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Composite spiral waves in discrete-time systems
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Spiral waves are a type of typical pattern in open reaction-diffusion systems far from thermodynamic
equilibrium. The study of spiral waves has attracted great interest because of its nonlinear characteristics and
extensive applications. However, the study of spiral waves has been confined to continuous-time systems, while
spiral waves in discrete-time systems have been rarely reported. In recent years, discrete-time models have been
widely studied in ecology because of their appropriateness to systems with nonoverlapping generations and
other factors. Therefore, spiral waves in discrete-time systems need to be studied. Here, we investigated a novel
type of spiral wave called a composite spiral wave in a discrete-time predator-pest model, and we revealed the
formation mechanism. To explain the observed phenomena, we defined and quantified a move state effect of
multiperiod states caused by the coupling of adjacent stable multiperiod orbits, which is strictly consistent with
the numerical results. The other move state effect is caused by an unstable focus, which is the state of the local
points at the spiral center. The combined effect of these two influences can lead to rich dynamical behaviors of
spiral waves, and the specific structure of the composite spiral waves is the result of the competition of the two
effects in opposite directions. Our findings shed light on the dynamics of spiral waves in discrete-time systems,
and they may guide the prediction and control of pests in deciduous forests.

DOI: 10.1103/PhysRevE.108.044205

I. INTRODUCTION

Spiral wave patterns are a type of typical spatiotemporal
structure in open systems far from thermodynamic equilib-
rium. Spiral wave patterns are spirals that steadily rotate in
time, which can self-organize and self-sustain with the spiral
tip as the wave source [1]. They are often observed in oscil-
latory and excitable media, such as chemical reactions [2–6],
populations of micro-organisms [7,8], planar semiconductor-
gas discharge systems [9], catalytic reactions on the surface
of Pt(110) [10,11], liquid crystal systems [12], cardiac tissue
systems [13,14], and fluid convection [15]. The study of spiral
waves has attracted a great deal of attention due to their non-
linear characteristics and potential applications [16,17]. For
instance, the study of spiral waves in the spatial distribution
of pests can guide pest control services [2,18]. What is more,
spiral waves and fragments of electric signals in cardiac tissue
are the main cause of tachycardia and ventricular fibrillation,
respectively [19,20]. In addition, spiral waves in the cerebral
cortex may be related to the irregular seizures that occur with
epilepsy [21].

The discovery of spiral waves with novel structures, and
the understanding of their formation mechanisms, are focuses
of research on pattern formation [16]. Many types of spiral
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waves have been found and studied in experiments, numerical
simulations, and theoretical studies in the past three decades,
including superspiral waves [16,22,23], ripple waves [24,25],
segmented waves [26,27], overtargeted waves [28,29], anti-
spiral waves [30], wavelength-doubled waves [31], period-
doubled waves [32,33], and super multiarmed and segmented
(SMAS) spiral waves [34]. However, the studies of spiral
waves have generally been limited to continuous-time sys-
tems, which are described by differential equations, while
spiral waves in discrete-time systems have been rarely re-
ported. Discrete-time and spatial implicit population models,
which can be described by difference equations, have been
widely investigated in recent years, mainly because when the
population number is small or populations have nonoverlap-
ping generations, the discrete-time models are more realistic
than the continuous-time ones, and more accurate numerical
results can be obtained from discrete-time models [35–42].
In particular, discrete-time and spatial implicit predator-prey
models consisting of two species have been extensively in-
vestigated [43–47]. Spatial explicit models are more realistic
than spatial implicit models for ecosystem prediction [48],
and discrete-time spatial explicit predator-prey models are
rarely reported. Therefore, it is of great ecological values to
investigate spatiotemporal patterns, especially spiral waves, in
discrete-time spatial explicit predator-prey models.

In this article, we investigated a new type of spiral
wave, called the composite spiral wave, in a spatial explicit
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discrete-time model. The combined effect of the two move
state effects can lead to rich dynamical behaviors of spiral
waves, and the composite spiral waves are the results
of the competition between the two effects in opposite
directions. The rest of the article is organized as follows.
Section II introduces the model and method, Sec. III shows
the numerical results, and Sec. IV presents the analytical
results. Conclusions and discussions are presented in Sec. V.

II. MODEL AND METHOD

Discrete-time population models, described by difference
equations, have been widely investigated in recent years.
They are more realistic than continuous-time ones when the
populations have nonoverlapping generations or the number
populations is small [40]. Nonoverlapping generations are the
reproductive characteristics of organisms that live for only one
year and reproduce only once a year, such as annual plants and
many insects.

