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Emergence of collective self-oscillations in minimal lattice models with feedback
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The emergence of collective oscillations and synchronization is a widespread phenomenon in complex
systems. While widely studied in the setting of dynamical systems, this phenomenon is not well understood
in the context of out-of-equilibrium phase transitions in many-body systems. Here we consider three classical
lattice models, namely the Ising, the Blume-Capel, and the Potts models, provided with a feedback among the
order and control parameters. With the help of the linear response theory we derive low-dimensional nonlinear
dynamical systems for mean-field cases. These dynamical systems quantitatively reproduce many-body stochas-
tic simulations. In general, we find that the usual equilibrium phase transitions are taken over by more complex
bifurcations where nonlinear collective self-oscillations emerge, a behavior that we illustrate by the feedback
Landau theory. For the case of the Ising model, we obtain that the bifurcation that takes over the critical point is
nontrivial in finite dimensions. Namely, we provide numerical evidence that in two dimensions the most probable
value of a cycle’s amplitude follows the Onsager law for slow feedback. We illustrate multistability for the
case of discontinuously emerging oscillations in the Blume-Capel model, whose tricritical point is substituted
by the Bautin bifurcation. For the Potts model with q = 3 colors we highlight the appearance of two mirror
stable limit cycles at a bifurcation line and characterize the onset of chaotic oscillations that emerge at low
temperature through either the Feigenbaum cascade of period doubling or the Afraimovich-Shilnikov scenario
of a torus destruction. We also demonstrate that entropy production singularities as a function of the temperature
correspond to qualitative change in the spectrum of Lyapunov exponents. Our results show that mean-field
collective behavior can be described by the bifurcation theory of low-dimensional dynamical systems, which
paves the way for the definition of universality classes of collective oscillations.
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I. INTRODUCTION

The emergence of oscillations in complex systems is a
widespread phenomenon that appears across various fields
of science. For example, oscillatory behavior can arise in
biological systems, chemical reactions, and mechanical sys-
tems (see, e.g., Refs. [1–3]). These oscillations often manifest
themselves as collective behavior, where individual compo-
nents interact and synchronize their activities over time, and
studying underlying mechanisms is an important problem for
understanding of complex systems.

One theoretical framework that could potentially shed light
on the emergence of oscillations is the one of nonequilib-
rium phase transitions in statistical physics. While a deep
and powerful physical theory underlies the classification of
equilibrium critical points, this same task has not been yet
achieved for out-of-equilibrium phase transitions, in particular
for the emergence of collective oscillations and synchroniza-
tion phenomena. After the work of Landau and coworkers [4]
it was realized that the plethora of experimental data on con-
tinuous phase transitions could be unified on the basis of the
symmetries of the underlying interacting degrees of freedom.

One of the paradigmatic examples is the equivalence of criti-
cal exponents for liquid-gas and paramagnetic-ferromagnetic
phase transitions [4]. This led to the concept of universality
classes [5], that is connected to field theories and the renor-
malization group [6].

Recent works try to establish general and universal con-
cepts in out-of-equilibrium phenomena: example range from
the proposal of the directed percolation universality class,
including reaction-diffusion and epidemic spreading [7] to the
modeling of nonreciprocal phase transitions [8]. Moreover,
studies of synchronization phenomena in many-body systems
stands out as a very active area of research taking into ac-
count its importance for modeling complex systems [9–11].
One of the difficulties related to out-of-equilibrium systems
is a lack of general variational principles and reference free
energy landscapes. Consequently, a great majority of the stud-
ied models are variations of the Kuramoto model [12–16],
where the interacting units are postulated as oscillators at
the outset and their phase coherence is analyzed. Dynam-
ical phase transitions in classical lattice models has been
studied as well, by postulating oscillating control parameters
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(external fields) and considering the synchronization proper-
ties of the associated order parameters, including the Ising
[17,18], the Blume-Capel [19], and the Potts models [20], and
the Ginzburg-Landau theory [21].

Alternatively, in the very seminal works on this topic
the emergent character of oscillations (thus, called self-
oscillations) without the need to postulate them was remarked
[1,2,22]. This area has been considerably developed during
recent years and appearance and synchronization of periodic,
quasiperiodic, chaotic, and even hyperchaotic self-sustained
oscillations in mechanical, physical, and biological models,
described by dynamical systems, has been demonstrated and
studied [2,23–26]. Moreover, the importance of bifurcations
or their sequences leading to the onset of regular or chaotic
self-oscillations has been shown in numerous works (see, e.g.,
Refs. [2,27–31]). Therefore, following this route, in this work
we study scenarios of the emergence of collective oscillations
in minimal spin lattice models [32] in presence of a feedback
between the control and the order parameter trying to enforce
homeostasis in the symmetric phase. We show that the feed-
back can generically put these systems out-of-equilibrium,
in particular triggering coherent collective oscillations. The
static counterparts of these system have a well defined free en-
ergy landscape and an important question is to what extent the
latter can provide insights into the actual dynamics. We will
illustrate this mechanism in the Landau theory with feedback
that gets mapped into nonlinear Van der Pol-type oscillators.
Then we will explore it concretely in the Ising, Blume-Capel,
and Potts models.

