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Mechanization of a scalar field theory in 1 + 1 dimensions: Bogomol’nyi-Prasad-Sommerfeld
mechanical kinks and their scattering
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We present an updated version of a general-purpose collective coordinate model that aims to fully map
out the dynamics of a single scalar field in 1 + 1 dimensions. This is achieved by a procedure that we call a
mechanization, in which we reduce the infinite number of degrees of freedom down to a finite and controllable
number by chopping the field into flat segments connected via joints. In this paper we introduce two new
ingredients to our procedure. The first is a manifestly Bogomol’nyi-Prasad-Sommerfeld (BPS) mechanization in
which BPS mechanical kinks saturate the same bound on energy as their field-theoretic progenitors. The second
is allowing the joints to switch, leading to an extended concept of the effective Lagrangian, through which we
describe direct collisions of mechanical kinks and antikinks.
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I. INTRODUCTION

Field theories in 1 + 1 dimensions with disconnected
vacua support topological solitons, i.e., kinks, which are sta-
ble particlelike objects. Kinks (and their higher-dimensional
relatives) are relevant in many areas of contemporary
physics, including cosmology, condensed matter, and particle
physics [1–3].

The collisions of solitons have become a major avenue
for theoretical exploration of the inner workings of nonlinear
field dynamics. Indeed, during collisions, the nonlinearity is
“switched on” only intermittently and with an intensity that
can be tuned, among other parameters, by the initial velocities
of the impactors. The ultimate goal of soliton dynamics would
be the ability to predict, given the initial state of solitons and
the model at hand, the outcome of any collision.

Although the kink-antikink KK̄ scattering have been
studied since the late 1970s [4–8], the true quantitative un-
derstanding of their main characteristics has been achieved
only recently [9–17] (see also references in [18]). A hallmark
feature of KK̄ collisions is the bouncing phenomenon. It has
been long since understood as a resonant transfer of kinetic
energy to and from colliding solitons into localized modes of
the field. In the case of the φ4 kink, they are the shape modes
residing on the kinks themselves [10], while for the φ6 model,
a delocalized mode emerges in between the K̄K pair [13].

In Fig. 1 we showcase the evolution of the central field
value φ(x = 0, t ) as a function of time and initial velocity of
the KK̄ configuration in the φ4 model. This picture demon-
strates the intricate dependence of the collision’s outcome on
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the initial velocity. More precisely, we see that the bouncing
happens only in certain windows that occur below the critical
velocity vcrit ≈ 0.26 and above vmin ≈ 0.18. In between the
bouncing windows there are so-called bion chimneys where
the KK̄ pair forms a long-living quasiperiodic state that slowly
decays via emission of radiation.

Both a quantitative and a qualitative understanding of this
phenomenology are commonly pursued through the so-called
collective coordinate model (CCM). This approach aims to
reduce the infinite-dimensional dynamics of the field theory
down to a few most relevant degrees of freedom. The strat-
egy is to select a background Ansatz: A continuous family
of curves φbkg(x; {Xa(t )}) controlled by a given number of
parameters Xa that may vary with time. For a relativistic field
theory with a single scalar field, i.e.,

L = 1
2∂μφ∂μφ − V (φ), (1)

the effective Lagrangian has a generic structure

Leff = 1
2 gabẊaẊb − U (X ), a, b ∈ {1, . . . , N}, (2)

where N is the number of collective coordinates and the metric
and the potential are given by the integrals

gab ≡
∫ ∞

−∞
dx

∂φbkg

∂Xa

∂φbkg

∂Xb
, (3)

U (X ) ≡
∫ ∞

−∞
dx

[
1

2
φ′2

bkg + V (φbkg)

]
. (4)

The utility of the CCM encoded in Leff depends very sen-
sitively on φbkg. Regarding the strategies for selecting viable
Ansätze, we may postulate two complementary philosophies:
(i) the engineering approach and (ii) the agnostic approach.

The engineering approach, as the name suggests, relies on
incorporating prior information into φbkg. If the goal is the
analysis of KK̄ scattering, for instance, the Ansatz typically
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FIG. 1. Evolution of the center field value φ(x = 0, t ) of KK̄
configuration for a range of initial velocities in the φ4 model.

consists of a superposition of kink and antikink solutions plus
a selected number of normal modes, a route that has been ap-
plied, e.g., for the φ4 model [9,10] (see [18] for the somewhat
intricate history of its deployment). However, CCMs that have
been proposed also include Derrick modes [11], quasinormal
modes [19], and/or delocalized modes [13,20,21]. In fact,
the engineering approach has become a precision tool for
predicting major features of the KK̄ scattering, such as the
critical velocity [17].

Despite its successes, the engineering approach has also
disadvantages. In this approach, a given CCM is like a micro-
scope that has been carefully trained on a particular spot of
the sample. Regardless of how successfully a CCM models
the selected feature of dynamics, it has no direct applicabil-
ity to other aspects, nor can it be used for discovering new
dynamical features or to unearth connections between known
ones. In short, an engineering CCM is, by construction, a
single-purpose tool.

On the other hand, the agnostic approach aims to be a
general-purpose tool. Rather than carefully constraining the
field(s) into a premeditated scope, the agnostic CCM at-
tempts to capture rough features of the field dynamics in
a coarse-grained setting. In this regard, it is mainly a tool
for exploration. In practice, the best approach is a judicious
synthesis of the two: Deployment of the agnostic CCM should
be followed by an engineering one. Indeed, the findings of the
former can be a posteriori verified and developed by the latter.
Ideally, such a combination may allow exhaustive exploration
of soliton dynamics in situations, where there is a vast space
of initial configurations involving multiple fields and a higher
number of spatial dimensions, which makes numerical solu-
tions of field theory very time consuming.

To achieve this, we must first develop a toolkit for agnostic
CCMs in various field theories, starting with a single scalar
field in 1 + 1 dimensions. An agnostic CCM must be exhaus-
tive, meaning that the background Ansatz φbkg approaches the
continuum field in the limit N → ∞. Furthermore, it must be
algebraically tractable: The number of terms in the effective
Lagrangian should grow linearly with N . This is to ensure that
stepping from N to N + 1 does not generate an exponential
increase in complexity.

In our previous paper [22] we proposed an early candidate
for such an agnostic CCM that we have dubbed mechaniza-
tion. The idea is to replace a continuum field with a piecewise
linear function: A mechanical field.1 We have cataloged basic
features of mechanical-field dynamics for a few lowest values
of N , which is the number of nonflat segments connected by
N + 1 joints.

The most apparent advantage of the mechanization proce-
dure is that it allows progressive exploration of the dynamics.
As N increases, more modes of behavior become possible.

At N = 1, the mechanical field is a mechanical analog of
the kink: A mechanical kink (see Fig. 4). Let us point out
two of its salient features: (i) A static mechanical kink can
be boosted, despite the explicit breakdown of the Lorentz
invariance that is typical for most CCMs, and (ii) the me-
chanical kink has an exact periodic solution, the so-called
Derrick mode. In fact, the structure of the effective Lagrangian
turns out to be virtually identical to a field-theoretic relativistic
CCM for a kink [11].

At N = 2, the mechanical field connecting the same vacua
behaves as a quasiperiodic oscillator that can decay; the joints
fly to opposite infinities while the mechanical field settles on
the vacuum exponentially fast. In [22] we investigated how
the lifetime of this mechanical oscillon depends on its initial
dimensions. More importantly, we have shown that higher-N
mechanical oscillons can decay via multiple channels, includ-
ing disintegration into an excited pair of a mechanical kink
and an anti-mechanical-kink that, before escaping to infinity,
may undergo several bounces.