We considered the dynamics of a predator-pest model in
warm-temperate deciduous forests, where the predators and
pests are both insects with nonoverlapping generations. The
model is constructed as follows. When only considering birth
rate and environmental capacity, the population density of
insects with nonoverlapping generations can be described by
the logistic map

pn+1 = μp pn(1 − pn), μp > 0. (1)

pn is the population density of insects in the nth generation.
The fluctuations in the population densities of predators and
pests near an equilibrium point are denoted as α and β, re-
spectively. Because the food resources of predators near the
equilibrium point are generally insufficient, the interaction
between/among predators is mainly manifested as competi-
tion, resulting in a suppression of the nth to the (n + 1)th
generation of predators. Pests, the food of predators, exhibit
a contribution to predators of the same generation as pests.
Suppression and contribution are considered to be linear and
subject to linear superposition, i.e.,

αn+1 = −aαn + a′βn+1, (2)

where a (a > 0) is the self-suppression coefficient of preda-
tors, and a′ (a′ > 0) is the other-contribution coefficient of
pests.

The food resources of pests are generally sufficient, and the
interaction between pests is manifested as reproduction, so
the nth generation of pests contributes positively to the next
generation. Food resources of pests are generally sufficient,
so the interaction between/among pests is mainly manifested
as reproduction, resulting in a contribution of the nth to the
(n + 1)th generation of pests. Considering the suppression
of predators to pests in the same generation, the following
relationship can be obtained:

βn+1 = −d ′αn+1 + dβn. (3)

Here, d (d > 0) is the self-contribution coefficient of pests,
and d ′ (d ′ > 0) is the other-suppression coefficient of preda-
tors. The parameter d is mainly derived from the birth rate of
pests.

Using Eq. (1) to estimate αn+1 in Eq. (3) and βn+1 in
Eq. (2), one can obtain

αn+1 = f (αn, βn) = −aαn + bβn(1 − βn),

βn+1 = g(αn, βn) = −cαn(1 − αn) + dβn. (4)

The parameters b and c represent a′μβ and d ′μα , respectively.
When the area of a deciduous forest is large enough, the
vertical differences can be ignored, and the deciduous forest
can be regarded as a two-dimensional (2D) plane system. Con-
sidering spatial heterogeneity and the fact that the mobility of
winged predators is much greater than that of wingless pests,
Eq. (4) can be rewritten as a spatially extended discrete-time
model [49], which reads

αn+1 = f (αn, βn) + D∇2αn,

βn+1 = g(αn, βn),
(5)

where ∇2 is ∂2/∂x2 + ∂2/∂y2. D represents the diffusion co-
efficient of predators, and the diffusion coefficient of pests
is approximately equal to 0. The parameter d (1.500 � d �
1.554) was chosen as the control parameter. The other pa-
rameters were fixed: a = 1, b = 9/10, and c = 16/5. The
vectorial map of Eq. (5) is

Xn+1 =
[
αn+1

βn+1

]
= G

[
αn

βn

]
= G(Xn)

=
[

f (αn, βn) + D∇2αn

g(αn, βn)

]
. (6)

Simulations of this model were carried out on 300 × 300
grid points with no-flux boundary conditions. The boundary
conditions can be expressed as n · ∇α = 0, where n is a vec-
tor normal to the system boundary. The approximate method
is the same as in Ref. [50] (see theMATLAB codes in the
supplemental material). The method to discretize the Lapla-
cian terms ∇2α was a nine-point finite-difference scheme.
Specifically, the variables on the grid points are calculated as
follows:

α
i, j
n+1 = f

(
αi, j

n , β i, j
n

) + D

h2

i+1∑
i′=i−1

j+1∑
j′= j−1

Mi′, j′αi, j
n ,

β
i, j
n+1 = g

(
αi, j

n , β i, j
n

)
,

(i, j = 1, 2, 3, . . . , 300),

(7)

with

M = 1

6

⎡
⎣1 4 1

4 −20 4
1 4 1

⎤
⎦.

The scaled diffusion coefficient D/h2 was 0.1 (h is the spatial
step).

III. NUMERICAL RESULTS

Within the parameter interval considered in this article
(1.500 � d � 1.554), the spatially homogeneous system of
Eq. (5) exhibits period-5 oscillations (see Fig. S1 of the Sup-
plemental Material [51]). To simplify the problem, we can
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directly describe the period-5 states, which can be determined
by the vectorial map

rn+1 =
[
αn+1

βn+1

]
= G ◦ G ◦ G ◦ G ◦ G(rn)

= G5(rn) = G5

[
αn

βn

]
, (8)

where “◦” represents a compound operation, and the exponent
in the upper right corner of G does not represent power but
represents the number of compound operations. For instance,
G ◦ G(Xn) = G2(Xn) = G[G(Xn)].