We demonstrate the onset of collective periodic oscillations
in the Ising model with feedback after the corresponding
mean-field dynamical system undergoes the Andronov-Hopf
bifurcation. We also obtain that for slow feedback the most
probable value of a cycle’s amplitude follows the Onsager law.
For the Blume-Capel model we show that there is the Bautin
bifurcation in the mean-field dynamical system that corre-
sponds to the tricritical point in its collective counterpart. The
existence of such bifurcation naturally leads to the presence of
multistability in both mean-field and full microscopic models,
which is numerically illustrated. As far as the Potts model with
three colors in concerned, we observe even more complex
behavior. For the regions with low feedback and high temper-
ature we obtain that there is the onset of self-oscillations in the
way similar to the Blume-Capel model and again with a region
of multistability in the parameters’ space. However, for bigger
feedback we demonstrate that the behavior is much more
complex and quasiperiodic, and chaotic oscillations emerge
in both mean-field and microscopic models. Two bifurcation
scenarios for the onset of chaotic oscillations are observed: the
Feigenbaum cascade of period doubling and the Afraimovich-
Shilnikov scenario of torus destruction. These results manifest
that limit cycles bifurcations, complex bifurcation scenarios,
and collective quasiperiodic and chaotic oscillations can be
observed in full microscopic models. Furthermore, we demon-
strate that the low-dimensional dynamical systems obtained
via linear response provide for an effective mean-field de-
scription of the complex behavior of the full system. On the
whole, we believe that this work provides a way of under-
standing of the onset of the complex collective behavior in
out-of-equilibrium systems.

The rest of the paper is organized as follows. In the next
section we present our main results on collective oscillations
in feedback lattice models. In Sec. II A we briefly discuss
the feedback Landau theory. Section II B is devoted to Ising
model where we deal with the dynamics of the system in
a fully connected geometry with a general linear feedback
and in a two-dimensional (2D) square lattice. The subsequent
Sec. II C presents our results for the Blume-Capel model,
which is an extension of the Ising model in presence of
vacancies. Section II D is focused on the Potts model with
q = 3 colors with feedback and we summarize and discuss
our findings in Sec. III.

II. RESULTS

A. Feedback Landau theory

Here we generalize the results presented in Ref. [33] on the
effect of the presence of feedback in the Landau theory with
higher-order relevant terms. Let us consider the expansion of
the free energy density up to the sixth power of a scalar order
parameter φ

L(φ) = −hφ − β − 1

2
φ2 + a

4
φ4 + b

6
φ6, (1)

where h is the external field, β is the inverse temperature and
a, b are arbitrary real parameters.

Upon considering a negative feedback between h and φ

aiming at controlling the system into the symmetric phase,
by linear response we have, upon neglecting noise in the
thermodynamic limit, the dynamical system

φ̇ = −∂L
∂φ

= h + (β − 1)φ − aφ3 − bφ5,

ḣ = −cφ. (2)

The system has an equilibrium state at (φ = 0, h = 0) whose
stability is associated to the eigenvalues of the Jacobian of the
linearized system

λ± = β − 1 ±
√

(β − 1)2 − 4c

2
. (3)

Thus, it is stable iff β < 1, being a stable focus if 4c >

(β − 1)2 and a stable node otherwise. Since the system is
confined (as it can be seen by looking to the gradient at the
boundary of the square with vertex), at βc = 1 the eigenvalues
are purely imaginary and the real part changes sign and the
system is undergoing the Andronov-Hopf bifurcation with
emergent nonlinear oscillations.

The character of the bifurcation can be assessed by calcu-
lating the first Lyapunov coefficient (see, e.g., Refs. [23,27]),
which in this case is l1 = − 3

8 a. Thus, we have that at a = 0
the bifurcation of the system changes from supercritical to
subcritical behavior with a discontinuous onset of oscillations.
This analysis seems to support an equivalence between the
character of the Andronov-Hopf bifurcation and the one of
the underlying equilibrium static transition. If that would be
the case the supercritical emergence corresponds to a second-
order phase transition and subcritical emergence corresponds
to a first-order phase transition, where by the nth order we
mean the order of singularity of the free energy function, in
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particular, independently of the feedback strength c. We will
show that this Landau feedback theory captures the qualitative
behavior of the Ising and Blume-Capel models while it fails
to do so for the Potts model as soon as q = 3.