Although our findings were encouraging, we have also
identified several shortcomings of mechanization as proposed
in [22]. For example, the moduli space of a generic mechan-
ical field turned out to be geodetically incomplete, having
multiple singularities corresponding to situations when joints
overlap. Further, we have also encountered a technical issue
that prevented us from direct investigation of mechanical-KK̄
scattering. Because the segment between a mechanical-KK̄
pair lies precisely in a vacuum, there is no force between
them, unlike in the field theory, where a short-range attractive
force exists due to overlapping tails of kinks. Thus, a direct
scattering of mechanical kinks seemed to be impossible, while
scattering of approximate mechanical kinks turned out to be
riddled with numerical instabilities and the presence of long-
range forces.

In this paper we present a solution to the above issues
in addition to other conceptual advancements. Hence, we
provide a significant step towards the construction of a truly
general-purpose CCM.

Our main findings are distributed in the paper as follows.
In Sec. II we reintroduce the mechanization procedure and
provide explicit formulas for the effective Lagrangian us-
ing two different sets of coordinates. More importantly, we
define a concept of Bogomol’nyi-Prasad-Sommerfeld (BPS)
mechanization that allows the construction of Bogomol’nyi-
Prasad-Sommerfeld equations for static mechanical kinks

1Let us stress that this is an ad hoc choice, which has the merit
of producing the simplest effective Lagrangians. Other piecewise
functions could be considered. See the discussion in Sec. V.
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FIG. 2. Depiction of a mechanical field φM (x, t ) as a sequence of N straight stretchable segments connected via massless joints.

saturating the same Bogomol’nyi bound [23] as field-theoretic
kinks. In Sec. III we compare the properties of mechanical
kinks based on non-BPS and BPS mechanization, includ-
ing the discussion of normal modes. Section IV contains
an investigation of direct mechanical-KK̄ scatterings for the
simplest mechanical fields. We first present a resolution of
the decoupling problem: This is accomplished via loose order
mechanization (LOM). In short, we show that short-range
interactions of kinks in a field theory are replaced by contact
interactions between mechanical kinks. By allowing the joints
to pass through each other (without encountering any singular-
ities) we continue the free dynamics of a mechanical-KK̄ pair
into to different stage, where it becomes a mechanical oscil-
lon. This mechanical oscillon may either decay or again form
a new mechanical-KK̄ pair, which can fly apart or undergo
bouncing. In this way, we show that both key features, namely,
bouncing and (mechanical-)bion formation, are represented
even in the simplest mechanical-KK̄ scatterings. We showcase
numerical results for both non-BPS and BPS kinks in the φ4

model. Finally, in Sec. V we discuss the presented results and
point out future directions for the mechanization program.

II. MECHANIZATION

In this section we gather all the technical aspects of the
mechanization procedure; we define the mechanical field and
discuss associated moduli space, providing explicit formulas
for the metric via two complementary choices of coordinates.
Finally, we provide an explicit form for the effective La-
grangian for both non-BPS and BPS approaches.

A. Mechanical field

The mechanization procedure replaces a continuous field
φ(x, t ) by a piecewise linear function that is defined by a
set of N + 1 control points (or joints) in the φ-x plane, i.e.,
{xa, φa}, a = 0, . . . , N (see Fig. 2). We define a mechanical
field φM (x, t ) by the formula

φM (x, t ) ≡
N∑

a=−1

(
�φa(t )

�xa(t )
[x − xa(t )] + φa(t )

)
χa. (5)

Here � fa(t ) ≡ fa+1(t ) − fa(t ) and χa is the indicator func-
tion for each segment,

χa ≡ θ (x − xa) − θ (x − xa+1) = −�θ (x − xa), (6)

where θ (x) is the Heaviside step function, i.e., θ (x) = 1 if x >

0 and θ (x) = 0 otherwise.
The xa(t ) are the positions of the joints on the x axis. Note

that the φa correspond to the values of the field at the ath joint,
i.e., φa(t ) ≡ φ(xa(t )), only if they are canonically ordered,
namely, x0(t ) < x1(t ) < · · · < xN (t ). Throughout this section,
we assume that this ordering holds.

We impose boundary conditions on a mechanical field so
that it has finite energy. Specifically, we fix the two outer-
most segments in some vacua, i.e., φ−1 = φ0 = vL and φN =
φN+1 = vR, where vL,R represent vacuum values on the left or
right, respectively. We have formally added two static joints
at spatial infinities, namely, x−1 = −∞ and xN+1 = +∞. The
continuity of the mechanical field can be then verified by
direct differentiation

∂xφM (x, t ) =
N∑

a=−1

�φa(t )

�xa(t )
χa −

N∑
a=−1

�[δ(x − xa)φa]. (7)

The second term on the right-hand side vanishes due to the
fundamental theorem of discrete calculus, i.e.,

N∑
a=−1

�[δ(x − xa)φa] = φN+1δ(x − xN+1) − φ−1δ(x − x−1)

= vRδ(x − ∞) − vLδ(x + ∞)

= vRδ(−∞) − vLδ(∞) = 0.

A similar argument can be made to show that ∂tφM (x, t )
is free of δ functions too. There are N − 1 heights of joints
φ1, . . . , φN−1 together with N + 1 positions x0, . . . , xN , total-
ing 2N degrees of freedom to describe a mechanical field with
N + 1 joints.

For further purposes, let us also introduce an alternative
parametrization

φM (x, t ) ≡
N∑

a=−1

[ka(t )x + �a(t )]χa. (8)
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FIG. 3. Illustration of a degeneracy of {xa(t ), φa(t )} coordinates.
The insertion of a new joint on any segment does not change the
mechanical field.

Here the ka are the slopes of the segments, i.e.,2

ka ≡ φa+1 − φa

xa+1 − xa
, (9)

while the �a are given as

�a ≡ xa+1φa − xaφa+1

xa+1 − xa
. (10)

The boundary conditions read

k−1 = kN = 0, �−1 = vL, �N = vR. (11)

The inverse formulas to (9) and (10) are given as

xa+1 = −�a+1 − �a

ka+1 − ka
, φa+1 = ka+1�a − ka�a+1

ka+1 − ka
. (12)

The {ka,�a} coordinates offer some advantages over
{xa, φa}. For example, the metric, discussed in the next sec-
tion, has the simplest form. A more subtle issue is the
redundancy (or degeneracy) of {xa, φa} coordinates. We il-
lustrate this in Fig. 3: If we artificially add a joint on any
segment while keeping the neighboring slopes the same, the
mechanical field does not change, i.e., the new joint is not dy-
namical. In particular, a vacuum configuration, i.e., φM = v,
can be described with a single segment, two segments, or any
number of segments, with the positions {xa} undetermined by
the dynamics for any N . This can be seen directly from the
formula (5) by setting φ0 = · · · = φN = v.

In {ka,�a} coordinates, on the other hand, the vacuum
is given by k0 = · · · = kN = 0 and �0 = · · · = �N = v and
there are no undetermined degrees of freedom. Furthermore,
there is truly only a single segment, because whenever two
subsequent �a and ka equal each other, the xa is undefined
through Eq. (12). This is most easily seen from the rewriting
of (8) as

φM (x, t ) ≡ vL +
N∑

a=0

θ (x − xa(t ))[�ka(t )x + ��a(t )], (13)

which shows that whenever �ka = ��a = 0, the coordinate
xa disappears.