Our previous study has found that by adjusting the value
of the parameter d , the structure of the spiral wave can be
suddenly changed. To explore the mechanism that leads to
the abrupt change of structure of the spiral wave, we need
to observe the evolution process of structure with the change
of the parameter d . As shown in Fig. 1, when the param-
eter d is equal to 1.5000, the system supports a common
(outward-propagating) spiral wave [see Video 1 [51]]. When
d is equal to 1.5440, the structure of the pattern does not
change, but the waves no longer propagate, and the pattern
is a static spiral structure [see Fig. 1(b) and Video 2 [51]].
It can be seen that this spiral pattern is generated by the
movement of boundaries between neighboring cells. As the
range of the inner spiral increases, the moving boundaries
disappear at the edge of the 2D system, so that the inner
spiral pattern cannot fill the entire system. When d is equal
to 1.5450, one can obtain an inward-propagating spiral wave
[see Fig. 1(c) and Video 3 [51] ]. When d is equal to 1.5455,
the final structure of the pattern changes [see Fig. 1(d4) [51] ].
In the final structure, a small spiral (SS) occupies the central
area of the pattern, and a bigger spiral (BS) outside the SS
is composed of five spiral cells, with sharp boundaries exist-
ing between neighboring cells. The values of the five cells
correspond to the five stable period-5 orbits, respectively. In
addition, the SS is an inward-propagating spiral wave, while
the BS is an outward-propagating spiral wave (see Video 4
[51]). Because this type of spiral wave is a combination of the
SS and BS, we named it the composite spiral wave (CSW).
When the parameter d is increased to 1.5500, in the final
structure, the wavelength of the BS and the size of the SS both
become smaller [see Fig. (e4) and Video 5 [51]]. Specifically,
the wavelength of the CSW is specified as the wavelength
of the BS. The calculation method for the wavelength λ of
spiral waves is shown in Fig. 1(e4). The wavelength λ of the
CSWs contains five “cell-widths” λb, i.e., λ = 5λb. The “cell-
width” refers to the width of the spiral cells [see Fig. 1(d4)
for an example]. Therefore, when the wavelength λ of the
CSWs is too large to be directly measured, we can indirectly
obtain λ by measuring λb. The wavelength of the CSWs
is proportional to the diameter of the area occupied by the
SS, i.e.,

λ = π�SS, (9)

where �SS represents the diameter of the area occupied by the
SS. For instance, the area occupied by the SS in Fig. 1(d4)
is marked by a red circle. The circle is centered around the
spiral tip of the SS and passes through the points of maxi-
mum curvature at the boundaries between neighboring cells.

FIG. 1. Spiral waves (the spatial distribution of the variable β,
i.e., invasive alien pests, in the 2D system) with different values of
the parameter d: (a) d = 1.5000, (b) d = 1.5440, (c) d = 1.5450,
(d) d = 1.5455, and (e) d = 1.5500. The initial values are α

i, j
0 =

0.01( j/300 − 0.005) and β
i, j
0 = 0.01(i/300 − 0.005). Each spiral

wave has reached the final structure. The red circle in (d4) indicates
the area occupied by the SS. The λb in (d4) represents the width of
the spiral cell, and the λ in (e4) is the wavelength of the spiral wave.
The patterns in (a4), (b4), (c4), (d4), and (e4) all reached their final
structures. The red arrows indicate the propagation direction waves.

The mechanism of Eq. (9) is as follows. The boundaries
move at the same speed. When the spiral wave experiences
a period, each boundary near the circle moves around the
circle once, and at the same time, the wave propagates a dis-
tance of one wavelength forward. Therefore, the wavelength
is equal to the circumference of the circle. The wavelengths
of the outward-propagating spiral wave, static spiral, inward-
propagating spiral wave, and SS are the same. Note that the
wavelength λ in this article refers to the wavelength of a spiral
that reaches the final structure.

In fact, the inward-propagating spiral in Fig. 1(c4) is also
the CSW. The corresponding BS cannot be displayed because
the SS almost occupies the entire 2D rectangular system. Like
the static spiral in Fig. 1(b), the inward-propagating spiral
wave is also formed by the boundary winding around the
spiral center. The winding of the boundary causes the spiral
to expand, while the inward propagation causes it to shrink.
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FIG. 2. Detailed changes of wavelength and structure for spiral
waves in the parameter interval d ∈ [1.500, 1.554]. Inset: partial
enlarged drawing. The interval of d [1.500, 1.554] is divided into
four parts, i.e., the first interval [1.5000, 15438), the second interval
[1.5438, 1.5446], the third interval (1.5446, 1.5454], and the fourth
interval (1.5454, 1.5540].

