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We study the statistics of random functionals Z = ∫ T
0 [x(t )]γ−2dt , where x(t ) is the trajectory of a one-

dimensional Brownian motion with diffusion constant D under the effect of a logarithmic potential V (x) =
V0 ln(x). The trajectory starts from a point x0 inside an interval entirely contained in the positive real axis, and
the motion is evolved up to the first-exit time T from the interval. We compute explicitly the PDF of Z for
γ = 0, and its Laplace transform for γ �= 0, which can be inverted for particular combinations of γ and V0. Then
we consider the dynamics in (0, ∞) up to the first-passage time to the origin and obtain the exact distribution for
γ > 0 and V0 > −D. By using a mapping between Brownian motion in logarithmic potentials and heterogeneous
diffusion, we extend this result to functionals measured over trajectories generated by ẋ(t ) = √

2D[x(t )]θη(t ),
where θ < 1 and η(t ) is a Gaussian white noise. We also emphasize how the different interpretations that can
be given to the Langevin equation affect the results. Our findings are illustrated by numerical simulations, with
good agreement between data and theory.
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I. INTRODUCTION

Consider the stochastic trajectory of a one-dimensional
particle described by the Langevin equation

dx(t )

dt
= μ[x(t )] +

√
2D[x(t )]η(t ), (1)

where μ(x) = −V ′(x) represents a deterministic force derived
from an external time-independent potential V (x), η(t ) is a
Gaussian white noise with zero mean and autocorrelation
〈η(t )η(t ′)〉 = δ(t − t ′), and D(x) is the space-dependent dif-
fusion coefficient. Suppose that the motion generated by (1)
starts from a point x0 inside a given interval �, and the first
passage outside � occurs after a random time T , which we
call the first-passage time. Define

Z =
∫ T

0
F [x(t )]dt, (2)

where F (x) is, in principle, an arbitrary function that makes
the integral convergent. Such a random variable is known
as first-passage functional, see Fig. 1 for an illustrative ex-
ample. Quantities of this kind have been extensively studied
in the case of free Brownian motion, i.e., for μ(x) = 0 and
D(x) = D, for the simple reason that many problems may
be formulated in terms of first-passage Brownian functionals
[1]. Of course, generalizations of the problem have also been
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proposed, in which, for example, dynamics other than purely
Brownian or the. introduction of stochastic resetting mecha-
nisms are considered [2–14].

In this paper we wish to consider a subclass of first-passage
functionals, where the integral in (2) is evaluated for F (x) =
xγ−2, with γ ∈ R, over the trajectory of a Brownian particle
with constant diffusion coefficient D in a logarithmic potential
V (x) = V0 ln(x/κ ), where κ is a length scale that we can
conveniently set to 1. This choice is motivated by the fact
that many interesting problems can be mapped to the study
of functionals of this kind. For example, for γ = 2 one has

FIG. 1. Example of first-passage functional Z = ∫ T
0 F [x(t )]dt

for Brownian motion in a potential V (x) = V0 ln(x) diffusing in � =
( 1

2 , 5
2 ). Here F (x) = 1/x and Z thus corresponds to the area under

the graph of 1/x(t ), where x(t ) is the stochastic trajectory displayed
in the inset. The trajectory starts from x0 = 1 and the motion is
evolved up to the first-exit time from �. The diffusion constant is
equal to 1 and V0 = 0.5.
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F (x) = 1 and thus Z simply corresponds to the first-passage
time T , which is a stochastic quantity relevant for a plethora
of applications [15,16]. For γ = 3, Z is equivalent to the
first-passage area A, i.e., the area swept by the trajectory
x(t ) in the xt plane until the first-passage time. This quantity
has attracted a lot of interest and was studied for instance in
the case of Brownian motion [3,5,17], Brownian motion with
drift [3,4,6], Brownian motion with stochastic resetting and
jump-diffusion processes [2,9,18], Orstein-Uhlenbeck process
with and without resetting [8,12,14], Lévy processes [7], and
with applications in queueing theory and combinatorics [3],
percolation [19], animal movements [20], snow melt [21], and
DNA breathing dynamics [22] to cite a few examples. Other
nontrivial and interesting cases are γ = 3

2 , which is related
to the oscillation period in the underdamped one-dimensional
Sinai model [23], and γ = 1