B. Feedback Ising model

We will extend in this section the results of Ref. [33]
analytically in presence of a general linear control and numer-
ically in finite dimension. We consider the Ising model, i.e., a
model of Z2 spins si = ±1 variables sitting on the nodes of a
lattice graph whose Hamiltonian is

H = −J
∑
〈i, j〉

sis j − h
∑

i

si, (4)

where the bracket in the first sum stands for the graph bonds
and we indicate with J and h the interaction strength and the
external magnetic field, respectively. Upon generalizing from
[33] we apply a negative feedback between the instantaneous
magnetization m = 1

N

∑
i si and the external magnetic field h,

with the aim of setting the former to a prescribed value m0,
|m0| < 1, which is a parameter of the system. The free energy
is obtained from the partition function [32]

Z =
∑
{�s}

e−βH =
∫

dme−Nβ f (m). (5)

This calculation for general arbitrary graphs would require
to solve difficult combinatorial problems: e.g., for the Ising
model it would require an exhaustive enumeration of the loops
in the graph, a task that was done by Onsager for the 2D square
lattice and it is still an unsolved problem for the 3D case [32].
A simple mean-field method consists in substituting the sum
over the bonds with a sum over all the possible pairs (that is
equivalent to a fully connected graph), i.e.,∑

〈i, j〉
→ 1

N

∑
i, j

, (6)

where the factor 1/N guarantees that the energy is extensive.
In this approximation (Curie-Weiss), in the limit of large N
the free energy of the system is

f = −J

2
m2 + 1

β
log{cosh[β(Jm + h)]}. (7)

In regard to the dynamics we will assume linear response,
i.e., that the time derivative of the magnetization is propor-
tional to the gradient of the free energy function [36]. Upon
considering the feedback the system is described by the equa-
tions

ṁ = −m + tanh[β(Jm + h)], ḣ = −c(m − m0). (8)

This system admits the only stationary point

ms = m0, hs = atanh(m0)/β − Jm0, (9)

whose linear stability can be assessed studying the eigenval-
ues of the Jacobian matrix (β2 = βJ[1 − m2

0 )]

λ± = β2 − 1 ±
√

(β2 − 1)2 − 4β2c

2
. (10)

The equilibrium point is stable if and only if β < βc = 1
J (1−m2

0 )

and its character changes from a node to a focus (dynamical
crossover), where eigenvalues develop an imaginary part, if
c >

(β/βc−1)2

4β/βc
J . In the latter case the loss of stability at β = βc

(phase transition) implies the Andronov-Hopf bifurcation
triggering self-oscillations. The character of the bifurcation,
supercritical (continuous) or subcritical (discontinuous) can
be assessed from the sign of the first Lyapunov coefficient l1.
For (8) at β = βc it is

l1 = − c + J

(cJ )3/2
(
1 − m2

0

) . (11)

Consequently, we see that the Andoronov-Hopf bifurcation is
supercritical provided that |m0| < 1.

Beyond the critical point, an approximate analytical solu-
tion can be worked out for β >∼ βc (harmonic oscillations)
by a two-time expansion [2], if we call ε = β − βc we have

m − m0 ∼ √
ε cos

((
1 + 1

2ε
)√

ct + φ0
)
. (12)

On the other hand, in the limit β → ∞, where the system is
performing relaxational oscillations, the equations are piece-
wise linear and the shape of the limit cycle can be found by
matching the boundary conditions of solutions in half-spaces
[1]. Notice that the two regimes differ qualitatively by the
fact that the quasiharmonic oscillations are centered in m0

and pass equal time up and down from this value, while
in the relaxational regime they are centered in 0 and pass
uneven times upon having positive and negative values such
that their average will be in the end m0. These results are
in quantitative agreement with numerical simulations of the
lattice system in a fully connected geometry as we show in
Fig. 1 where we recapitulate the behavior in a phase diagram
in the plane (m0, β ). The mean-field approximation of the
static Ising model is known to capture qualitatively the behav-
ior of the system in finite-dimensional geometry, but it fails
quantitatively on the surroundings of the critical point. The
study of the Ising model in finite dimension is arguably one of
the most important areas in statistical physics, touching upon
issues related to field theories and renormalization. One of the
most important and earlier results, due to Onsager [37] and
achieved by combinatorial counting, is an analytical solution
for the system in a 2D square lattice where we have the
formula for the spontaneous magnetization:

m = (1 − sinh−4 2β )1/8, (13)

valid for

β > βc = 1
2 log(1 +

√
2). (14)

The analogy with the static counterpart would suggest that
for the case with feedback in finite dimension we could have
a limit cycle emerging with a nontrivial exponent and we
explore this issue by numerically studying the Ising model
with feedback in a 2D square lattice graph.