2Here the notation is slightly different from our previous paper [22],
where we wrote ka+1 instead.

B. Moduli space

Generically, for any set of collective coordinates {Xa} the
metric is given as

g({X })ab ≡
∫ ∞

−∞
dx

∂φ

∂Xa

∂φ

∂Xb
. (14)

In the {xa, φa} coordinates, the metric consists of (N + 1) ×
(N + 1), (N + 1) × (N − 1), and (N − 1) × (N − 1) tridiag-
onal blocks, namely,

g({x, φ}) =
(

gxx gxφ

gφx gφφ

)
, (15)

where gφx = (gxφ )T and

gxx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(�φ0 )2

3�x0

(�φ0 )2

6�x0
0 · · ·

(�φ0 )2

6�x0

(�φ0 )2

3�x0
+ (�φ1 )2

3�x1

(�φ1 )2

6�x1
· · ·

0 (�φ1 )2

6�x1

(�φ1 )2

3�x1
+ (�φ2 )2

3�x2
· · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(16)

gxφ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(φ0 − φ1)/6 0 0 · · ·
(φ0 − φ2)/3 (φ1 − φ2)/6 0 · · ·
(φ1 − φ2)/6 (φ1 − φ3)/3 (φ2 − φ3)/6 · · ·

0 (φ2 − φ3)/6 (φ2 − φ4)/3 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(17)

gφφ =

⎛
⎜⎜⎜⎜⎜⎝

(x2 − x0)/3 (x2 − x1)/6 0 · · ·
(x2 − x1)/6 (x3 − x1)/3 (x3 − x2)/6 · · ·

0 (x3 − x2)/6 (x4 − x2)/3 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠.

(18)

The determinant reads3

|g({x, φ})| = 1

12N

N−1∏
a=−1

(ka+1 − ka)2
N−1∏
b=0

(xb+1 − xb)2. (19)

In these coordinates the metric is degenerate, i.e., |g| = 0, not
only when positions of neighboring joints coincide, namely,
�xa = 0, but also when subsequent slopes are equal: �ka =
0. The latter type of singularity reflects the aforementioned
degeneracy.

On the other hand, in {ka,�a} coordinates, the metric con-
sists of four N × N diagonal blocks

g({k,�}) =
(

gkk gk�

g�k g��

)
, (20)

3Note that the formula for the determinant given in our previous
paper [22] was written incorrectly.
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where g�k = gk� and

gkk = 1
3

⎛
⎜⎜⎜⎜⎜⎝

x3
1 − x3

0 0 0 · · ·
0 x3

2 − x3
1 0 · · ·

0 0 x3
3 − x3

2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠, (21)

gk� = 1
2

⎛
⎜⎜⎜⎜⎜⎝

x2
1 − x2

0 0 0 · · ·
0 x2

2 − x2
1 0 · · ·

0 0 x2
3 − x2

2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠, (22)

g�� =

⎛
⎜⎜⎜⎜⎜⎝

x1 − x0 0 0 · · ·
0 x2 − x1 0 · · ·
0 0 x3 − x2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠. (23)

Furthermore, the determinant reads

|g({k,�})| = 1

12N

N−1∏
a=0

(xa+1 − xa)4 (24)

and contains only a singularity of the type �xa = 0.

C. Effective Lagrangian and BPS mechanization

To obtain an effective Lagrangian we insert a mechanical
field given by either (5) or (8) into a Lagrangian density L
taken as a generic scalar-field theory in 1 + 1 dimensions, i.e.,

L = 1
2 φ̇2 − 1

2φ′2 − V (φ), (25)

and integrate it over the x axis

Leff =
∫ ∞

−∞
dx L(φM ). (26)

The result derived by assuming canonical ordering of joints,
x0 < x1 < · · · < xN , reads (see the details in [22])

L[{x, φ}]

=
N−1∑
a=0

�xa

[
1

6

(
�φ̇a − �ẋa

�xa
�φa

)2

− �φ2
a

2�x2
a

+ 1

2

(
φ̇a+1 − �φa

�xa
ẋa+1

)(
φ̇a − �φa

�xa
ẋa

)
− �V (φa)

�φa

]
.

(27)

In the {k,�} coordinates, the same can be expressed slightly
more compactly as

L[{k,�}] =
N−1∑
a=0

(
x3

a+1 − x3
a

6
k̇2

a + x2
a+1 − x2

a

2
k̇a�̇a + �xa

2
�̇2

a

− 1

2
k2

a�xa − �xa
�V (φa)

�φa

)
, (28)

where xa and φa are understood as functions of ka and �a

through the relations (12). In both formulas (27) and (28),

V (φ) is the primitive function of the potential V (φ), i.e.,
V ′(φ) = V (φ).

Let us stress that (27) and (28) are valid only if x0 < x1 <

· · · < xN . We will return to this point in Sec. IV, where we
present the effective Lagrangian (LOM) that incorporates all
possible orderings.

Let us now point out that mechanization of the potential
term, i.e., ∫ ∞

−∞
dx V (φM ) =

N−1∑
a=0

�xa
�V (φa)

�φa
, (29)

obtained by a direct integration is not unique and may not
be the most optimal for studying topological solutions. In the
following, let us label the outcome (29) a non-BPS mecha-
nization for reasons that will become obvious.

Now let us consider a field theory in the form

LJ = 1
2∂μφ∂μφ + 1

2 J2 + JW (φ), (30)

where W (φ) is the superpotential, i.e., V (φ) ≡ 1
2W 2(φ), and

J is an auxiliary field. Of course, LJ is physically equivalent
to (25), as can be seen by eliminating J through its equation of
motion J = −W (φ) and plugging it back in.

However, if we first mechanize the auxiliary field as

JM =
N−1∑
a=0

[θ (x − xa(t )) − θ (x − xa+1(t ))]Ja(t ), (31)

where the positions of joints xa(t ) are the same as those
appearing in φM , inserting both JM and φM into LJ and in-
tegrating over x yields

LJ
M ⊃

∫ ∞

−∞
dx

[
1

2
J2

M + JMW (φM )

]

=
N−1∑
a=0

(
�xa

2
J2

a + �xaJa
W (φa+1) − W (φa)

φa+1 − φa

)
, (32)

where W is a primitive function of the superpotential, i.e.,
W ′ = W .

Eliminating all Ja via their equations of motion, we arrive
at what we dub BPS mechanization, namely,

LJ
M −−−−−−−−→

Ja=−�Wa/�φa

LBPS
M (33)

LBPS
M ≡

N−1∑
a=0

[
x3

a+1 − x3
a

6
k̇2

a + x2
a+1 − x2

a

2
k̇a�̇a + �xa

2
�̇2

a

− 1

2
k2

a�xa − �xa

2

(
�W (φa)

�φa

)2]
. (34)

In other words, we have found that the following loop does
not close (the horizontal arrows −→

M
denote mechanization,

while the vertical arrows denote elimination of auxiliary
variables):

(35)
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FIG. 4. Simplest mechanical model of a kink equal to a mechan-
ical kink.

Although the difference between LM and LBPS
M is isolated

only to the potential term and, at first glance, does not seem
significant, we will show that it has a profound impact on the
nature of static solutions and their dynamics.