2 , which is associated with the
lifetime of a comet in the solar system [1,24]. Remarkably,
in the case of free Brownian motion diffusing in � = (0,∞),
it is possible to obtain the distribution of Z for any γ > 0
[17]. It is natural to try to extend this result to more gen-
eral situations, for example by adding the presence of an
external driving force. The specific case of a logarithmic
potential is interesting for several reasons: First, it has been
extensively studied in the literature [25–30] and recognized
as a model naturally appearing in different contexts, such as
stochastic thermodynamics [31–34], vortex dynamics [35,36],
long-range interacting systems [37–39], ion condensation on
a long polyelectrolyte [40], sleep-wake transitions [41], DNA
denaturation [22], and diffusion of cold atoms in optical
lattices [42–47]; in particular, in the latter two cases the first-
passage area [22] and the area under an excursion [48,49],
namely a trajectory that begins and ends at the origin without
crossing it at intermediate times, are of particular interest.
Second, there exists a discrete counterpart, known as the Gillis
random walk [50,51], which can be solved exactly and has
been considered in some recent work [52–55]. This model is a
critical case for the study of recurrence in stochastic processes
[51,56–58], with unique first-passage properties that are also
recovered in the continuous system. Third, it has been shown
that certain models of heterogeneous diffusion can be mapped
to the dynamics of Brownian motion (with constant diffusion
coefficient) in a logarithmic potential [59–61]. Hence, obtain-
ing the distribution of Z in the latter case allows us to derive
also the solution of the problem in the case of a spatially
varying diffusion coefficient. We remark that heterogeneous
diffusion has attracted a lot of interest in the statistical physics
community [59,62–68] and beyond, since situations in which
D is nonconstant are ubiquitous: Examples include contexts
related to biology [69–72], finance [73], solute transport in
heterogeneous media [74], and Richardson diffusion in turbu-
lence [75].

The outline of the paper is the following: In the next
section we use the method in Ref. [1] to write a backward
evolution equation for the Laplace-transformed probability
density function of Z , when evaluated along a trajectory gen-
erated by Eq. (1). In Sec. III we summarize the main results
for the particular case of a logarithmic potential and a constant
diffusion coefficient. As a corollary, we also obtain the dis-
tribution of Z when x(t ) is generated by ẋ(t ) = √

2Dxθη(t ),
with θ < 1, which is a model for heterogeneous diffusion. In

Secs. IV, V, and VI we derive the results by providing detailed
calculations. Finally, in Sec. VII we draw our conclusions.

II. BACKWARD EQUATION FOR THE PROBABILITY
DENSITY FUNCTION

Let us call p(z, x0) the probability density function (PDF)
of Z , knowing that the trajectory started from x0 ∈ �. The
idea is to derive a backward evolution equation for the Laplace
transform of the PDF, which corresponds to the expected
value of e−wZ , where w is the Laplace variable:

p̃(w, x0) =
∫ ∞

0
e−wz p(z, x0)dz = E(e−wZ ). (3)

Here the expected value is taken over all realizations that start
from x0 and leave � for the first time at T . To do this, one can
rewrite Eq. (2) as [1]

Z =
∫ dt

0
F [x(t ′)]dt ′ +

∫ T

dt
F [x(t ′)]dt ′, (4)

= F (x0)dt +
∫ T

dt
F [x(t ′)]dt ′ + o(dt ), (5)

and note that the second integral at the right-hand side corre-
sponds to the definition of Z , but for a trajectory that starts
from a random position x(dt ) = x0 + dx(0). Hence by using
p̃(w, x0) = E(e−wZ ), we have

p̃(w, x0) = 〈e−wF (x0 )dt p̃(w, x0 + dx)〉 + o(dt ), (6)

where the average at the right-hand side is taken over all
possible x(dt ), viz., over all possible dx(0). According to
Eq. (1), for any t the displacement dx(t ) = x(t + dt ) − x(t )
is given by

dx(t ) = μ[x(t )]dt +
√

2D(x∗)dW (t ), (7)

where dW (t ) is the increment of a Wiener process of vari-
ance dt and, more importantly, x∗ is a point between x(t )
and x(t + dt ). The choice of the point depends on the inter-
pretation given to the Langevin equation (1), and different
choices lead to different solutions [76–80]. In other words, if
we set x∗ = αx(t + dt ) + (1 − α)x(t ), with 0 � α � 1, then
the value of α determines the “rule” to integrate (1), and the
choice is often motivated by physical reasons. The interpre-
tations considered most significant in the physics literature
are those of Itô (α = 0), Stratonovich (α = 1