The corresponding results are shown in Fig. 2. Simulations
have been performed for a system with N = 104 spins, for a
neutral m0 = 0 and slow c = 10−4 feedback. First of all we
provide evidence [see Figs. 2(a) and 2(b)] that for β > βc

a limit cycle emerges whereas for β < βc the dynamics is
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(c)

(d)

(a)

(b)

FIG. 1. (a) Mean-field phase diagram of the feedback Ising model in the plane (m0, β ) for J = 1, c = 0.1, both the critical line and the
dynamical crossover line are highlighted. (b)–(e) magnetization time traces of the system simulated on a fully connected geometry in four
different points corresponding to different dynamical behavior: full many-body stochastic simulations (violet dots, system size N = 104 spins)
versus numerical solution of the low-dimensional ODEs (green line). (b) m0 = −0.3, β = 0.25; (c) m0 = 0.3, β = 1; (d) m0 = −0.3, β = 1.25;
(e) m0 = 0.3, β = 2.5. Simulations are made via the Metropolis-Hastings method [34,35].
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FIG. 2. Simulations of the feedback Ising model on a 2D square lattice; system size N = 104 spins, feedback strength c = 10−4.
(a) Magnetization as function of time m(t ) for β = 0.47, 0.45. (b) Trajectories in the phase plane (m, h) for β = 0.47, 0.45. (c) Histograms of
the probability distribution of the limit cycle amplitude at several βs. (d) Most probable limit cycle amplitude as function of β − βc compared

with Onsager formula and βc = log(1+√
2)

2 . Simulations are made via the Metropolis-Hastings method [34,35].
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FIG. 3. Sketch of the behavior of system (18) nearby the Bautin bifurcation point. (a) Bifurcation diagram for (18), where black line
is the line of the Andronov-Hopf bifurcation and the green one is the line of saddle-node bifurcation of limit cycles. Phase portraits of
solutions of (18) nearby bifurcation point (black line) and the results full microscopic stochastic simulations in the fully connected model with
N = 104 spins (green dots). (b) Confirmation of multistability. (c) Stable fixed point. (d), (e) Different limit cycles. Simulations are made via
Metropolis-Hastings method [34,35].

relaxing into fixed point with βc 	 0.44 consistent with the
analytical value.

We investigate in further details this aspect by quantita-
tively comparing the limit cycle amplitude with the Onsager
formula. This has been done by observing the trajectory of
the system in the phase space (m, h) and extracting the radial
coordinate. The distribution of the latter is shown in Fig. 2(c)
and for β > βc it develops a second peak in correspondence
with the formation of a limit cycle. The value at the peak has
been evaluated against β in Fig. 2(d) and the trend is compared
with the Onsager formula: we find a good agreement within
errors, evaluated as the width at half-maximum.

C. Feedback Blume-Capel model

Here we consider a generalization of the Ising model in
presence of vacancies, i.e., the spin variables admit the null
value si = 0,±1 and the Hamiltonian has an additional term
counting the number of filled sites whose average is fixed by
the chemical potential �:

H = −J
∑
〈i, j〉

sis j − h
∑

i

si + �
∑

i

s2
i . (15)

The static free energy of the system in a fully connected
geometry can be calculated analytically [38]

f = −J

2
m2 + 1

β
log(1 + 2 cosh(β(Jm + h))eβ�). (16)

The system with feedback fulfills the approximate equations

ṁ = −m + sinh(β(Jm + h))
eβ�

2 + cosh(β(Jm + h))
,

ḣ = −cm. (17)

In order to simplify analysis of (17) we introduce new
variables m′ = βJm and h′ = βh. We also redefine the param-
eters as follows: c′ = c/J > 0, β ′ = Jβ > 0, �′ = �/J and
eβ ′�′ = 2ν > 0. As a result, from (17) we obtain (the primes
are omitted)

ṁ = −m + β sinh(m + h)

ν + cosh(m + h)
, ḣ = −cm. (18)

It is clear that the origin O = (0, 0) is the fixed point of (18).
We begin with the analysis of codimension one bifurcation in
(18) and suppose that the β is the control parameter and c and
ν have some fixed values. The Jacobi matrix for (18) at O is

J =
(

β−ν−1
ν+1

β

ν+1

−c 0

)
. (19)

Consequently, the eigenvalues of (19) can be expressed via

σ = tr(J ) = β − ν − 1

ν + 1
, δ = det J = βc

ν + 1
, (20)

as follows:

λ1,2 = 1
2 (σ ±

√
σ 2 − 4δ). (21)

First, we are interested in the Andronov-Hopf bifurcation
and, hence, we assume that 4δ − σ 2 > 0, so that we have
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FIG. 4. The behavior of system (29) in the vicinity of the bifurcation line β = 3. (a) A sketch of a bifurcation diagram illustrating transition
from a subcritical to supercritical bifurcation: the vertical line is the line of the double Hopf bifurcation, where broken part shows subcritical
behavior and the inclined broken line corresponds to saddle-node bifurcation of cycles. (b)–(e) Phase portraits of some attractors in the vicinity
of β = 3. Black lines represent numerical solutions of (29), while green dots are obtained from fully microscopic stochastic simulations of a
system of size N = 105 spins via the Metropolis-Hastings method.

complex conjugate eigenvalues. These means that the β lies
in the interval

(2c + 1 − 2
√

c(c + 1))(ν + 1) < β

< (2c + 1 + 2
√

c(c + 1))(ν + 1). (22)

The first condition for the Andronov-Hopf bifurcation
σ (β0) = 0 results in β0 = ν + 1. The second condition
δ(β0) = c > 0 holds automatically. The nondegeneracy con-
ditions μ′(β0) = σ ′(β0)/2 �= 0 and l1(β0) �= 0 hold at ν �= 2.
Indeed, 2μ′(β0) = 1/(ν + 1) > 0 and the first Lyapunov co-
efficient for (18) is given by

l1(β0) = (ν − 2)(c + 1)

4c
3
2 (ν + 1)

�= 0, ν �= 2. (23)

We see that l1 �= 0 except at ν = 2, when the Andronov-Hopf
bifurcation switches from a supercritial to subcritical one.

At ν = 2 the first Lyapunov coefficient vanished and we
have that β = 3 and ν = 2 is the point of the Bautin bifurca-
tion (see, e.g., Ref. [27]). In order to check the nondegeneracy
conditions at the point of the Bautin bifurcation we com-
pute the second Lyapunov coefficient for (18) at β = 3 and
ν = 2, which is l2 = −√

c(c + 1)2/18 < 0 for c > 0. Conse-
quently, the line β = ν + 1 is the line of the Andronov-Hopf
bifurcation with the Bautin point at (2,3) that separates the
supercritical part of the line from the subcritical one.

In Fig. 3 we demonstrate bifurcation diagram for (18) at
c = 0.01. The black line is the line of the Andronov-Hopf bi-
furcation, where continuous part corresponds to supercritical
bifurcation and broken part to subcritical one. The green line
is the line of saddle-node bifurcation of limit cycles, which
is computed numerically with the help of the MATCONT [39].
The star denotes the Bautin point. One can see that parameters
space is separated into three regions. Broken black and green
lines form a region of multistability, where a stable limit cycle
coexists with a stable fixed point. Below solid black and green
broken lines the dynamics is defined by a stable fixed point.
Above the black line there exists a limit cycle, the correspond
to oscillations in both (18) and full stochastic microscopic
model.

Finally, let us remark that the Bautin bifurcation for a
spin system has been also described in Ref. [40], where a
dissipative term in the Curie-Weiss model in presence of local
random fields was considered.

D. Feedback Potts model

In the Potts model the lattice variables can assume one of q
given states (colors) si = 1 . . . q. Variables with equal colors
in neighboring sites lower the energy by a factor J and we
consider q external fields ha fixing the relative color fractions
xa = 1

N

∑
i δsi,a in the system. The corresponding Hamiltonian
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FIG. 5. (a) represents the two-dimensional chart of the Lyapunov exponents for (29), Blue color corresponds to the periodic dynamics,
green to quasiperiodic and red to chaotic one. (d)–(f) correspond to the phase portraits of periodic attractors at β = 4, c = 0.4, β = 8.1,
c = 0.55, and β = 21, c = 0.6, respectively. In (b), (c), (g), (h) we present Poincaré sections of three chaotic and one quasiperiodic attractors
at β = 9.1, c = 0.9, β = 20, c = 0.4, β = 5.2, c = 0.65, and β = 5.1, c = 0.75, respectively. Black lines corresponds to numerical solutions
of system (29) and green dots are obtained from fully microscopic stochastic simulations of a system of size N = 106 spins via the Metropolis-
Hastings method.

is

H = −J
∑
〈i, j〉

δsi,s j −
∑

a

ha

∑
i

δsi,a. (24)

In the fully connected case the expression for the free energy
is given by [41]:

A=−J

2

∑
a

x2
a −

∑
a

hσ xa + T
∑

a

xa log xa + λ

(∑
a

xa−1

)
,

(25)

where xa are the fractions of spins belonging to the same
color a and the last term is a Lagrange multiplier enforcing
normalization. Following the same scheme used for the Ising
model we have that the dynamics will approximately follow
the set of equations:

ẋa = −xa + eβ(Jxa+ha )

W
,

ḣa = −c(xa − 1/q), a = 1, . . . , q,

W =
∑

a

eβ(Jxa+ha ),

(26)

which describes the motion in the linear response approxima-
tion.

