rl

)
L∏

l=1

e− Rl
pl dRl

pl
. (81)

In such a form the joint Laplace transform can be easily
inverted due to the well-known identity involving the Bessel
function J0(z):

e− R
p

p
=
∫ ∞

0
e−pI J0(2

√
IR)dI,

yielding the joint probability density of L intensities in the
form

P (L)
M (I1, . . . , IL ) =

∫ ∞

0
R̃
(

L∑
l=1

Rl

)
L∏

l=1

J0(2
√

IRl ) dRl .

(82)

044206-10



INTENSITY STATISTICS INSIDE AN OPEN … PHYSICAL REVIEW E 108, 044206 (2023)

At the next step we use the following chain of identities:

R̃
(

L∑
l=1

Rl

)
=
∫ ∞

0
R̃(t )δ

(
t −

L∑
l=1

Rl

)
dt

=
∫ ∞

0
dtR̃(t )

∫ ∞

−∞
eik(t−∑L

l=1 Rl ) dk

2π
. (83)

Substituting this back to Eq. (82), changing the order of inte-
grations and using that∫ ∞

0
J0(2

√
IR)e−ikRdR = 1

ik
e

i
k I (84)

one arrives to the following representation for the joint prob-
ability density:

P (L)
M (I1, . . . , IL ) =

∫ ∞

0
dtR̃(t )�L(I1 + . . . + IL; t ), (85)

where for the function �L(I; t ) one easily finds that

�L(I; t ) ≡
∫ ∞

−∞
ei(kt+ I

k ) dk

2π (ik)L

= (−1)L−1 dL−1

dIL−1
J0(2

√
It ). (86)

Here in the last step we used the inversion of Eq. (84). This
finally implies

P (L)
M (I1, . . . , IL ) = (−1)L−1 dL−1

dIL−1

∫ ∞

0
dtR̃(t )J0(2

√
It )

(87)

= (−1)L−1 dL−1

dIL−1
PL=1(I )

∣∣∣I=∑L
k=1 Ik

, (88)

coinciding with Eq. (33).
To reflect that this joint probability density depends on

individual intensities only via their sum
∑L

k=1 Ik we define
the function P̃ (L)

M (I ) via P (L)
M (I1, . . . , IL ) = P̃ (L)

M (
∑L

k=1 Ik ). In
particular, for finding the probability density for the sum of all
intensities, Eq. (34), we use the identity∫ ∞

0
f

(
L∑

k=1

Ik

)
δ

(
I −

L∑
k=1

Ik

)
L∏

k=1

dIk = IL−1

(L − 1)!
f (I ).

Our next step is to consider the simplest extreme value statis-
tics, the distributions of the maximal and the minimal value in
the pattern, defined as

Prob(Imax < Y ) =
∫ Y

0
P (L)

M (I1, . . . , IL )
L∏

k=1

dIk (89)

and similarly

Prob(Imin > Y ) =
∫ ∞

Y
P (L)

M (I1, . . . , IL )
L∏

k=1

dIk .

We will concentrate on the former as the most interesting.
Using the same type representation as in Eq. (83),

P̃ (L)
M

(
L∑

l=1

Il

)
=
∫ ∞

0
P̃ (L)

M (t ) dt
∫ ∞

−∞
eik(t−∑L

l=1 Il ) dk

2π
, (90)

one easily finds

Prob(Imax < Y ) =
∫ ∞

0
P̃ (L)

M (t )TL(t ;Y ) dt, (91)

where we defined

TL(t ;Y ) :=
∫ ∞

−∞
eikt

(
1 − e−ikY

ik

)L
dk

2π
.

Expanding the binomial and using the identity:∫ ∞

−∞

eikt

(β + ik)ν
dk

2π
= tν−1

�(ν)
e−βtθ (t ), β > 0, ν > 0,

where θ (t ) = 1 for t > 0 and zero otherwise, one finds

TL(t ;Y ) =
L∑

l=0

(−1)l

(
L
l

)
(t − lY )L−1

�(L)
θ (t − lY ).