One can obtain the relationship

υbTs = π�SS,

where υb is the speed of the boundary, Ts is the period of
the inward-propagating spiral wave, and �SS is the diameter
of the area occupied by the inward-propagating spiral wave.
This equation describes the relationship when the circular
area occupied by the inward-propagating spiral wave reaches
stability. When the wave propagates inward for a wavelength
(passing through a period), the boundary also needs to circle
the circular area once. The diameter of the circular area can
be obtained as

�SS = υbTs

π
. (10)

It can be seen that the inward-propagating spiral has a specific
size. Therefore, the inward-propagating spiral we observed is
only the central region of the CSW.

We need to obtain more detailed information on the effects
of the parameter d on spiral waves. Figure 2 describes the
detailed changes in the wavelength and structure of spiral
waves in the parameter interval d ∈ [1.500, 1.554]. When
the CSWs do not appear (d ∈ [1.5000, 1.5454], i.e., the first,
second, and third intervals), the wavelengths corresponding
to different values of the parameter d are the same. Specifi-
cally, in the first interval (d ∈ [1.5000, 1.5438]), the patterns
are common outward-propagating spiral waves. In the second
interval (d ∈ [1.5438, 1.5446)), the patterns are static spirals.
In the third interval (d ∈ (1.5446, 1.5454]), the patterns are
inward-propagating spiral waves. When the parameter d in-
creases to the fourth interval initially, the CSW with SS and
BS appears. As d continues to increase, the area occupied by
the SS decreases. At the same time, the wavelength of the
CSW also decreases.

Understanding the formation process of the spiral wave
may help us understand the formation mechanism. Fig-
ure 3 shows the formation processes of spiral waves [initial
conditions can be found in Fig. 3(a1)]. When the parameter

FIG. 3. Processes of formation for spiral waves with differ-
ent values of d: (a) d = 1.5000, (b) d = 1.5212, (c) d = 1.5440,
(d) d = 1.5455, and (e) d = 1.5500. In (a1), (b1), (c1), (d1), and
(e1), the lines 	 are marked boundaries (the boundary between
different states), and the others are not marked. The black arrows
indicate the moving direction of 	. In particular, the boundaries in
(b) are stationary. Initial conditions are shown in (a1): S1 = (α, β ) =
(0.1048, 0.1835), S2=(0.0301, −0.0250), S3=(−0.0531,−0.1307),
S4=(−0.0799,−0.0172), S5=(0.0642, 0.2504).

d is equal to 1.5000, the boundary 	 moves to the left and
gradually forms an outward-propagating spiral wave [see (a)
and Video 6 [51]]. When d is in the interval [1.5202, 1.5234],
the boundary 	 does not move, and an outward-propagating
spiral wave appears in the center [see (b) and Video 7 [51]
for an example]. When d is equal to 1.5440, the boundary
	 moves to the right and forms a static spiral pattern in the
center [see (c) and Video 8 [51]]. When d equals 1.5455, the
boundary 	 moves to the right and a CSW can be formed
[see (d) and Video 9 [51]]. When d is equal to 1.5500, the
boundary 	 moves to the right and a CSW with a smaller SS
is formed [see (e) and Video 10 [51]]. In fact, the movement of
the boundaries is an external manifestation of the movement
of the period-5 states in the phase space. Therefore, we need
to have a specific understanding of the dynamical behaviors
of local points.

We examined the dynamical behaviors of local points in
different regions during the formation of spiral waves. During
the formation, the pattern can be divided into two parts: the
spiral with small wavelength (SSW) at the center, and the
other part outside the SSW (OUT-SSW). For instance, the
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FIG. 4. The dynamical behaviors of local points vary with the
value of d: (a) d = 1.5000, (b) d = 1.5212, (c) d = 1.5300, (d) d =
1.5440, and (e) d = 1.5455. In (a), (c), (d), and (e), the black curves
are invariant circles of the period-5 states of local points in the
OUT-SSW. In (b), the period-5 states of local points in the OUT-SSW
are stable in period-5 orbits. In (a)–(c), and (e), the red dotted curves
are invariant circles of the period-5 states of local points in the SSW.
In (d), the period-5 states of local points in the SSW are at rest
in the phase space, and the period-5 states of local points in SSW
form a closed curve in the phase space. The arrows on invariant
circles represent the movement direction of the period-5 states. The
bigger black arrows represent the direction of Ib. The bigger red
arrows represent the direction of the combined effect of Ib and Ic.
The interval above each figure represents the interval of d with the
same dynamical behavior.

spiral inside the red circle in Fig. 3(a2) is the SSW, and
the other part is the OUT-SSW. Note that the SSW refers to the
inner spiral with a smaller wavelength during the formation,
and the SS refers to the small spiral in the final structure of the
CSWs. Specially, in the CSWs, the SS is an SSW that reaches
the final structure. The dynamical behaviors of local points are
shown as follows.