System (26) possesses two conservation laws. The first one
is

q∑
a=1

xa = 1 + C0e−t , (27)

where C0 is an arbitrary constant. Since at t = 0 the sum of all
xa is equal to 1, we set C0 = 0. With the help of (27) at C0 = 0
we find the second conservation law

q∑
a=1

ha = C1, (28)

where C1 is arbitrary constant. Transformation ha → ha +
const results in additional constant term in Hamiltonian (24)
and, hence, does not affect the dynamics. Consequently,
without loss of generality, we assume that C1 = 0 in (28).
Therefore, the first conservation law at C0 = 0 corresponds
to the assumption that the number of spins is constant and the
second one corresponds to the invariance of the dynamics with
respect to constant shifts in the feedback.

Now we consider the case of three colors, i.e., q = 3.
Taking into account (27) and (28) and rescaling variables as
follows ha = Jh′

a, βJ = β ′, c/J = c′ from (26) at q = 3 we
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FIG. 6. Lyapunov spectra and bifurcation trees for system (29) at c = 0.75 and β ∈ [3.5, 6].

obtain (the primes are omitted)

ẋ2 = −x2 + eβ(x2+h2 )

W̃
, (29)

ḣ2 = −c

(
x2 − 1

3

)
, (30)

ẋ3 = −x3 + eβ(x3+h3 )

W̃
, (31)

ḣ3 = −c

(
x3 − 1

3

)
, (32)

and

W̃ = eβ(1−x2−x3−h2−h3 ) + eβ(x2+h2 ) + eβ(x3+h3 ) (33)

System (29) is symmetric with respect to swapping of
indices (2 ←→ 3) and has one equilibrium point A =
(1/3, 0, 1/3, 0). The eigenvalues of the Jacobi matrix at this
fixed point are

λ1,2,3,4 = β − 3

2
±

√
β2 − 6(2c + 1)β + 9

6
. (34)

Suppose that

β ∈ (3[2c + 1 − 2
√

c2 + c], 3[2c + 1 + 2
√

c2 + c]), (35)

then the eigenvalues are complex conjugated. Passing through
β = 3 the real part of eigenvalues cross the imaginary axis
and, hence, the fixed point A losses its stability. Due to the
symmetry of (29), the Jacobi matrix at A has multiple eigen-
values and we have the resonant double Hopf bifurcation
(see, e.g., Ref. [42] and references therein). Consequently,
the analytical treatment of the behavior of (29) near β = 3

is connected with some difficulties. However, numerically we
observe that the dynamics in the vicinity of the bifurcation
line β = 3 is similar to those of the Blume-Capel system near
the line of the Andoronov-Hopf bifurcation (see, Fig. 4 and
cf. Fig. 3). From Fig. 4 we see that in the lower left part of
the bifurcation line β = 3 there is a region of multistability
[see, Figs. 4(e), 4(d)], where a fixed point coexists with a
periodic orbit. This suggest that there exists some c∗ such that
for c < c∗ the bifurcation at β = 3 is subcritical. Increasing
the value of c we observe that the bifurcation type switches
from subcritical to supercritical one: there is no multistability
and at β = 3 a stable small-amplitude limit cycle is born [see
Figs. 4(b), 4(f)]. Let us also remark that due to the symmetry
of (29) there are always two coexisting orbits, which can be
seen from Figs. 4(c), 4(d).

In order to study possible type of dynamics that appear in
(29) away from the line β = 3 we compute the dependence
of the Lyapunov spectrum on the parameters β and c for
the region (β, c) ∈ [3, 5, 22] × [0.3, 1]. For computation of
the Lyapunov spectrum we use the standard algorithm by
Bennetin et al. (see Ref. [43]). We present the corresponding
two-dimensional chart of Lypaunov exponents in Fig. 5. We
color each point in this chart according to the signs of two
largest Lyapunov exponents as follows:

(1) λ1 = 0, 0 > λ2 > λ3 > λ4: periodic regime and blue
color;

(2) λ1 = λ2 = 0, 0 > λ3 > λ4: quasiperiodic regime and
green color;

(3) λ1 > 0, λ2 = 0, 0 > λ3 > λ4: chaotic regime and red
color.