In particular, one can see that

TL(t ;Y ) = tL−1

�(L)
, 0 � t < Y,

and TL(t ;Y ) = 0 for t > LY . This fact, together with the rela-
tion Eq. (33) allows us to integrate by parts in Eq. (91), which
eventually results in the first of relations Eq. (40).

IV. CONCLUSION

With this work we obtained a pretty complete description
of intensity statistics inside irregularly shaped microwave res-
onator in the quantum chaos regime with broken time-reversal
invariance, including multipoint distributions and extreme
value statistics. In case of finite number of open channels
and no absorption inside all expressions can be, in principle,
reduced to elementary functions. In such a case the one-point
intensity is generically power-law-distributed, in clear differ-
ence with the well-known random Gaussian wave conjecture,
cf. Eq. (6), predicting the exponential Rayleigh law. The lat-
ter is only recovered in the very open system limit, while
keeping the incoming flux per channel constant. If however
uniform losses in the cavity (modeled, e.g., by infinite number
of weakly coupled hidden channels) are taken into account,
the power law remains only valid in a restricted range of
intensities, being cut exponentially at larger values. Inter-
estingly, we demonstrated that the joint probability density
of intensities sampled at many points depends only on the
sum of individual intensities. We do not have a transparent
explanation of such a pattern, though it may be traced back to
the statistical independence of the real and imaginary parts of
the complex wave functions in a closed cavity, so is definitely
expected to hold only for systems with fully broken time-
reversal invariance. Even with such a simple dependence, the
intensities at different spatial points are clearly correlated,
unless the system is in the Rayleigh regime. In particular, by
extracting the statistics of the highest intensity in an obser-
vation pattern of L points explicitly in the perfect coupling
regime we were able to demonstrate that the ensuing extreme
values distribution for fixed M and L → ∞, Eq. (47), differs
from the classical extreme value statistics. This provides an
example of nontrivial EVS which is potentially accessible in
experiments, provided the losses due to absorption can be

044206-11



YAN V. FYODOROV AND ELIZAVETA SAFONOVA PHYSICAL REVIEW E 108, 044206 (2023)

effectively controlled. The problem of characterizing multi-
point and extreme value statistics in systems with preserved
time-reversal invariance remains currently open. Calculations
in the supersymmetry approach for that case are expected to
yield much more cumbersome structures, cf. Refs. [16,17] for
the statistics of the modulus of off-diagonal entries of the
S matrix. In particular, we expect that the property of the
joint distribution of intensities depending only on the sum of
individual intensities will be lost in the systems with preserved
time-reversal invariance. Such a study presents therefore an
interesting challenge for the future research. Another possible
extension is to consider modifications of intensity statistics by
the effects of Anderson localization, which are operative in
disordered systems of finite spatial dimension. To this end it is
worth mentioning that some aspects of wave intensity statis-
tics inside quasi-1D disordered samples have been recently
under experimental investigation; see, e.g., Refs. [54,55]. In
the framework of the supersymmetry formalism exploited in
the present work this would require to go beyond the effec-
tively zero-dimensional limit and combine the 1D nonlinear σ

model description of interacting diffusive modes, see Ref. [56]
and references therein, with the Heidelberg model formalism.
For a few examples of recent studies of not dissimilar prob-
lems; see, e.g., Refs. [55,57].
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APPENDIX A: PARAMETERIZATION OF Q̂
SUPERMATRICES AND RELATED FORMULAS

We use the same parametrization as in Ref. [53], and de-
scribe it below for convenience of the reader. First one defines
two unitary 2 × 2 supermatrices

Û1 = exp

(
0 −α∗
α 0

)
, Û2 = exp i

(
0 −β∗
β 0

)
, (A1)

where α, α∗, β, β∗ are anticommuting variables. In terms of
those the 4 × 4 supermatrix Q̂ is defined as

Q̂ =
(

Û1

Û2

)⎛⎜⎜⎝
λ1 0 iμ1 0
0 λ2 0 μ∗

2
iμ∗

1 0 −λ1 0
0 μ2 0 −λ2

⎞
⎟⎟⎠
(

Û −1
1

Û −1
2

)
,

(A2)

where

1 � λ1 < ∞, μ1 = |μ1|eiφ1 , |μ1|2 = λ2
1 − 1,

−1 � λ2 � 1, μ2 = |μ2|eiφ2 , |μ2|2 = 1 − λ2
2.