2 ), and Hänggi-
Klimontovich (α = 1) [81–84]. In our case, it is useful to
make the nonanticipating choice α = 0 (Itô). Nevertheless, we
are not bound to consider exclusively the Itô interpretation,
as any other interpretation can be recovered by inserting an
additional drift term dependent on α. In other words, (7) is
equivalent to

dx(t ) = μα[x(t )]dt +
√

2D[x(t )]dW (t ), (8)

where

μα (x) = μ(x) + αD′(x). (9)
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Now, from Itô formula [77] we can write d p̃(w, x0) =
p̃(w, x0 + dx) − p̃(w, x0) as

d p̃(w, x0) =
[

D(x0)
∂2 p̃(w, x0)

∂x2
0

+ μα (x0)
∂ p̃(w, x0)

∂x0

]
dt

+
√

2D(x0)
∂ p̃(w, x0)

∂x0
dW, (10)

and thus by inserting this into Eq. (6), taking the average over
dW , and discarding terms that are o(dt ), we obtain

D(x0)
∂2 p̃(w, x0)

∂x2
0

+ μα (x0)
∂ p̃(w, x0)

∂x0
− wF (x0) p̃(w, x0) = 0,

(11)
which is the backward evolution equation for p̃(w, x0), to be
accompanied by the appropriate boundary conditions and the
normalization condition p̃(0, x0) = 1. If D(x) is always bigger
than zero in �, then we can define

N (x0) = exp
( ∫ x0

a

μα (x)

2D(x)
dx

)
, (12)

where the lower bound of integration can be any point of �,
and then (11) can be written as

1

N (x0)

[
∂2

∂x2
0

− Veff (w, x0)

]
N (x0) p̃(w, x0) = 0, (13)

where

Veff (w, x0) = wF (x0)

D(x0)
+ 1

N (x0)

d2N (x0)

dx2
0

. (14)

We can therefore set

p̃(w, x0) = ψ (w, x0)

N (x0)
, (15)

to obtain a simpler equation for ψ (w, x0)[
∂2

∂x2
0

− Veff (w, x0)

]
ψ (w, x0) = 0. (16)

Note that the normalization condition p̃(0, x0) = 1 imposes
ψ (0, x0) = N (x0).

III. SUMMARY OF THE MAIN RESULTS

For V (x) = V0 ln x, with −∞ < V0 < ∞ and D(x) = D,
Eq. (16) simplifies to

∂2ψ (w, x0)

∂x2
0

−
[
wF (x0)

D
+ β2 − 1

4x2
0

]
ψ (w, x0) = 0, (17)

where we have introduced the parameter

β = 1 + V0

D
. (18)

We start by considering the dynamics in an interval � =
(a, b), with 0 < a < b. Then we generalize to intervals of the
kind � = (0, a) and � = (b,∞). Finally, we will consider
the problem in � = (0,∞). In the last scenario, we will also
provide the solution when the dynamics is generated by a
Langevin equation of the kind

dx(t )

dt
=

√
2Dxθη(t ), (19)

with θ < 1, and underline how it depends on different inter-
pretations. To simplify the following formulas, it is convenient
to define for γ �= 0 the exponent

ν = β

γ
= 1

γ
+ V0

γ D
(20)

and use the notation q̂ to indicate the scaled variable

q̂ =
√

wqγ

γ 2D
, (21)

where w will be the Laplace variable.

A. Finite intervals left-bounded by a positive number

Consider � = (a, b), with 0 < a < x0 < b. For γ �= 0, the
Laplace transform p̃(w, x0) is given by

p̃(w, x0) =
(

x0

a

)β/2 Hν (x̂0, b̂)

Hν (â, b̂)
+
(

x0

b

)β/2 Hν (â, x̂0)

Hν (â, b̂)
, (22)

where Hν (x̂, ŷ) is defined as

Hν (x̂, ŷ) = Iν (2x̂)Kν (2ŷ) − Iν (2ŷ)Kν (2x̂). (23)

Here Iν (z) and Kν (z) are the modified Bessel functions of the
first and second kinds, respectively [85]. Similarly, for γ = 0
we define

H (x, y) = sinh
(

ln

(
x

y

)√
w

D
+ β2

4

)
(24)

and have

p̃(w, x0) =
(

x0

a

)β/2 H (x0, b)

H (a, b)
+
(

x0

b

)β/2 H (a, x0)

H (a, b)
, (25)

which can be inverted, yielding the PDF,

p(z, x0) = 2πe− 1
4 β2Dz

ln2(b/a)

∞∑
n=1

(−1)n+1ne
− n2π2Dz

ln2(b/a)

×
{(

x0

a

)β/2

sin
(

ln(b/x0)

ln(b/a)
nπ

)

+
(

x0

b

)β/2

sin
(

ln(x0/a)

ln(b/a)
nπ

)}
. (26)