In Fig. 5 we also demonstrate phase portraits and Poincaré
sections of typical attractors that appear in (29). Throughout
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FIG. 7. Poincaré sections of the attractors that appear along the line of the Afraimovich-Shilnikov bifurcation scenario at c = 0.75. (a) A
stable periodic orbit at β = 3.6; (b) a stable periodic orbit after period doubling at β = 4.5; (c) a stable quasiperiodic orbit at β = 4.8; (d) a
resonant periodic orbit at β = 4.9; (e) a chaotic attractor at β = 5.1. By black lines we show a numerical solutions of (29) and green dots are
obtained from fully microscopic stochastic simulations of a system of size N = 106 spins via the Metropolis-Hastings method.

this work the Poincaré map is constructed by considering
intersections of the flow governed by (29) with the plane
x2 = 1/2, if it is not stated otherwise.

The vast blue regions in Fig. 5 correspond to the existence
of a stable periodic orbit. There are also two separated red re-
gions of the chaotic dynamics. The appearance of the chaotic
attractors in these regions is governed by different scenarios.
In the upper left region of Fig. 5 we see a thin green stripe
of quasiperiodic dynamics that is adjacent to the thin region
of periodic behavior with chaotic one next to it. This suggests
that chaotic attractors can appear through the Afraimovich-
Shilnikov scenario of an invariant torus destruction (see, e.g.,
Refs. [28,44,45]).

In the region of lower feedback one can observe a big
blue area of periodic oscillations next to a narrow red strip
of chaotic ones. From Figs. 5(f), 5(e) one can see that if we
approach this red region from the right the period of oscilla-
tions increases. Therefore, one can expect the appearance of
the cascade of period doubling bifurcations, which we confirm
below.

Let us begin with the onset of chaotic oscillations in the
upper left part of the bifurcation diagram (see Fig. 5). We
see that inside the blue regions adjacent to red one there is
a narrow green patch. The left border of this green patch
is the line of the supercritical Neimark-Sacker bifurcation
(see, e.g., Refs. [27,46,47]), that corresponds to the birth of a
stable quasiperiodic regime, which is called an invariant torus.
The right border of the green region represents the formation
of resonant stable and unstable periodic orbits that appear
through the saddle-node bifurcation. Then, if we move further
to the right in the bifurcation diagram, the stable resonant orbit
becomes chaotic and so-called torus-chaos attractor appears.

We demonstrate realization of this scenario in (29) at
c = 0.75 and β ∈ [3.4, 22]. In Fig. 6 we show the Lya-
punov spectra and the bifurcations trees for this region. From
Fig. 6(b) one can clearly see that, after one period-doubling
bifurcation, a periodic attractor becomes quasiperiodic one,
undergoing the supercritical Neimark-Sacker bifurcation. We
can observe a narrow but distinct region of the existence
of quasiperiodic dynamics in Figs. 6(b), 6(c). Then this
quasiperiodic orbit becomes resonant and a long-periodic or-
bit is born. This resonant periodic orbit becomes chaotic after
undergoing a cascade of period doubling bifurcations and a
chaotic attractor is born on the basis of former quasiperiodic
orbit. We demonstrate Poincaré sections of the attractors along

FIG. 8. Entropy production for the Potts model and the Lyapunov
spectrum for (29) at c = 0.75 and β ∈ [2, 6].
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FIG. 9. Lyapunov spectra and bifurcation trees for the Feigenbaum cascade of period doubling in (29) at c = 0.55 and β ∈ [3.1, 8.6].

the line of the Afraimovich-Shilnikov bifurcation scenario in
Fig. 7.

We also compute the dependence of the entropy production
for the Potts model on the parameter β and compare it with
those of the Lyapunov spectrum for (29) (see Fig. 8). The
average rate of entropy production can be calculated from
the out-of-equilibrium definition of work for feedback-driven
systems [48,49], for the feedback Potts model we have the

formula

σ =
∑

a

ḣaxa. (36)

From Fig. 8 one can see that the changes in the entropy
production are in direct correlation with the bifurcations in
the feedback model.