III. STATIC SOLUTIONS

In this section we study the properties of static solutions of
both LM and LBPS

M and highlight their differences.

A. Non-BPS mechanical kinks

To find static solutions of a generic N mechanical field we
minimize the static energy

EM =
N−1∑
a=0

(
(�φa)2

2�xa
+ �xa

�V (φa)

�φa

)
. (36)

The coordinates of the joints (up to overall position) can be
found as4

�xa = (�φa)3/2

√
2[V (φa+1) − V (φa)]

. (37)

On the other hand, the field values φa follow from minimiza-
tion of (36) after inserting (37), i.e.,

EM −−→
(37)

N−1∑
a=0

√
2�φa[V (φa+1) − V (φa)]. (38)

This leads to a system of nonlinear algebraic equations

V (φa)2 = V (φa+1) − V (φa)

φa+1 − φa

V (φa) − V (φa−1)

φa − φa−1
. (39)

The simplest solution is the N = 1 mechanical kink (see
Fig. 4). Its static width RK and static energy mK are given by

RK = vR − vL√
2κ

, mK = (vR − vL)
√

2κ, (40)

4Here we assume that the sequence {φ0, φ1, . . .} is monotonically
increasing, i.e., the solution is a mechanical kink interpolating vacua
vL < vR. The anti-mechanical-kinks would be found analogously
after the appropriate insertion of absolute values inside the square
roots so that �xa > 0 for all segments.

FIG. 5. Relative difference of mechanical kink static energy mK

and field-theoretic value MK as a function of the number of joints N
for the φ4 and SG models.

where

κ = 1

vR − vL

∫ vR

vL

dt V (t ). (41)

The corresponding values for the φ4 model are RK = √
15/2

and mK = √
32/15 ≈ 1.46. The latter value is not that far

from the field-theoretic value MK = 4/3. However, as we
show in Fig. 5, the mass of higher-N mechanical kinks ap-
proaches MK only relatively slowly.

The N = 1 mechanical kink has only one massive normal
mode: The Derrick mode. This mode is associated with in-
finitesimal scaling and has been identified as a crucial element
in constructing relativistic CCMs for KK̄ collisions in various
field theories [11]. Its (angular) frequency is universally given
as ω2

D = Q/M, where Q is the second moment of static energy
density. The corresponding formula for the N = 1 mechanical
field reads qM = (vR − vL)2/12RK . In the case of the φ4 the-
ory, we have qM = √

5/6 ≈ 0.91, which is quite far from the
field-theoretic value Q ≈ 0.43.

In general, a mechanical kink with N + 1 joints has 2N
normal modes. The lowest one is a zero mode corresponding
to the overall translation of joints. The remaining 2N − 1
modes are massive modes. As N → ∞, we should somehow
recover the corresponding spectrum of field-theoretic kinks.
This typically consists of a certain number of localized modes
and a continuous spectrum of radiation modes, depending on
the model at hand.

In Figs. 6 and 7 we show that this correspondence (if it
exists at all) is not very visible in the displayed range N � 17.
For instance, Fig. 7 hints at some convergence of the third
normal modes towards the (blue dashed) line of the φ4 kink’s
only massive mode, but this could be entirely coincidental
and further investigation into higher N is needed to draw any
conclusions.

These results illustrate that the correspondence between
relatively-high-N non-BPS mechanical kinks and field-
theoretic kinks is not as simple, as one might hope, especially
regarding the structure of normal modes. Let us now see how
the situation differs for static solutions of LBPS

M .
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threshold

FIG. 6. Distribution of frequencies ω of normal modes as a func-
tion of N for the φ4 model. Only a few of the lowest frequencies are
displayed and zero modes are omitted.

B. BPS mechanical kinks

In the BPS scheme, the static energy reads

EBPS
M =

N−1∑
a=0

[
(�φa)2

2�xa
+ �xa

2

(
�W (φa)

�φa

)2]
. (42)

Proceeding as in the preceding section, we first eliminate the
coordinates of the joints via their equations of motion

�xa = (�φa)2

�W (φa)
. (43)

threshold

FIG. 7. Distribution of frequencies ω of normal modes as a func-
tion of N for the SG model. Only a few of the lowest frequencies are
displayed and zero modes are omitted.

In contrast with the non-BPS case, if we insert this relation
back into the EBPS

M we obtain a pure number

EBPS
M −−→

(43)

N−1∑
a=0

�W (φa) = W (φN ) − W (φ0)

= W (vR) − W (vL) ≡ MK , (44)

which is given by the difference of superpotentials evaluated
for vacua at ±∞, the field-theoretic BPS mass of the kink MK .

We can establish this result in a standard way by com-
pleting the energy in a (sum of) square(s) in the manner of
Bogomol’nyi [23]:

EBPS
M =

N−1∑
a=0

[
(�φa)2

2�xa
+ �xa

2

(
�W (φa)

�φa

)2]

=
N−1∑
a=0

�xa

2

(
�φa

�xa
− �W (φa)

�φa

)2

+
N−1∑
a=0

�W (φa)

�
N−1∑
a=0

�W (φa) = MK . (45)

The minimization of energy is achieved by vanishing the
squares, giving us the conditions (43).

Interestingly, BPS mechanical kinks have unconstrained
heights of the joints because there is no equivalent of Eq. (39)
that would uniquely determine φa. Indeed, φa is arbitrary as
long as �xa > 0. This amounts to the condition

W (φa+1) > W (φa) ∀ a. (46)

For N = 1, the only difference from the non-BPS case is in
the parameter κBPS [compare with Eq. (41)]:

κBPS = 1

2(vR − vL)2

( ∫ vR

vL

dt W (t )

)2

. (47)

Its value for the φ4 model is κBPS = 2/9, giving us RK = 3,
mK = MK = 4/3, and qM = 1.

The structure of normal modes is also very different com-
pared with non-BPS mechanical kinks. A BPS mechanical
kink has N zero modes, corresponding to an overall shift in
the position of joints and the freedom to make infinitesimal
shifts of each φa. Consequently, it has only N massive normal
modes, in contrast with 2N − 1 massive modes for non-BPS
mechanical kinks.

The frequencies of these massive modes, however, do de-
pend on the value of φa. As an illustration, in Fig. 8 we display
the frequencies of the two massive modes of the N = 2 BPS
mechanical kink as functions of φ1 for the φ4 model. In fact,
it is easy to work out explicit formulas:

ω1 =
√

4 + 2φ2
1√

3
, ω2 = 1

3

√
54φ2

1 + 16

φ2
1

− 28. (48)

A salient feature of Fig. 8 is the expected mirror symmetry
under φ1 → −φ1 and the fact that, at the center φ1 = 0, the
second massive mode diverges, i.e., ω2 → ∞. This is a foot-
print of the coordinate degeneracy: At that point the N = 2
BPS mechanical kink is indistinguishable from the N = 1
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threshold

FIG. 8. Dependence of frequency of two massive modes for N =
2 BPS mechanical kinks on the height of the middle joint φ1. The
horizontal lines indicate relevant frequencies for the field-theoretic
kink in the φ4 theory.

mechanical kink. Indeed, the value ω1(φ1 = 0) = 2/
√

3 is the
same as the N = 1 Derrick mode. What is more surprising is
the fact that the lengths of segments

�x0 = 3

2 − φ1
, �x1 = 3

2 + φ1
(49)

are both positive in the range φ1 ∈ (−2, 2). Thus, the middle
joint can also be placed outside [−1, 1], contrary to expecta-
tions.