Furthermore, if we consider the set of trajectories that leave
� = (a, b) from b, which has probability

Eb(a) =
{

1−(x0/a)β

1−(b/a)β if β �= 0
ln(x0/a)
ln(b/a) if β = 0

, (27)

then the distribution of Z measured only on those trajectories
has the normalized density

p̃(w, x0) = 1

Eb(a)

⎧⎨⎩
( x0

a

)β/2 Hν (â,x̂0 )
Hν (â,b̂)

γ �= 0( x0
a

)β/2 H (a,x0 )
H (a,b) γ = 0

, (28)

Analogously, the probability Ea(b) of leaving from a can
be obtained from Eq. (27), and the corresponding normalized
density from Eq. (28), by exchanging a and b.
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B. Finite intervals left-bounded by the origin or infinite
intervals left-bounded by a positive number

Now take � = (0, r) or � = (r,∞), with r > 0. There is a
correspondence between the solutions in the two cases. More
precisely:

(1) When β > 0 and � = (0, r), the functional Z is well
defined only for γ > 0. In this case, the Laplace transform
p̃(w, x0) is given by

p̃(w, x0) = 2x̂ν
0

�(ν)
Kν (2x̂0)

[
1 − Iν (2x̂0)Kν (2r̂)

Iν (2r̂)Kν (2x̂0)

]
+
(

x0

r

)β/2 Iν (2x̂0)

Iν (2r̂)
. (29)

Nevertheless, if we examine only the set of trajectories that
leave from r, which has probability ER = (x0/r)β , then Z is
well defined for any γ , and the corresponding normalized
conditional PDF is

p̃(w, x0) =
{(

r
x0

)β/2 Iν (2x̂0 )
Iν (2r̂) for γ > 0(

r
x0

)β/2 Kν (2x̂0 )
Kν (2r̂) for γ < 0

, (30)

whereas for γ = 0 the conditional PDF is given explicitly by

p(z, x0) =
√

ln2(r/x0)

4πDz3
e− [Dβz−| ln(r/x0 )|]2

4Dz . (31)

Similarly, if we take now � = (r,∞) and exchange β → −β

and γ → −γ , then the set of trajectories that leave the in-
terval in a finite time has probability E = (x0/r)β and the
corresponding normalized conditional PDF is given again by
Eqs. (30) and (31).

(2) When β � 0 and � = (0, r), a trajectory leaves the
interval from r with probability 1, thus Z is well defined for
any γ . The Laplace transform p̃(w, x0) is given by

p̃(w, x0) =
⎧⎨⎩
( x0

r

)β/2 Iν (2x̂0 )
Iν (2r̂) for γ > 0( x0

r

)β/2 Kν (2x̂0 )
Kν (2r̂) for γ < 0

, (32)

and for γ = 0 the PDF is given explicitly by

p(z, x0) =
√

ln2(r/x0)

4πDz3
e− [Dβz+| ln(r/x0 )|]2

4Dz . (33)

Similarly, if we take now � = (r,∞) and exchange β → −β

and γ → −γ , then the set of trajectories that leave the interval
in a finite time has probability 1 and the corresponding PDF
is given again by Eqs. (32) and (33).

C. Positive real axis

For the positive real axis � = (0,∞), the functional Z is
well defined only when both β and γ are positive. However,
in this case the PDF can be computed explicitly. By defining

ZD = xγ

0

γ 2D
, (34)

the PDF can be written as

p(z, x0) = Zν
D

�(ν)
z−1−νe−ZD/z, (35)

where �(ν) is the Euler Gamma function. The result for free
Brownian motion [17] is recovered by setting V0 = 0, i.e., by
putting β = 1, which yields the exponent ν = 1/γ .

As a corollary, consider now Z evaluated on trajectories
generated by the Langevin equation

dx(t )

dt
=

√
2Dxθη(t ), (36)

with θ < 1, that we may interpret with any 0 � α � 1. For
γ > 2θ and 0 � α � 1

2 , the PDF of Z is

g(z, x0) = Kνα

D

�(να )
z−1−να e−KD/z, (37)

where

KD = xγ−2θ

0

(γ − 2θ )2D
, να = 1 − 2αθ

γ − 2θ
. (38)

The same applies to 1
2 < α � 1 if we add the condition θ <

1
2α

. By way of illustration, the first-passage time density is
recovered from Eq. (37) by setting γ = 2:

p(t, x0) =
[

x2(1−θ )
0

(1 − θ )24Dt

]να

e
− x2(1−θ )

0
(1−θ )24Dt

�(να )t1+να
, (39)

with να = (1 − 2αθ )/(2 − 2θ ), which agrees perfectly with
recent results [86].