Figure 4 describes the dynamical behaviors of local points
with different values of d (d ∈ [1.500, 1.554]). The results
show that the dynamical behaviors of local points in the SSW
are different from those in the OUT-SSW. In spiral waves
other than the CSWs, the boundaries gradually disappear in
the formation processes of spiral waves. In the final structures
of these spiral waves, except for the local points at the center
of the spiral waves, the dynamical behaviors of local points
are the same. However, in the final structure of the CSWs, the
dynamical behavior of the local points in the SS is different
from that in the BS. This is attributed to the presence of both
SSW and OUT-SSW in the CSWs. Specifically, when d is
in the interval [1.5000, 1.5201] [corresponding to the spiral
wave in Fig. 3(a)], period-5 states of local points in the SSW
and OUT-SSW both move clockwise along invariant circles
in the phase space. When d is in the interval [1.5202, 1.5234]
[corresponding to the spiral wave in Fig. 3(b)], period-5 states
of local points in the SSW move clockwise in the phase
space, and period-5 states of local points in the OUT-SSW
are static. When d is in the interval [1.5235, 1.5437] (cor-
responding to common outward-propagating spiral waves),
period-5 states of local points in the SSW and OUT-SSW
move clockwise and counterclockwise in the phase space,
respectively. When d is in the interval [1.5438, 1.5446] [cor-
responding to the spiral wave in Fig. 3(c)], period-5 states
of local points in the SSW are static, and period-5 states

of local points in the OUT-SSW move counterclockwise in
the phase space. When d is in the interval [1.5447, 1.5540]
(corresponding to the inward-propagating spiral waves
and CSWs), period-5 states of local points in the SSW
and OUT-SSW both move counterclockwise in the phase
space.

In the spatially homogeneous system without diffusion
coupling, the period-5 states of local points will stabilize at
the period-5 orbits. However, in spiral waves, the period-5
states of local points can move along a closed curve in the
phase space. Accordingly, in spiral waves, there are effects
that cause period-5 states to move along an invariant circle.
We termed the effect the move state effect (MSE), denoted
as I . In fact, Fig. 4 shows two types of MSEs which cause
the movements of period-5 states. One type originates from
the diffusive coupling at the boundaries between neighboring
cells, denoted as Ib, causing the movement of the boundaries,
and the other type originates from the center of spiral waves,
denoted as Ic. The effect of Ic propagates outward from the
center of the spiral wave through the SSW. Local points in
the OUT-SSW are only affected by Ib, while local points in
the SSW are jointly affected by Ib and Ic. The dynamical
behaviors of local points in the SSW shown in Fig. 4 are the
results of the combined effect of Ib and Ic. When Ib disappears,
Ic becomes apparent, such as the formation process of spiral
waves in Fig. 3(b). When Ib and Ic are opposite in direction
and equal in size, the period-5 states of the local points in
SSW will be stationary in the phase space [see Fig. 4(d)].
Therefore, we believe that the rich dynamical behaviors of
spiral waves shown in Fig. 2 should be the results of the
combined effect of Ib and Ic. Since the dynamical behaviors
of local points in the OUT-SSW are exclusively determined
by Ib, it can be inferred from Fig. 4 that Ib can be managed
by altering the parameter d . It is evident that the direction
of Ib can be altered by altering the parameter d , as indicated
by the bigger black arrows. Specifying the counterclockwise
direction as the positive direction, if Ib is greater than 0,
the direction follows the counterclockwise path, and if Ib is
less than 0, it follows the clockwise direction. We included a
quantitative method for Ib in our analysis results and carried
out quantitative calculations. In addition to understanding the
relationship of Ib and d , it is also necessary to know the
relationship of Ic and d .

Figure 5 depicts Ic in the phase space with d = 1.55. The
white closed curve is the invariant circle of the local points in
the OUT-SSW, and the white point inside it is a fixed point
U0(0, 0) (unstable focus). Our analysis results included a sta-
bility analysis of the fixed point. Inside the white closed curve,
period-5 states undergo a outward clockwise spiral movement
centered on the fixed point U0. The states of the local points
at the spiral center are at the fixed point U0. Due to diffusive
coupling, the states of local points near the spiral center are
subjected to an effect directed towards U0 [see the red arrows
in the inset of Fig. 5]. As shown in the inset, the black curves
represent the directions of local dynamics of the period-5
states without diffusive coupling. The combined effect of
these two effects is Ic, which makes the states move clockwise
around U0 in the phase space. In spiral waves, the effect of Ic

can propagate outward from the spiral center through diffusive
coupling. The results also indicate that there is no significant
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FIG. 5. Ic in the phase space with the parameter d = 1.55. The
color bar and clusters of black arrows represent the relative size
and direction of local dynamics without diffusive coupling, re-
spectively. The bigger black arrows indicate Ic. The white closed
curve is the invariant circle of the period-5 states of local points
in the OUT-SSW. Inset: schematic diagram for the formation
mechanism of Ic.

change in Ic within the parameter interval we considered.
The relative size and direction of local dynamics without
diffusive coupling remain unchanged when the parameter d
changes [see Fig. S2]. Therefore, we assume that Ic remains
unchanged within the parameter interval we considered. By
examining Fig. 4(d), which shows the relationship between
Ib and Ic, we can deduce Ic indirectly, as it is equal to the
negative of Ib.