Finally, let us address the question of recovering the spec-
trum of normal modes of the φ4 kink in the limit N → ∞.
Compared with non-BPS mechanical kinks, the situation is
complicated by the fact that N massive normal modes depend
on N − 1 free parameters, the φa.

To make progress, we studied several somewhat random
types of value assignments for the heights of joints, referred
to as linear, quadratic, and rational, given by the formulas

φa = −1 + 2a

N
(linear), (50)

φa = −1 + 1

2

(
2a

N

)2

(quadratic), (51)

φa = 1 − 2(N − a)

a + N
(rational). (52)

In Fig. 9 we display how the lowest-lying frequencies of
normal modes change with increasing N for all three types
of assignments. We see that, especially for the two lowest
massive modes, the frequencies tend to converge to the same
values for all three assignments. This hints that the same
limiting spectrum should be reached for any choice of φa.
However, as was the case for non-BPS mechanical kinks,
the convergence to

√
3, the frequency of the φ4 kink’s shape

mode, is very slow, if it exists at all. All that we can claim is

threshold

FIG. 9. Frequencies of normal modes for φ4 BPS mechanical
kinks as a function of the number of joints N + 1. We depict a
gradual approach of the values for three different value assignments
of field values φa as described in the text.

that the convergence towards the shape mode is very slow in
the displayed range N � 61.

Another crucial property of BPS mechanical kinks is the
existence of N zero modes due to the degeneracy of the so-
lution. For example, the N = 2 mechanical kink has not only
translational zero mode but also a zero mode corresponding to
an infinitesimal change of φ1, the height of the middle joint.
This extra zero mode has an interesting and counterintuitive
impact on the dynamic of N = 2 mechanical kinks. We can
easily imagine (and we observe it in numerical simulations)
that during dynamical evolution, the coordinate φ1 drifts from
its initial value, as its change does not cost any energy. We
observe that once the middle joint becomes very close to one
of the outer joints, the latter quickly accelerate to infinity. In
this way, the N = 2 mechanical kink sheds one of its outer
joints and becomes effectively an N = 1 mechanical kink.
This phenomenon is called joint ejection and we reported it
in our previous paper [22].

Although the joint ejections were observed for sufficiently
perturbed N � 2 non-BPS mechanical kinks, in the BPS case
they are practically inevitable due to the presence of extra zero
modes. This leaves only the N = 1 mechanical kink as a truly
stable solution in BPS mechanization.

IV. SCATTERING OF MECHANICAL KINKS

In this section we investigate the simplest forms of
scattering between mechanical kinks to showcase the sec-
ond conceptual advancement of this paper, what we call a
loose order mechanization. As we will see, the analysis of
mechanical-KK̄ scattering requires including noncanonical
orderings of the joints and construction of an effective La-
grangian that incorporates these different orderings. We also
present numerical results for the dynamics of a symmet-
ric N = 3 mechanical field and we find qualitatively similar
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FIG. 10. Illustration of the decoupling property. If the mechan-
ical field consists of two parts connected by a flat segment in a
vacuum, the coordinates in the left and right parts of the mechanical
field do not interact.

behavior to field theory, namely, that the mechanical-KK̄ pair
undergoes bounces or forms (mechanical) bions. We analyze
the scattering of both non-BPS and BPS mechanical kinks and
comment on the differences.

A. Decoupling

The compact nature of mechanical fields, i.e., that they
have finite extents outside of which there are only exact
vacua, allows us to superpose objects, e.g., mechanical kinks
or mechanical oscillons, without introducing any interaction
between them. This is most easily visible at the effective
Lagrangian level. Taking a generic mechanical field and fixing
the ath segment to a vacuum, say, φa = φa+1 = v, while keep-
ing xa and xa+1 dynamical, it is easy to see that the effective
Lagrangian consists of two decoupled pieces:

LM[φM] −−−−−−→
φa,φa+1→v

LM
[
φ

(1)
M

] + LM
[
φ

(2)
M

]
. (53)

In other words, there remain no interacting terms that could
inform the constituent mechanical fields φ

(1,2)
M about each

other’s existence.5 Thus, the two parts evolve according to
their respective dynamics as if the other piece is not there at
all (see Fig. 10). This is of course true only until they start
to overlap, where the very description of the dynamics via
effective Lagrangians (27) or (28) is invalid.

As a consequence, a mechanical kink and an anti-
mechanical-kink separated by a vacuum segment of arbitrary
length do not impart any force on one another. This should be
compared with what is going on in field theory, where a well-
separated KK̄ configuration experiences an exponentially
damped attractive force, precisely because field-theoretic soli-
tons are not compact.6 This presents somewhat of a roadblock
to naive investigations of mechanical-KK̄ scattering. Indeed,
the dynamics derived from the effective Lagrangian (27) is
trivial before the collision (no force) and undefined for the
moment of contact as L[{xa, φa}] applies only for canonically
ordered mechanical fields.

One way around this obstacle is to investigate approxi-
mate mechanical kinks. As an example, we can consider a

5During dynamical evolution, a mechanical field can pass through
a decoupled configuration. In such a case, however, nonzero
derivatives preserve the interaction between the two parts, so the
decoupling does not occur.

6In special field theories, however, compact solutions can be
present [24–27]. Their behavior is quite similar to the mechanical
kinks and mechanical oscillons presented here (or, more correctly,
vice versa).

FIG. 11. The N = 3 symmetric mechanical field.

symmetric N = 3 mechanical field depicted in Fig. 11 with
a middle segment not exactly in a vacuum but arbitrarily close
to it.

However, the excess energy in the central segment would
manifest as a constant attractive force between the (approxi-
mate) mechanical kinks. Importantly, this force would be long
range and clearly an artifact of the selected configuration. In
fact, we should not see the mechanical field in Fig. 11 as
describing well-separated mechanical kinks; the presence of
a long-range force between them makes them manifestly not
well separated. Rather, we should say that Fig. 11 depicts a
symmetric mechanical oscillon and has (a priori) nothing to
do with mechanical-KK̄ dynamics.

Even for more elaborate mechanical fields, long-range
forces would remain present simply because piecewise linear
functions cannot rapidly approximate a constant (without ac-
tually being identical to it), unlike the exponentially decaying
tails of kinks in the field theory. In this way, the investigation
of approximate mechanical-KK̄ scattering is irreparably con-
taminated by unphysical long-range forces.

Fortunately, we can investigate scattering of mechanical
kinks directly and in a natural way, as we do in this section.

B. Rigid KK̄ scattering

Let us consider a superposition of a mechanical kink and
anti-mechanical-kink with widths RK separated by a flat mid-
dle segment of length R in a vacuum v2. Specifically,

φKK̄
M = v1θ (−x − RK−R/2) + [θ (x + RK + R/2)

− θ (x + R/2)]

(
v2 − v1

RK
(x + RK + R/2) + v1

)

+ v2[θ (x + R/2)−θ (x−R/2)]

+ [θ (x − R/2) − θ (x − RK − R/2)]

×
(

− v2 − v1

RK
(x − R/2) + v2

)

+ v1θ (x − R/2 − RK ). (54)

Note that φKK̄
M = φK

M (x + R/2) + φK̄
M (x − R/2) + v1, where

φK
M and φK̄

M are an N = 1 mechanical kink and an N = 1
anti-mechanical-kink, respectively.