In the following, we go into the details of the derivation
and present plots in which we compare our findings with
numerical simulations.

IV. FINITE INTERVALS LEFT-BOUNDED
BY A POSITIVE NUMBER

In this section we deal with intervals of the kind � =
(a, b). This case can be treated for any value of γ , but we
must distinguish γ �= 0 and γ = 0.

Let us begin with γ �= 0. Eq. (17) can be brought back to
the modified Bessel equation:

z2 f ′′(z) + z f ′(z) − (z2 + ν2) f (z) = 0. (40)

To see this, we make the ansatz ψ (w, x0) = xρ
0 ϕ(λxσ

0 ), where
λ depends on w and arrive at the following equation for ϕ(z):

0 = z2ϕ′′(z) + 2ρ − 1 + σ

σ
zϕ′(z)

−
[

wzγ /σ

Dσ 2λγ/σ
− 4ρ(ρ − 1) + 1 − β2

4σ 2

]
ϕ(z), (41)

where z = λxσ
0 . Then, by choosing

ρ = 1

2
, σ = γ

2
, λ = 2

γ

√
w

D
, (42)

we obtain the modified Bessel equation (40), with ν = β/γ ,
which admits the general solution

ϕ(2x̂0) = c1Iν (2x̂0) + c2Kν (2x̂0), (43)
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where c1 and c2 are coefficients that depend on a, b, and w,
and we recall

x̂0 =
√

wxγ

0

γ 2D
, (44)

see Eq. (21). The function ψ (w, x0) is thus of the form
ψ (w, x0) = √

x0ϕ(2x̂0) and by recalling Eq. (15), we must
have p̃(w, x0) = x(β−1)/2

0 ψ (w, x0). Therefore the general so-
lution is

p̃(w, x0) = xβ/2
0 [c1Iν (2x̂0) + c2Kν (2x̂0)]. (45)

To determine the correct boundary conditions, we just note
that when the starting point of the trajectory is close to one
of the boundaries, the first-passage time tends to zero and so
does the integral in Eq. (2). Hence p̃(w, x0) = E(e−wZ ) must
be equal to 1 for x0 equal to a or b,

p̃(w, a) = p̃(w, b) = 1. (46)

Then c1 and c2 can be determined from the simple linear
system,

M(a, b)c = 1, (47)

where

c =
[

c1

c2

]
1 =

[
1
1

]
(48)

and

M(a, b) =
[

aβ/2Iν (2â) aβ/2Kν (2â)
bβ/2Iν (2b̂) bβ/2Kν (2b̂)

]
. (49)

The solution can be finally written as

p̃(w, x0) =
(

x0

a

)β/2 Hν (x̂0, b̂)

Hν (â, b̂)
+
(

x0

b

)β/2 Hν (â, x̂0)

Hν (â, b̂)
, (50)

with

Hν (x̂, ŷ) = Iν (2x̂)Kν (2ŷ) − Iν (2ŷ)Kν (2x̂). (51)

One can verify that p̃(w, x0) satisfies the normalization con-
dition p̃(0, x0) = 1.

Now we consider the case γ = 0, which corresponds to

Z =
∫ T

0

dt

[x(t )]2
. (52)

Equation (16) reads

∂2ψ (w, x0)

∂x2
0

−
(

w

D
+ β2 − 1

4

)
ψ (w, x0)

x2
0

= 0, (53)

and now we seek solutions of the form ψ (w, x0) = ϕ(λ ln x0).
The corresponding equation for ϕ(z),

λ2ϕ′′(z) − λϕ′(z) −
(

w

D
+ β2 − 1

4

)
ϕ(z) = 0, (54)

is just a second-order linear ordinary differential equa-
tion with constant coefficients. The characteristic roots are

r± = 1

2λ

(
1 ± 2

√
w

D
+ β2

4

)
, (55)

and the solution can be thus written as

ϕ(z) = ez/2λ[c1 cosh(kz/λ) + c2 sinh(kz/λ)], (56)

where

k =
√

w

D
+ β2

4
. (57)

By using ψ (w, x0) = ϕ(λ ln x0), we see that the value of λ is
arbitrary, so we can set it to 1. Finally, recalling p̃(w, x0) =
x(β−1)/2

0 ψ (w, x0), we have

p̃(w, x0) = xβ/2
0 [c1 cosh(k ln x0) + c2 sinh(k ln x0)], (58)

where c1 and c2 have to be determined once again in such a
way that the boundary conditions p̃(w, a) = 1 and p̃(w, b) =
1 are satisfied. Similarly to the previous case, we have to solve
an equation of the kind