IV. ANALYTICAL RESULTS

Here, we first analyze the stability of the period-5 or-
bits. Then, based on the characteristics of the period-5
orbits, the mechanism and quantitative method of Ib are pro-
posed. Finally, we explain the formation mechanism of the
patterns.

A. Stability analyses of the period-5 orbits

Due to the spatially homogeneous system of Eq. (5)
exhibiting period-5 oscillations in the parameter interval
(1.500 � d � 1.554), we need to calculate the period-5 or-
bits and analyze their stabilities. The spatially homogeneous
system can be represented as

Xn+1 = Gh(Xn) =
[

f (αn, βn)
g(αn, βn)

]
. (11)

Period-5 states of the spatially homogeneous system can be
described by

Xn+5 = G5
h(Xn). (12)

Then period-5 orbits of the spatially homogeneous system
satisfy Xn+5 = Xn. Take the case in which the parameter d
is equal to 1.55 as an example. A total of 11 period-5 orbits

were obtained, i.e.,

U0 = [α, β]T = [0, 0]T ,

U1 = [0.1046, 0.2107]T , S1 = [0.1047, 0.1914]T ,

U2 = [0.0451, 0.0268]T , S2 = [0.0345,−0.0038]T ,

U3 = [−0.0215,−0.0960]T , S3 = [−0.0376,−0.1120]T ,

U4 = [−0.0732,−0.0785]T , S4 = [−0.0745,−0.0486]T ,

U5 = [−0.0030, 0.1298]T , S5 = [0.0284, 0.1805]T ,

where S2 = GhS1, S3 = GhS2, S4 = GhS3, S5 = GhS4, S1 =
GhS5, U2 = GhU1, U3 = GhU2, U4 = GhU3, U5 = GhU4,
U1 = GhU5, and U0 = GhU0. To analyze the stability of the
period-5 orbits, we need to study the corresponding character-
istic equations, eigenvalues, and eigenvectors.

One can obtain the matrix

Jp(Xn) = J(Xn+4)J(Xn+3)J(Xn+2)J(Xn+1)J(Xn)

=
[
W1,1 W1,2

W2,1 W2,2

]
,

(13)

where J is the Jacobian matrix of Eq. (11). Jp(Xn), the product
of J(Xn), J(Xn+1), J(Xn+2), J(Xn+3), and J(Xn+4), is the
Jacobian matrix of Eq. (12) at the period-5 orbit Xn. The
characteristic equation is

λ2 − (W1,1 + W2,2)λ +
∣∣∣∣W1,1 W1,2

W2,1 W2,2

∣∣∣∣ = 0. (14)

The eigenvalues and eigenvectors corresponding to the 11
period-5 orbits can be obtained, as shown in Table I. So we
obtained the stabilities of these orbits. U0 is an unstable focus.
U1, U2, U3, U4, U5 are saddles, and S1, S2, S3, S4, S5 are stable
nodes.

The flow trajectory of period-5 states near these nodes and
saddles can be described by

ln |α|
ln λ1

− ln |β|
ln λ2

= C, (15)

where λ1 and λ2 are the eigenvalues corresponding to the
nodes and saddles in Table I. C is a constant determined by the
points that the curve passes through [see Fig. S3 for the trend
of period-5 states near the saddles [51]]. When λ1 and λ2 are
conjugated to each other, they can be written in the form λ1 =
λ∗

2 = √
λ1λ2eiϑ (0 < ϑ < π ). Then the equation describing

the flow trajectory of period-5 states near the unstable focus is

ρ exp

(
−θ ln

√
λ1λ2

ϑ

)
= C, (16)

where ρ and θ are the polar radius and angle of polar coordi-
nates with the focus as the pole, respectively. C is a constant
determined by the points that the curve passes through.

Figure 6 shows the phase portrait of period-5 states when
the parameter d is equal to 1.55. The stable nodes are rep-
resented by black solid circles, and the unstable focus and
saddles are represented by red open circles. Period-5 states
gradually tend to one of the stable nodes and stabilize at it
eventually. When a diffusive coupling occurs between states at
adjacent stable nodes, the states may cross the middle saddle
and flow to another stable node. For example, when the states
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TABLE I. The eigenvalues of the Jacobian matrix at a fixed point,
where λ1 and λ2 denote eigenvalues, and i2 is equal to −1. u and v
are the eigenvectors corresponding to λ1 and λ2, respectively.