The key to analyze the dynamics of φKK̄
M is to realize

that there are four distinct orderings of joints (or stages; see
Fig. 12) depending on the value of R, each of which is gov-
erned by a different effective Lagrangian. Each stage follows
from the previous one by continuation of R to more negative
values. In turn, R has a different meaning in each stage. When
R > 0, it is the distance between a mechanical kink and an
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FIG. 12. Various stages of the N = 3 mechanical field depending on the value of R. If R > 0, the configuration is a mechanical kink and
antikink interpolating vacua v1 and v2 separated by distance R. The width RK > 0 is assumed to be always positive. In the second and third
stages, when −2RK < R < 0, the mechanical field becomes an N = 3 mechanical oscillon, first above and then below the vacuum v1. Its
amplitude depends on R in a designated way. In the final stage R < −2RK , the mechanical field can be arbitrarily wide, but since the middle
segment does not lie in either vacua (assuming 2v1 − v2 is not another vacuum), it is energetically unfavored.

antikink. When −RK < R < 0, it controls both the height and
width of a symmetric N = 3 mechanical oscillon that is placed
above vacuum v1, while when −2RK < R < −RK , R serves
a similar role for the mechanical oscillon placed under v1.
Finally, when R < −2RK , the mechanical field φKK̄

M resembles
an arbitrarily separated anti-mechanical-kink and mechanical
kink that interpolate between the values v2 and 2v1 − v2. If
the latter value is not a vacuum of the given model, there
is a constant attractive force and the whole configuration is
energetically disfavored.

For simplicity, in this section we investigate rigid
mechanical-KK̄ scattering, where only R is dynamical while
RK is fixed to an appropriate initial value. For the first stage,
i.e., assuming R > 0, we have

LI = (v2 − v1)2

4RK
Ṙ2 − (v2 − v1)2

RK
− 2κRK , (55)

where κ is given either as in Eq. (41) for non-BPS mecha-
nization or as in Eq. (47) in the BPS case. Up to an irrelevant
constant, LI describes a free particle (with position R/2) of
mass 2(v2 − v1)2/RK .7 In this stage, the mechanical kinks
indeed behave as free particles.

In the second stage, i.e., for −RK < R < 0, we obtain

LII = (v2 − v1)2

4R2
k

(RK − R)Ṙ2 − UII, (56)

where the potentials for both non-BPS and BPS mechaniza-
tion read

UII = 2RK

v2 − v1

[
V

(
v2 + v2 − v1

RK
R

)
− V (v1)

]

− RV

(
v2 + v2 − v1

RK
R

)
− (v2 − v1)2(R + RK )

R2
K

,

(57)

7If we replace RK with an appropriate static value this would be
equivalent to twice the mass of the N = 1 mechanical kink.

U BPS
II = R2

K/(v2 − v1)2

(RK + R)

[
W

(
v2 + v2 − v1

RK
R

)
− W (v1)

]2

− R

2
W 2

(
v2 + v2 − v1

RK
R

)
− (v2 − v1)2(R + RK )

R2
K

.

(58)

It is easy to check that LI = LII at R = 0, namely, that the
transition from the first stage to the second stage is continuous.
This is a direct consequence of continuity of the mechanical
field φKK̄

M (54).
The Lagrangian LII describes a rigid and symmetric N = 3

mechanical oscillon. Its solutions are periodic. Also note that
the metric (v2 − v1)2(RK − R)/2R2

K is regular at both transi-
tions from the first stage to the second (R = 0) and from the
second stage to the third at R = −RK . This is also true for
the potential which goes to zero at R = −RK . Thus, there are
no singularities that prevent us from continuing the variable R
below −RK .

The third stage also depicts a rigid N = 3 mechanical os-
cillon which is placed below the vacuum v1,

LIII = (v2 − v1)2

4R2
k

(3RK + R)Ṙ2 − UIII, (59)

where

UIII = − 2RK

v2 − v1

[
V

(
v2 + v2 − v1

RK
R

)
− V (v1)

]

+ (2RK + R)V

(
v2 + v2 − v1

RK
R

)

+ (v2 − v1)2(R + RK )

R2
K

, (60)

U BPS
III = − R2

K/(v2 − v1)2

(RK + R)

[
W

(
v2 + v2 − v1

RK
R

)
− W (v1)

]2

+ 2RK + R

2
W 2

(
v2 + v2 − v1

RK
R

)

+ (v2 − v1)2(R + RK )

R2
K

. (61)
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FIG. 13. Example of a rigid mechanical-KK̄ collision in the φ4

model. The initial data are R(0) = 10 and Ṙ(0) ≡ −2v = −0.2.

Again, it is easy to check that LII = LIII at R = −RK . Fur-
thermore, both the kinetic term and the potential term remain
well defined at R = −2RK ; thus we may continue to the fourth
stage

LIV = (v2 − v1)2

4RK
Ṙ2 − (v2 − v1)2

RK
− 2κIVRK , (62)

where

κIV =V (v1) − V (2v1 − v2)

v2 − v1
−

(
1 + R

2RK

)
V (2v1 − v2),

(63)

κBPS
IV = 1

2

(W (v1) − W (2v1 − v2)

v2 − v1

)2

− 1

2

(
1 + R

2RK

)
W 2(2v1 − v2). (64)

The LIV generically describes a particle in a linearly attractive
potential, unless 2v1 − v2 is also a vacuum of the model.

Since all transitions from one stage to the next are continu-
ous, we may collect the fixed-order Lagrangians into a single
LOM that captures the dynamics of rigid mechanical-KK̄
collisions for the entire range R ∈ (−∞,∞),

Lrigid
LOM = LIθ (R) + LIIθ (−R)θ (R + RK )

+ LIIIθ (−R − RK )θ (R + 2RK )

+ LIVθ (−R − 2RK ), (65)

where LI,II,III,IV are fixed-order Lagrangians given above. Note
that Lrigid

LOM is a continuous function of R. Furthermore, Lrigid
LOM is

nothing but a direct integration of the mechanical field φKK̄
M

assuming RK = const > 0, i.e.,

Lrigid
LOM =

∫ ∞

−∞
dx L

(
φKK̄

M

)
, (66)

allowing for all possible orderings of joints.

FIG. 14. Example of a rigid mechanical-KK̄ collision in the SG
model. The initial data are R(0) = 10 and Ṙ(0) ≡ −2v = −0.2.

As there are no modes through which (rigid) mechanical
kinks can lose energy, they either are bound to reflect off each
other (in the case of, say, the φ4 model) or go through each
other (in the case of, e.g., the SG model), as illustrated in
Figs. 13 and 14.

Let us further point out that there is a direct field-theoretic
analog of Lrigid based on the Ansatz

φ = φK [x + R(t )/2] + φK̄ [x − R(t )/2] + v1, (67)

where φK is the single-soliton solution for the given model.
The corresponding effective Lagrangian does the same job
as Lrigid of Eq. (65). However, there are conceptual differ-
ences. In field theory, one must be careful about placing the
kinks sufficiently apart. This is especially true for the φ8

model where the kinks have long polynomial tails and a naive
superposition Ansatz like (67) is not suitable for numerical
investigation [27]. In contrast, the mechanical-KK̄ superposi-
tion is an exact solution of the equations of motion for any
R > 0. Thus the outcome of the collision is automatically
independent of the initial separation. We can summarize this
by saying that the short-range interactions of field theory are
replaced by contact interactions in mechanization.