The measure dμ(Q̂) will take the following form:

dμ(Q̂) = − dλ1dλ2

(λ1 − λ2)2
dφ1dφ2dαdα∗dβdβ∗. (A3)

It is immediate to check that in this parametrization Str�̂Q̂
and Sdet(14 + γc�̂Q̂) take the form

Str�̂Q̂ = 2(λ1 − λ2),

Sdet(14 + γc�̂Q̂) = 1 + 2γcλ1 + γ 2
c

1 + 2γcλ2 + γ 2
c

, (A4)

correspondingly. We also need the following combinations:

D̂c
(
Q̂
)

b1b2 = −i

[
iμ1

1 + 2γcλ1 + γ 2
c

(
1 + β∗β

2

)(
1 − α∗α

2

)

+ iα∗ μ∗
2

1 + 2γcλ2 + γ 2
c

β

]
, (A5)

which can be used to get also (L̂−1/2Q̂L̂−1/2)b1b2 =
lim
γc→0

D̂c(Q̂)b1b2. Similarly,

D̂c(Q̂)b2b1 = −i

[
iμ∗

1

1 + 2γcλ1 + γ 2
c

(
1 + β∗β

2

)(
1 − α∗α

2

)

+ iβ∗α
μ2

1 + 2γcλ2 + γ 2
c

]
. (A6)

Substituting all this to Eq. (71) gives

PM (I ) =
∫

dμ(Q̂) e−ε(λ1−λ2 )
M∏

c=1

(
λ2 + gc

λ1 + gc

)

× δ

[
I − 〈r|r〉

M∑
c=1

|ac|2Ac(Q̂)

]
, (A7)

where

Ac(Q̂) = 1

2

|μ1|2
λ1 + gc

(1 + β∗β − α∗α − β∗βα∗α)

+α∗β
1

2

μ∗
1μ

∗
2

λ1 + gc
+ β∗α

1

2

μ1μ2

λ2 + gc

−β∗βα∗α
1

2

|μ2|2
λ2 + gc

. (A8)

Now one may expand the Dirac δ function into anticommuting
variables and perform the corresponding integrals, and then
over angular variables φ1,2. After straightforward algebraic
manipulations one arrives at

PM (I ) = δ(I ) − dFM (I )

dI
+ d2

dI2
[IFM (I )], (A9)

where FM (I ) will be defined in Eq. (A8). Here we note
that as explained in the Appendix of the paper [40] the so-
called “Efetov-Wegner” term δ(I ) in Eq. (A9) gets eventually
canceled and can be omitted. The function FM (I ) is given
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explicitly by

FM (I ) =
∫ ∞

1

∫ 1

−1

dλ1dλ2

(λ1 − λ2)2
e−ε(λ1−λ2 )

M∏
c=1

(
λ2 + gc

λ1 + gc

)

×
(

I + |μ2|2
2

M∑
c=1

|ac|2
λ2 + gc

)

× δ

(
I − |μ1|2

2

M∑
c=1

|ac|2
λ1 + gc

)
. (A10)

After further manipulations using |μ1|2 = λ2
1 − 1, |μ2|2 =

1 − λ2
2 and noticing that the δ-functional constraint implies

I = λ1 − 1

2

M∑
c=1

|ac|2 λ1 + 1

λ1 + gc

= λ1 − 1

2

M∑
c=1

|ac|2
(

1 − gc − 1

λ1 + gc

)
(A11)

and (
I + |μ2|2

2

M∑
c=1

|ac|2
λ2 + gc

)∣∣∣∣I= |μ1 |2
2

∑M
c=1

|ac |2
λ1+gc

= λ1 − λ2

2

M∑
c=1

|ac|2 λ1λ2 + gc(λ1 + λ2) + 1

(λ1 + gc)(λ2 + gc)
, (A12)

we can bring Eq. (A8) to the form featuring in Eq. (12).