FIG. 10. Poincaré sections of the attractors that appear along the line of the Feigenbaum cascade of period doubling. In all plates c = 0.55
and β is 3.5, 4.5, 7.7, 8.1, and 8.3, respectively. Numerical solutions of (29) are given in black, while green dots are obtained from fully
microscopic stochastic simulations of a system of size N = 106 spins via the Metropolis-Hastings method.
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Chaotic attractors in (29) can also appear as a result of the
Feigenbaum cascade of period doubling. This is typical for the
lower part of the bifurcation chart in Fig. 5. We suppose that
c = 0.55 and β ∈ [3.1, 8.6] and present the corresponding
graphs of largest Lyapunov exponents and bifurcation trees in
Fig. 9. One can observe a typical cascade of period doubling
that a periodic orbit undergoes. We demonstrate Poincaré
sections of the attractors along the line of the Feigenbaum
scenario in Fig. 10. One can see that period doubling can
be observed both in dynamical system (29) and in the mi-
croscopic stochastic simulations of a system of size N = 106

spins. Upon performing simulations of the full many-body
system at different sizes we checked that stochastic fluctu-
ations of the Poincaré sections reduce and converge to the
predictions of the ODEs.

Finally, it is worth noting that the dynamical system (29) is
four dimensional and in principle hyperchaotic dynamics can
appear there. However, for the studied regions of the control
parameters we have observed only one direction of instability
in (29). Moreover, we have not found in these regions of the
parameters any other routes to chaotic oscillations apart from
those reported above.

III. CONCLUSION

In this work we have analyzed classical spin lattice mod-
els, namely the Ising model, the Blume-Capel model, and
the Potts model in presence of a negative feedback between
the order parameter and the external field(s). These models
are representative of the universality classes of equilibrium
phase transitions and here we have shown that their usual
critical points and phase transition lines get transformed into
more complex bifurcations with the emergence of periodic,
quasiperiodic, and chaotic oscillatory patterns. At odds with
the case of driven systems [17–21] these oscillations are
emerging self-oscillations and the system is autonomous, with
no explicit dependence on time.

Our first general result is the derivation from linear
response theory of simple lower-dimensional dynamical sys-
tems that quantitatively reproduce the many-body stochastic
simulations for fully connected models. These systems can
then be analyzed by classical tools of bifurcation theory.

In some cases the system inherits the main features of its
equilibrium counterpart, including analytical tractability. This
is the case of the Ising model, where we have shown that
in finite dimensions, namely 2D, self-oscillations can emerge
with a nontrivial exponent for the amplitude β = 1/8 [50] in
line with the celebrated Onsager solution for the static system.

We have demonstrated that for the Blume-Capel model on
a fully connected graph the usual tricritical point gets trans-
formed into the Bautin bifurcation point and the second- and
first-order phase transition lines are taken over by subcritical
and supercritical Andronov-Hopf bifurcation lines, respec-
tively. These results are independent of the feedback strength
parameter c, as soon as this does not break the validity of the
continuous approximation, that is valid in the thermodynamic

limit and they are nicely summarized qualitatively by the
Landau theory of an homogeneous self-compatible field in
presence of a feedback.

On the other hand we have shown that for the case of the
Potts model with feedback, the dynamical picture is much
more complex, due to the increased effective dimensions
in which the order and control parameters exist (from two
to four in going from the Ising model to the Potts model
with q = 3 colors). The character of the bifurcation where
self-oscillations emerge that substitutes the equilibrium phase
transition (at βc = q) depends on the strength of the feed-
back c. For low enough c it is discontinuous (subcritical)
and there exists a region where a stable fixed point coexists
with self-oscillations. This corresponds well with the static
equilibrium transition, that is known to be first-order for the
fully connected Potts model at q = 3.

However, if one increases c, the amplitude of the emerg-
ing self-oscillations decreases up to a certain critical point
where it becomes continuous akin to the Bautin bifurcation.
This time it depends on the feedback strength and at odds
with respect to the underlying free energy landscape. Fur-
thermore, if one increases β (i.e., decreases temperature), we
have obtained that the bifurcation diagram of the Potts model
with feedback endows complex scenarios with cascades of
bifurcations leading to new limit cycles and quasiperiodic
attractors and eventually to chaotic ones. The out-of-
equilibrium thermodynamic features of these systems have
been worked out numerically and we have demonstrated how
singularities of the entropy production correspond to qualita-
tive changes in the spectrum of the Lyapunov exponents and
the underlying bifurcations.

Among the many future directions of this work we believe
it would be interesting to analyze feedback lattice models with
generalized out-of-equilibrium Landau functional formalism
[51] extending it beyond the Ising systems as well as to apply
our framework to data analysis of collective oscillations in
natural systems [52], especially synchronization of neuronal
systems [53]. Another interesting problem is in regard to the
finite-size scaling study of bifurcations as out-of-equilibrium
phase transitions in such high-dimensional stochastic systems.
This is a well-known topic in equilibrium statistical mechan-
ics [6]. A phenomenological approach, pursued for the Ising
model [33], would consist in adding a Langevin noise term to
the ODEs, while a more rigorous approach would require us to
study the thermodynamic limit, that is where phase transitions
are defined more in general [54].
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