C. Mechanical-KK̄ scattering

Let us now turn to RK (t ). The mechanical kinks now
possess a Derrick mode that allows the resonant transfer of
kinetic energy, which manifests as bouncing, which is when a
mechanical-KK̄ pair temporarily reemerges from the second
stage into the first stage but does not have sufficient kinetic
energy to fly apart and instead plunges again below the R = 0
line. Note that this gives us an operational definition of the
number of bounces as the number of zeros of R(t ) divided by
2 minus 1.8

8This is irrespective of what the outcome of the scattering is.
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FIG. 15. Collision of the mechanical-KK̄ pair in the φ4 model (non-BPS). The initial data are R(0) = 0, Ṙ(0) ≡ −2vin = −0.48, RK (0) =√
15(1 − v2

in )/2, and ṘK (0) = 0. Here we see a formation of a short-duration mechanical oscillon. There are two bounces (around t = 35 and
46) after which the mechanical oscillon rapidly decays into the −1 vacuum.

With dynamical RK (t ), the N = 3 mechanical oscillon in
the second stage can decay, i.e., its width grows exponentially
with time, while the height exponentially decreases (see [22]
for details). Hence, nonrigid mechanical kinks display more
complicated behavior with two primary outcomes: A well-
separated mechanical-KK̄ pair with excited Derrick modes or
a state of a decayed mechanical oscillon. The first stage is
given as

LKK̄
I = 1

2
gI

abẊaẊb − (v2 − v1)2

RK
− 2κRK , (68)

where Xa = {R, RK} and the metric reads

gI = 2

3RK

(
3 3
3 4

)
. (69)

There are no singularities in either metric or potential along
the R coordinate. The second stage is described by

LKK̄
II = 1

2 gII
abẊaẊb − UII, (70)

where UII is the same as in the preceding section and the
metric reads

gII = 1

3R4
K

(
6R2

K (RK − R) 6RK
(
R2

K + R2
)

6RK
(
R2

K + R2
) −4

(
R3 − 2R3

K

)
)

. (71)

From the formulas for the determinant and Ricci scalar

|gII| = −4(RK + R)
(
R2RK + 5RR2

K − R3
K + R3

)
3R6

K

, (72)

R = 9R4
K

(
R2RK − 2RR2

K − R3
K + R3

)
2(RK + R)2

(
R2RK + 5RR2

K − R3
K + R3

)2 (73)

we see that there is a physical singularity at the transition into
the third stage, i.e., at R = −RK . Unlike in the rigid case,
we are now unable to continue to more negative values; the
mechanical field cannot attain values below the vacuum v1.
This is an unphysical artifact that can be traced to the so-
called null-vector problem, in which the metric is degenerate
at R = −RK .

Hence, the full effective Lagrangian for mechanical-KK̄
scattering has only two stages:

LKK̄
LOM = LIθ (R) + LIIθ (−R). (74)

A CCM that has similar characteristics to LKK̄
LOM is given by

the Ansatz

φ = φK [b(t )[x + a(t )]} + φK̄{b(t )[x − a(t )]} + v1. (75)

The corresponding effective Lagrangian is described in [11]
and suffers from the same null vector (or flatness) problem,
namely, that the metric has a singularity at a = 0. There are
also known remedies for this malady, either by choosing a
different moduli space with massive modes supplanted into
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FIG. 16. Collision of mechanical-KK̄ pairs in the φ4 model (BPS). The initial data are R(0) = 0, Ṙ(0) ≡ −2vin = −0.638,
RK (0) = 3

√
(1 − v2

in ), and ṘK (0) = 0. Here the mechanical oscillon is formed for roughly 25 t.u. and disintegrates into a excited
mechanical-KK̄ pair.

the above Ansatz with judiciously chosen amplitude moduli
(see [10]) or by including the Derrick modes in a perturbative
fashion as done in [11].

The flatness problem present in LKK̄
LOM is a consequence of

too simple a mechanical field. Indeed, from the formula (54)
we see that at R = −RK the mechanical field becomes an exact
vacuum everywhere, i.e., φKK̄

M = v1. Moreover, at this point
∂RφKK̄

M = −∂RK φKK̄
M .

The null-vector problem, however, should all but disappear
for higher-N mechanical fields, where there are more degrees
of freedom and it is easy to avoid φM = v1 for all values of R.
Investigation of higher-N mechanical-KK̄ collisions is left for
future work. We display typical mechanical-KK̄ scattering in
Figs. 15–17.

In Fig. 18 we display the time dependence of the center
value of the mechanical field φM (x = 0) for a range of initial
velocities in the φ4 model. The dark blue color represents
the +1 vacuum, while the white color stands for the −1
vacuum. A bouncing occurs for such velocities when the
value of φM (x = 0) eventually returns to +1; these are the
dark blue columns indicating that the mechanical-KK̄ pair
has been reformed after the initial collision. On the other
hand, the white columns correspond to situations where the
mechanical oscillon decayed to the −1 vacuum. The reader
should compare Fig. 18 with Fig. 1.

Let us make several comments.
First, there exists a critical velocity above which the

mechanical-KK̄ pair scatters elastically. The corresponding

value for KK̄ collisions in the φ4 theory is vcrit = 0.2598 [11],
while for non-BSP mechanization LKK̄

LOM it is around 0.32 (up-
per half of Fig. 18) and around 0.44 for the BPS case (lower
half of Fig. 18). It is curious that the BPS mechanization
nature makes the match with the field theory in this regard
worse.

Second, there also exists a minimal velocity below which
bouncing does not occur. This is especially visible for BPS
mechanization, where vmin ≈ 0.28 and below which there
is a clear change in character of the collisions. For the
non-BPS version (the upper part of Fig. 18), it is much
harder to ascertain the value of vmin without a careful
search. Certainly, there does not seem to be a qualitative
change of the mechanical-KK̄ scattering like in the BPS case.
In this regard, the BPS case is more similar to the field
theory.

The third aspect, and perhaps the most striking, is the ab-
sence of smooth edges between bouncing windows and bion
chimneys in both non-BPS and BPS cases. In field theory,
bouncing windows begin and end at practically vanishing
values of outgoing velocities so that the transitions to bion
chimneys are continuous. In our case, however, bouncing
windows start and end abruptly at finite velocities. Currently,
we cannot give a reason why this is so or what the significance
of this phenomenon is. We suspect it is a clue that could lead
to further conceptual improvements of the mechanization, but
the investigation of these aspects of mechanical-KK̄ scattering
are beyond the scope of the present work.
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FIG. 17. Collision of mechanical-KK̄ pairs in the φ4 model (non-BPS). The initial data are R(0) = 0, Ṙ(0) ≡ −2vin = −0.594958,
RK (0) = √

15(1 − v2
in )/2, and ṘK (0) = 0. Here we see two bounces (around t = 22 and 65) after which the pair flies apart to infinity.

FIG. 18. Dependence of the center value φM (x = 0) on time for a range of initial velocities in the φ4 model. The initial separation of the
mechanical-KK̄ pair is set to R(0) = 5. The upper part shows non-BPS mechanization and the lower part BPS mechanization.
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D. LOM

We can generalize the concept of LOM as follows.
Given a mechanical field φM with joints placed at positions
{x0, . . . , xN }, the effective Lagrangian describing its dynamics
is given by

LLOM =
∑

σ∈PN+1

LM
({

xσ , φtrue
σ

}) N−1∏
a=0

θ (xσ (a+1) − xσ (a) ), (76)

where PN+1 is the set of all permutations of N + 1 indices and
LM ({x, φ}) is a fixed order effective Lagrangian given by the
formula (27). Note that the (true) heights of the joints φtrue

depend on the given permutation of joints (e.g., in Fig. 12
we see that the heights of joints have different values in
each stage). Depending on which LM ({x, φ}) is taken, either
non-BPS or BPS, the resulting LOM would describe either
non-BPS or BPS dynamics.