M(a, b)c = 1, (59)

but this time with

M(a, b) =
[

aβ/2 cosh(k ln a) aβ/2 sinh(k ln a)
bβ/2 cosh(k ln b) bβ/2 sinh(k ln b)

]
. (60)

Once the coefficients have been determined, we find that the
solution can be written as

p̃(w, x0) =
(

x0

a

)β/2 H (x0, b)

H (a, b)
+
(

x0

b

)β/2 H (a, x0)

H (a, b)
, (61)

which has the same structure as Eq. (22), with Hν (x̂, ŷ) re-
placed by

H (x, y) = cosh(k ln x) sinh(k ln y) − sinh(k ln x) cosh(k ln y)

= sinh (k ln(y/x)). (62)

Conditioning on leaving the interval from a given boundary

The structure of (50) and (61) allows us to easily solve
the problem with the additional condition that x(t ) leaves the
interval from a chosen boundary. This request is relevant,
for instance, in extreme value theory [53,87–92], where the
probability of leaving the interval from a given boundary is
related to the statistics of the maximum or the minimum of
the process.

Let us take s > 0 and q > 0 and assume min{s, q} < x0 <

max{s, q}. Define ps(z, q, x0) as the PDF of the functional
Z under the condition that x(T ) = s, which corresponds to
requiring the process to leave the interval from s. Note that,
according to this definition,∫ ∞

0
ps(z, q, x0)dz = Es(q), (63)

where Es(q) is the splitting probability, namely the probability
of leaving the interval from s. The Laplace transform

p̃s(w, q, x0) =
∫ ∞

0
e−wz ps(z, q, x0)dz, (64)

must thus satisfy the following boundary conditions:
(a) p̃s(w, q, s) = 1: Just as the case considered previ-

ously, if the dynamics starts close to the boundary s, then
the first-passage time and thus also Z tend to zero, hence
E(e−wZ ) → 1;
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(b) p̃s(w, q, q) = 0: If the dynamics starts instead close to
the other boundary q, then the probability of leaving from s
tends to zero, and so does the integral in Eq. (63), from which
it follows that also ps(z, q, x0) and its Laplace transform must
vanish.

From (50) and (61), we see that the solutions we found
previously are written as the sum of two terms. Taking for
example (50), it is easy to verify that

p̃(w, x0) =
(

x0

a

)β/2 Hν (x̂0, b̂)

Hν (â, b̂)︸ ︷︷ ︸
p̃a (w,b,x0 )

+
(

x0

b

)β/2 Hν (â, x̂0)

Hν (â, b̂)︸ ︷︷ ︸
p̃b(w,a,x0 )

, (65)

and the same is true for Eq. (61). Therefore

p̃s(w, q, x0) =
⎧⎨⎩
( x0

s

)β/2 Hν (x̂0,q̂)
Hν (ŝ,q̂) if γ �= 0( x0

s

)β/2 H (x0,q)
H (s,q) if γ = 0

. (66)

The splitting probability Es(q) can be computed by using the
results of Appendix A. We find

Es(q) =
⎧⎨⎩

1−(x0/q)β

1−(s/q)β if β �= 0
ln(x0/q)
ln(s/q) if β = 0

, (67)

and, consequently, the complementary probability of leaving
from the other boundary is Eq(s) = 1 − Es(q).

Before continuing, let us illustrate the results of this sec-
tion more explicitly. When γ �= 0, the Laplace transform of
Eq. (66) can be inverted for some particular values of the
exponent ν. For example, when ν = ± 1

2 , one can write the
modified Bessel functions in terms of elementary functions
[85],

I 1
2
(z) =

√
2

πz
sinh(z), (68)

I− 1
2
(z) =

√
2

πz
cosh(z), (69)

K 1
2
(z) = K− 1

2
(z) =

√
π

2z
e−z, (70)

which makes the inversion particularly easy. Indeed, the func-
tion Hν (x, y) becomes

H 1
2
(x, y) = H− 1

2
(x, y) = sinh(2x − 2y)√

xy
, (71)

thus

p̃s(w, q, x0) =
⎧⎨⎩

sinh(�q
√

w)
sinh(L

√
w)

if ν = 1
2( x0

s

)β sinh(�q
√

w)
sinh(L

√
w)

if ν = − 1
2

, (72)

where we have defined

�q = 2

∣∣xγ /2
0 − qγ /2

∣∣√
Dγ 2

, (73)