Fixed point λ1, u λ2, v

U0 1.9042 + 0.7318i, 1.9042 − 0.7318i,[
0.3520 − 0.3092i
0.8835 + 0.0000i

] [
0.3520 + 0.3092i
0.8835 + 0.0000i

]
U1 −0.4860, 1.2181,

[−0.4958, −0.8084]T [0.1528, −0.9883]T

U2 −0.4909, 1.2147,
[−0.4269, 0.9043]T [−0.3284, −0.9446]T

U3 −0.4856, 1.2205,
[0.4116, 0.9114]T [0.6842, 0.7293]T

U4 −0.4869, 1.2186,
[−0.9978, −0.0662]T [0.0851, 0.9964]T

U5 −0.4875, 1.2187,
[0.2524, 0.9676]T [0.5174, 0.8558]T

S1 −0.2013, 0.7188,
[−0.4717, −0.8818]T [−0.1510, −0.9885]T

S2 −0.1993, 0.6948,
[0.1133, 0.9936]T [0.3260, 0.9454]T

S3 −0.2002, 0.7159,
[0.5440, 0.8391]T [0.7333, 0.6799]T

S4 −0.2008, 0.7162,
[0.0108, −0.9999]T [−0.5553, 0.8316]T

S5 −0.2015, 0.7162,
[0.3819, 0.9242]T [0.5319, 0.8468]T

FIG. 6. Phase portrait of period-5 states with the parameter d =
1.55. Black solid and red open circles are the period-5 orbits.

FIG. 7. The invariant circle and fixed points of period-5 states
with different values of the parameter d .

in S3 and S2 are coupled, the states in S3 will cross U3 and
flow to S2. This type of coupling occurs between the states
of local points at the boundaries between neighboring cells in
spiral waves. Accordingly, Ib is attributed to this type of spatial
distribution of stable nodes and saddles. As a result, period-5
states of local points at the boundaries can move along the
invariant circle, as shown in Fig. 4. And the movement of
period-5 states of local points at the boundaries is manifested
as the movement of the boundaries.

B. Move state effects: Ib and Ic

To explain the change in the direction of Ib shown in Fig. 4,
we need to find the period-5 orbits corresponding to different
values of the parameter d . Figure 7 shows the positions of the
period-5 orbits in the phase space when the parameter d takes
different values (corresponding to the five intervals in Fig. 4,
respectively). The stability of these orbits was analyzed. The
fixed points U0 are all unstable focuses, and U1, U2, U3, U4,
U5 are saddles. When the parameter d is less than or equal to
1.530, the fixed points S1, S2, S3, S4, and S5 are stable focuses.
When the parameter d is greater than 1.530, S1, S2, S3, S4, and
S5 are stable nodes. Therefore, the stability characteristics of
the system as a whole do not change in the interval consid-
ered in this paper. From these results, we can understand the
change in the direction of Ib. For instance, with the parameter
d = 1.500, when the states in S3 and S2 are coupled, the state
in S2 will pass U3 and flow to S3, thus making states move
clockwise along the invariant circle. When the parameter d
is equal to 1.523, because the distances from U3 to S3 and
S2 are the same, the original state in S3 or S2 cannot pass
U3 and flow to another stable node, so states cannot move.
When the parameter d is equal to 1.535, 1.544, and 1.550,
with the coupling of states in S3 and S2, the original state
in S3 will pass U3 and flow to S2, thus making states move
counterclockwise along the invariant circle. Accordingly, we
can quantify Ib according to the relative position relationship
of period-5 orbits in the phase space, i.e.,

Ib := 1

5

5∑
j=1

L(S j,Uj+1) − L(S j+1,Uj+1)

L(S j, S j+1)
, (17)

where the operation L(A, B) indicates the Euclidean distance
between points A and B in the (α, β ) plane. S6 and U6 denote
S1 and U1, respectively. States move counterclockwise when
Ib is greater than 0, and clockwise when Ib is less than 0. Note
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FIG. 8. Ib as a function of the parameter d . The red dotted line
represents the horizontal straight line Ib = 0. When the parameter d
is approximately 1.521, the corresponding value of Ib is equal to 0.

that only when |Ib| is greater than a threshold value can period-
5 states move.