APPENDIX B: RELATION TO NOCK ET AL. [17]

Reference [17] provided the explicit result for the proba-
bility density of the modulus |Sab| := r for the S-matrix entry
between two different channels a �= b, where without reduc-
ing generality one may consider a = 1 and b = M. For the
systems with broken time-reversal invariance the probability
density Pr (r) for the variable r [normalized in such a way that∫∞

0 Pr (r) r dr = 1] can be found in Eqs. (60)–(62) of Ref. [17]
and is represented in the form

Pr (r) = 1

r

∂

∂r
r

∂

∂r
f (r), (B1)

where

f (r) = 1

2

(g1 + λ1)2(gM + λ1)2

(g1 + gM )λ2
1 + 2(g1gM + 1)λ1 + (g1 + gM )

U (r),

(B2)
and U (r) is given by

U (r) =
∫ 1

−1

dλ2

(λ1 − λ2)2

M∏
c=1

gc + λ2

gc + λ1

×
[

λ2
1 − 1

(g1 + λ1)(gM + λ1)
+ 1 − λ2

2

(g1 + λ2)(gM + λ2)

]
,

(B3)

with λ1 for a given r being defined via

λ1 = (g1 + gM )r2 +
√

(g1 − gM )2r4 + 4r2(g1gM − 1) + 4

2(1 − r2)
.

(B4)
However, recall that according to Eq. (1) we have

|S1M |2 = 4

∣∣∣∣〈w1| 1

E − Ĥ + iŴŴ †
|wM〉

∣∣∣∣
2

:= r2, (B5)

where ŴŴ † =∑M
c=1 wc ⊗ w†

c . Consider now the limit γM =
|wM |2 → 0 while keeping |wc|2 = γc of the order of unity
for all c �= M. Physically this corresponds to almost closing
the channel with c = M, with the effective coupling gM ≈

1
2|wM |2 � gc, ∀c < M. It is then easy to see that in such a limit

|S1M |2 → 0, whereas the product |S1M |2gM/2 remains finite
and simply proportional to the intensity I at a single point
inside the cavity given by Eq. (10), provided we reduce the
number of open channels by one and consider the incoming
wave amplitudes ac to be nonzero only for c = 1. We therefore
can extract the probability distribution of the point intensity in
such a case by performing the limit gM → ∞ and r2 → 0 in
Eq. (B2) while keeping r2gM = 2I and gc, ∀c < M finite. In
such a limiting procedure we get

λ1 → I +
√

I2 + 2g1I + 1,

M∏
c=1

gc + λ2

gc + λ1
→

M−1∏
c=1

gc + λ2

gc + λ1

and

1

2

(g1 + λ1)2(gM + λ1)2

(g1 + gM )λ2
1 + 2(g1gM + 1)λ1 + (g1 + gM )

≈ gM

2

(g1 + λ1)2

λ2
1 + 2λ1g1 + 1

= gM

2

(g1 + λ1)

2
√

I2 + 2g1I + 1
. (B6)

Further, we have

λ2
1 − 1

(g1 + λ1)(gM + λ1)
+ 1 − λ2

2

(g1 + λ2)(gM + λ2)

≈ 1

gM

[
λ2

1 − 1

(g1 + λ1)
+ 1 − λ2

2

(g1 + λ2)

]

= (λ1 − λ2)

gM

[g1(λ1 + λ2) + λ1λ2 + 1]

(g1 + λ1)(g1 + λ2)

= (λ1 − λ2)

gM

(g̃1 + λ2)

g1 + λ2
, (B7)

where we used the definitions Eqs. (14) and (16):

g̃1 = g1λ1 + 1

g1 + λ1
= −I +

√
I2 + 2g1I + 1.

Substituting all these factors back to Eqs. (B2) and (B3) yields
finally

f (r) → FM−1(I ) = 1

4
√

I2 + 2g1I + 1

1∏M−1
c=1 (gc + λ1)

×
∫ 1

−1

dλ2

λ1 − λ2
(g̃1 + λ2)

M−1∏
c=2

(gc + λ2),

(B8)
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which together with

P(r) = 1

r

∂

∂r
r

∂

∂r
f (r) → P(I ) = 4

∂

∂I
I

∂

∂I
FM−1(I )

reproduces exactly the pair Eqs. (12)–(18) with obvious re-
placement M → M − 1.
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