L = 2
|sγ /2 − qγ /2|√

Dγ 2
. (74)

The poles of p̃s(w, q, x0) are wn = −(nπ/L)2, so the inver-
sion yields

ps(z, q, x0) = 2π

L2

∞∑
n=1

(−1)n+1ne− n2π2z
L2

×
{

sin
( �q

L nπ
)

if ν = 1
2( x0

s

)β
sin
( �q

L nπ
)

if ν = − 1
2

. (75)

From p(z, x0) = ps(z, q, x0) + pq(z, s, x0) it is then possible
to obtain the full distribution. Recall that ν = ± 1

2 implies β =
± γ

2 , and hence the validity of this result is limited to those
cases. When γ = 0 instead, p̃s(z, q, x0) can be inverted for
any value of β. The poles are now wn = −D[nπ/ ln(q/s)]2 −
Dβ2/4, so we get

ps(z, q, x0) = 2πD

ln2(q/s)

(x0

s

)β/2
e− 1

4 β2Dz
∞∑

n=1

(−1)n+1

× ne
− n2π2Dz

ln2(a/b) sin
( | ln(q/x0)|

| ln(q/s)| nπ

)
, (76)

and from p(z, x0) = ps(z, q, x0) + pq(z, s, x0), with s = a and
q = b, we obtain Eq. (26).

In Fig. 2 we show examples of p(z, x0) for γ = 3, γ = −3,
and γ = 0. Note that in the first two cases, the condition ν =
± 1

2 requires us to choose β = ± 3
2 . The datasets are obtained

by measuring Z over trajectories in � = ( 1
2 , 5

2 ) starting from
x0 = 1 and evolved up to the first-exit time. The details on the
numerical simulations are given in Appendix C. We find that
the comparison between the theoretical densities and the nu-
merical results is good for any combination of the parameters.
Interestingly, while the cases with ν = 1

2 display a unimodal
distribution, for ν = − 1

2 the distribution can become bimodal,
as shown in Fig. 2(a).

V. FINITE INTERVALS LEFT-BOUNDED BY THE ORIGIN
AND INFINITE INTERVALS LEFT-BOUNDED

BY A POSITIVE NUMBER

We now want to generalize the treatment to intervals of
the type � = (0, b) or � = (a,∞). These cases may be in-
terpreted as the limit for a → 0 or b → ∞ of the results of
Sec. IV, and both introduce difficulties not present before. For
example, studying the problem in (0, b) allows the trajectory
to hit the origin, so there may be values of γ for which the
integral defining Z does not converge, see Eq. (2). For (a,∞),
since the motion occurs in an infinite domain under the action
of an external potential, there may be realizations for which
the first-passage time T is not finite. For these reasons, it will
be also necessary to rediscuss the boundary conditions that the
solutions must satisfy.

A. Finite intervals of the kind � = (0, b)

When we consider diffusion in a logarithmic potential
V (x) = V0 ln(x), the first-passage problem to the origin must
be treated with special attention. Indeed, the nature of this
point depends on the relative magnitude of the potential
V0 with respect to the diffusion constant D, which in our
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FIG. 2. PDF of the functionals (a) Z = ∫ T
0 x(t )dt , (b) Z = ∫ T

0 [x(t )]−5dt , and (c) Z = ∫ T
0 [x(t )]−2dt , for trajectories contained in � =

( 1
2 , 5

2 ). The motion starts from x0 = 1 and the diffusion coefficient is set to 1. The solid black curves are the theoretical predictions, which
in (a) and (b) are obtained as p(z, x0) = pa(z, b, x0) + pb(z, a, x0 ), see Eq. (75), while in (c) are given by Eq. (26). For (a) and (b) we have
chosen β = 3

2 (blue circles) and β = − 3
2 (green triangles) to have ν = ± 1

2 . For (c) we have taken β = 3
2 (blue circles), β = 0 (red squares),

and β = − 3
2 (green triangles). The data have been obtained by measuring Z over 106 walks evolved with small time step �t = 10−5 up to the

first-exit time from �.

discussion is measured by the parameter β. A detailed anal-
ysis following Feller’s classification scheme can be found in
Ref. [28], according to which the origin is an exit boundary
for β � 2, a regular boundary for 0 < β < 2 and an entrance
boundary for β � 0. Exit and regular boundaries are both ac-
cessible; entrance boundaries are inaccessible [93], meaning
that they cannot be reached in finite time from the interior
of the state space (in our case, from any point inside �). We
can see this by evaluating the splitting probability Ea(b) in the
limit a → 0, see Eq. (67),

lim
a→0

Ea(b) ≡ EL =
{

1 − ( x0
b

)β
if β > 0

0 if β � 0
. (77)