According to the definition of Ib, the relationship between
Ib and the parameter d can be obtained, as shown in Fig. 8.
The results are in good agreement with the dynamic behaviors
of local points in the OUT-SSW [see Fig. 4]. That is, when
the parameter d is in the interval [1.5202, 1.5234], Ib is too
small to move the period-5 states. When d is in the interval
[1.5000, 1.5201], Ib is less than 0, making the period-5 states
move clockwise in the phase space. Conversely, when d is in
the interval [1.5235, 1.5540], Ib is greater than 0, making the
period-5 state move counterclockwise. The fitting curve for
the relationship between d and Ib is

Ib(d ) = 0.194 exp(0.983d ) − 0.111 exp(−0.651d ). (18)

As shown in Fig. 4(d), period-5 states of the local points in
the SSW are at rest in the phase space, because these local
points are simultaneously affected by Ib and Ic in opposite
directions and of similar sizes. Since Ic is a constant, we can
use the relationship between Ib and Ic to get the value of Ic,
that is, Ic ≈ −Ib(1.5442) = −0.3522.

Based on the above analysis, we can clearly explain the
dynamical behaviors of local points in the SSW shown in
Fig. 4. When d is in the interval [1.5000, 1.5437], Ī := Ib + Ic

is less than 0, so period-5 states of the local points in the
SSW move clockwise in the phase space. When d is in the
interval [1.5438, 1.5446], Ī is approximately equal to 0, so
the period-5 states are at rest in the phase space. When d is
in the interval [1.5447, 1.5540], Ī is greater than 0, so the
period-5 states rotate counterclockwise in the phase space.
That is, the dynamical behaviors of local points in the SSW
are determined by Ī . Consequently, we explained the effect of
the parameter d on the period-5 states of local points.

C. Mechanism of the patterns

Furthermore, we can explain the dynamical behaviors
of the spiral waves in Figs. 2 and 3. Movements of the
boundaries and waves are the external manifestation of
the directional transfer of the period-5 states in the phase
space. As shown in Fig. 2, when d is in the first interval, the
directions of Ib and Ic are the same, ultimately forming the

common spiral waves. When d is in the second interval, Ib

and Ic have opposite directions and similar sizes, i.e., Ī ≈ 0.
Therefore, the SSW affected by Ī remains stationary. When d
is in the third interval, the directions of Ib and Ic are opposite,
and |Ib| is slightly larger than |Ic|, i.e., Ī > 0. So the period-5
states in the SSW move counterclockwise in the phase space.
In this case, the effect of Ic can still spread outwards. Since the
period-5 states move counterclockwise in the phase space, the
waves propagate toward the center of the spiral wave. When
d is in the fourth interval, the effect range of Ic will gradually
decrease as d increases, leading to the appearance of the
BS and SS. As shown in Fig. 4(e), the speed of boundaries
υb is determined by Ib, and the period of local points in the
SSW is jointly determined by Ib and Ic. Then, Eq. (10) can be
rewritten as

�SS = υb(Ib)Ts(Ib, Ic)

π
. (19)

Consequently, the diameter of the area occupied by the SS is
determined by Ib and Ic.

V. CONCLUSIONS AND DISCUSSIONS

We have studied a novel type of spiral waves, i.e., the
CSW, in a discrete-time predator-pest model, and we revealed
the formation mechanism. We have defined and quantified
the SME of period-5 states. There are two types of SME in the
system, one originating from the boundaries of adjacent stable
period-5 orbits (denoted as Ib), and the other originating from
the spiral center (denoted as Ic). The theoretical values of Ib

are strictly consistent with the numerical results. Our results
show that the CSWs are the results of the competition between
Ib and Ic. For the dynamical behaviors of local points in the
SSW, when Ī is less than 0, the period-5 states of the local
points move clockwise in the phase space. When Ī is equal
to or very close to 0, the period-5 states of the local points
are stationary in period-5 orbits. When Ī is greater than 0, the
period-5 states of the local points move counterclockwise in
the phase space.

In general, the structure of spiral waves changed from
simple to complex due to the transition of local dynamics from
simple to complex [52], such as the overtargeted spiral waves
[28,29] and wavelength-doubled spiral waves [32,33]. How-
ever, in this study, although the structure of CSWs becomes
complex, the local dynamical behaviors do not change.

Generally, the dynamical behaviors of local points are the
same except for the area near spiral tips. In the spiral waves
of this article, the dynamical behaviors of local points in the
SSW and OUT-SSW are different.

Our findings may predict the spatial distribution of
pests and provide guidance for pest control. Spatial ex-
plicit models are more realistic than spatial implicit models
for ecosystem prediction [48]. The spatiotemporal pat-
terns we observed are the theoretical prediction of the
population density distribution of pests in the system. Be-
cause spiral waves can self-organize and self-sustain in
autonomous systems [1], the spatial distribution of pests
in deciduous forests has a high probability of spiral wave
patterns.
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