Let us stress that LLOM is simply a result of direct integra-
tion of the Lagrangian density, i.e.,

LLOM =
∫ ∞

−∞
dx L(φM ), (77)

allowing {x0, . . . , xN } to take all possible values. Conse-
quently, the chain of Heaviside functions in the formula (76)
is there to enforce that the appropriate fixed-order Lagrangian
is switched on.

Finally, let us comment that a generic mechanical field for
which all 2N degrees of freedom are dynamical is not going
to be directly extendable beyond canonical orderings of joints.
This is due to the presence of singularities in the moduli space
that we discussed in Sec. II [see, e.g., (24)]. Generically, the
φa need to be constrained in an appropriate way to ensure the
continuity of the mechanical field at each contact �xa = 0.

V. SUMMARY AND OUTLOOK

In this paper we have introduced two conceptual advance-
ments of mechanization compared with [22]. First is the BPS
mechanization that replicates the BPS nature of kinks in field
theory. Unlike the non-BPS mechanical kinks with static en-
ergies mK approaching the field-theoretic mass MK only very
slowly, as evident from Fig. 5, the BPS mechanical kinks
saturate the same bound mK = MK for all N . There is also
a major difference in the number of zero modes. Non-BPS
mechanical kinks have 2N − 1 massive normal modes and
only one zero mode associated with translational symmetry.
On the other hand, BPS mechanical kinks have N massive
modes and N − 1 additional zero modes that stem from the ar-
bitrariness of the heights of joints φa. These extra zero modes
make the N > 1 BPS mechanical kinks dynamically unstable.
We observed that they are very prone to joint ejections, a
boundary joint flying off to infinity, effectively reducing the
number of degrees of freedom. The joint ejections happen also
for non-BPS mechanical kinks, but in that case there is an
energy barrier to overcome. In contrast, in the BPS case the
joint ejections may be triggered by the slightest perturbation.
Thus, we are led to the conclusion that only the N = 1 BPS
mechanical kink is a dynamically stable solution.

We have also illustrated the convergence (or lack thereof)
of the distribution of normal modes to the spectrum for kinks

in Figs. 6–9. In particular, Fig. 9 testifies that normal modes
of BPS mechanical kinks are not prepared to approximate the
shape mode of the φ4 kink even for very high N . This could
be an important clue. Coupled with the observation of the dy-
namical instability of N > 1 BPS mechanical kinks, we may
conclude that there is a conceptual difference between kinks
and mechanical kinks that persists for any N . One difference
that indeed persists is the compactness of the mechanical field.
Thus, it may not be enough just to increase N to reach a
quantitative match with field theory, but some new ingredient
might be needed.

The dynamical instability observed in both non-BPS and
BPS mechanization might be simply an artifact of our choice
of CCM. A similar circumstance was reported in [28] in the
context of the discretized nonlinear Schrödinger equation.
There the authors observed a spurious instability that origi-
nated from their choice of collective coordinates, which was
then resolved by adopting a broader Ansatz.

In the context of mechanization, the presence or absence of
joint ejections might therefore serve as a useful discrimination
tool among various piecewise Ansätze that we may consider.
In addition, the distribution of normal modes of mechanical
kinks could also constitute an independent gauge for a post
hoc validation of the selected CCM. Investigation of the phe-
nomenon of joint ejections and distribution of normal modes
of mechanical kinks for various piecewise Ansätze is left for
future work.

The compactness of mechanical fields is also the reason
for introducing the second conceptual advancement. In the
pursuit of direct mechanical-KK̄ scattering, we have shown
that short-range interactions in field theory can be replaced
by contact interactions by allowing joints to pass through
each other. This can be achieved without encountering sin-
gularities, which are present in a general mechanical field,
by working with constrained mechanical fields. Fortunately, a
mechanical-KK̄ pair separated by a flat segment of length R >

0 is such a mechanical field whose moduli space is regular at
R = 0 and we may continue the dynamics for negative values
R < 0 via switching to a (constrained) mechanical oscillon as
described in Sec. IV. This is embodied in the notion of loose
order mechanization.

First, we presented a LOM for rigid mechanical-KK̄ scat-
tering, where only the separation R is dynamic. There the
LOM involves four stages (see Fig. 12) that cover the full
range of the moduli R ∈ (−∞,∞). When we turned on the
time dependence of widths, RK (t ), we encountered a singu-
larity at the transition from the second stage to the third,
preventing the mechanical field from going below the vacuum.
The same problem, known as the null-vector problem, appears
also in naive CCMs and can be overcome by including more
moduli [10]. In our approach too we expect the null-vector
problem to go away when we increase the number of joints.

It is surprising that both the BPS property and the necessity
of LOM point to the same conclusion: A generic mechanical
field has too many degrees of freedom and it needs to be
constrained. This is perhaps not surprising, given the ad hoc
nature of its construction. In particular, during the course of
dynamical evolution, the N > 1 BPS mechanical kinks easily
shed degrees of freedom via joint ejections. This, in restricted
capacity, is true also for non-BPS mechanical kinks and it
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has been observed in high-N mechanical oscillons as well
[22]. The construction of LOM, which consists in joining
together effective Lagrangians for different orderings of the
joints, would not work at all if we allow all moduli of a generic
mechanical field to be dynamic.

As a closing remark, however, let us also point out a case
where the problem could be the exact opposite. Indeed, if we
consider a free-field theory with V = 0, a general solution is
described by superposition of arbitrary shapes moving with
the speed of light to either the left or the right: φfree(x, t ) =
fL(x − t ) + fR(x + t ). As a corollary, the solution to the
Cauchy problem with a static initial shape, i.e., φfree(x, 0) =
f (x) and φ̇free(x, 0) = 0, is described by an immediate
disintegration into two copies of the same shape with half the
amplitude: φfree(x, t ) = f (x − t )/2 + f (x + t )/2.

In the mechanized version of the free-field theory, this
does not happen. Starting with a symmetric N = 2 mechan-
ical field, a triangle of width R and height A, the governing
equations of motion

R̈ = 16

R
− 2ȦṘ

A
, Ä = A

Ṙ2

R2
− 20A

R2
(78)

can be solved exactly as

R = R0 + 4t, A = A0

√
1 + 4t/R0, (79)

which depicts an ever-expanding triangle with a constant
static mass A2/R = A2

0/R0. Clearly, such a solution is unphys-
ical, not just because the joints fly apart with twice the speed
of light. The correct solution should be the same as in field
theory, that the triangle disintegrates into two similar triangles
with half the initial height, flying apart with the speed of light.
However, this would require an instantaneous transition from
a symmetric N = 2 mechanical field with three joints to a
symmetric N = 5 mechanical field with six joints. In other
words, there would be a (triple) bifurcation at t = 0 where
each joint turns into two. Also note that such a bifurcation
would be a relativistic effect. We believe that some strange
characteristics of mechanical kinks dynamics can be poten-
tially explained by the current lack of a bifurcation process,
which should be investigated in future work.
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