Hence when β � 0 the probability of hitting the origin van-
ishes, and a trajectory will leave � from b with probability
1. From a physical point of view, this can be motivated by
noting that for β � 0 there is a strong repulsive potential,
with V0 � D, pushing the particle away from the origin. As a
consequence, the boundary condition p̃(w, 0) = 1 is no longer
correct: Even if the process starts very close to the origin,
it is immediately pushed inside � and the motion goes on
up to the first passage to b. Thus, contrarily to what we had
previously, T does not vanish in this case. The fact that the
trajectory may or may not leave the origin affects the value of
γ we can choose so that the integral in Eq. (2) will be con-
vergent. Therefore in the following we differentiate the treat-
ment depending on the sign of γ .

1. Functionals with γ > 0

When γ > 0, the limit a → 0 corresponds to the limit â →
0. From the results in Appendix A, we have

Hν (x̂, ŷ) ∼ −I|ν|(2ŷ)K|ν|(2x̂), x̂ → 0, (78)

and thus if we evaluate p̃b(z, a, x0) as a → 0, see Eq. (66),
then we obtain

lim
a→0

p̃b(w, a, x0) ≡ p̃b(w, x0) =
(

x0

b

)β/2 I|ν|(2x̂0)

I|ν|(2b̂)
, (79)

which is the contribution of trajectories hitting b, whereas the
contribution of trajectories hitting the origin behaves for small

a as

p̃a(w, b, x0) ∼ −
(

x0

a

)β/2 Hν (x̂0, b̂)

I|ν|(2b̂)K|ν|(2â)
, (80)

whose limit depends on the sign of β. We can use [85]

K|ν|(2z) ∼ 1
2�(|ν|)z−|ν|, z → 0, (81)

to see that for β > 0, since we have |ν| = ν = β/γ , both
terms give a nonvanishing contribution in the limit, and the
solution (50) converges thus to the function

p̃(w, x0) = 2x̂ν
0

�(ν)
Kν (2x̂0)

[
1 − Iν (2x̂0)Kν (2b̂)

Iν (2b̂)Kν (2x̂0)

]

+
(

x0

b

)β/2 Iν (2x̂0)

Iν (2b̂)
, (82)

which is normalized, since p̃(0, x0) = 1, and furthermore sat-
isfies the boundary conditions p̃(w, 0) = 1 and p̃(w, b) =
1. For β � 0 instead, the right-hand side of (80) vanishes,
which is consistent with the fact that the origin is an entrance
boundary. Thus in the limit a → 0 only the contribution of
p̃b(w, a, x0) survives and the solution converges to

p̃(w, x0) =
(

x0

b

)β/2 I−ν (2x̂0)

I−ν (2b̂)
. (83)

We remark that, even if this expression originates only from
p̃b(w, a, x0), it actually represent the full distribution, as can
be seen from the fact that it satisfies the normalization condi-
tion p̃(0, x0) = 1. At the boundaries, we have p̃(w, b) = 1, as
expected, whereas for x0 = 0 we obtain

p̃(w, 0) = b̂−ν

�(1 − ν)I−ν (2b̂)
, (84)

which is always smaller than 1 for b > 0, as one can verify
by using the series expansion of the modified Bessel function.
Hence, consistently with the fact that the origin is an entrance
boundary when β � 0, the functional Z is strictly positive
even when measured on trajectories that start very close to
x = 0.
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2. Functionals with γ < 0

For γ < 0, the limit a → 0 is equivalent to the limit â →
∞, which yields (see Appendix A)

Hν (x̂, ŷ) ∼ Iν (2x̂)Kν (2ŷ), x̂ → ∞, (85)

then as a → 0 (â → ∞),

lim
a→0

p̃b(w, a, x0) ≡ p̃b(w, x0) =
(

x0

b

)β/2 Kν (2x̂0)

Kν (2b̂)
, (86)

whereas

p̃a(w, b, x0) ∼
(

x0

a

)β/2 Hν (x̂0, b̂)

Iν (2â)Kν (2b̂)
, (87)

which vanishes when â → ∞, due to the exponential diver-
gence of Iν (2â). Hence, differently from the case γ > 0, the
contribution of the walks that hit the origin vanishes indepen-
dently of the value of β, and the only relevant term is

p̃b(w, x0) =
(

x0

b

)β/2 Kν (2x̂0)

Kν (2b̂)
. (88)

We note that this function satisfies p̃b(w, b) = 1 but vanishes
for any ν in the limit x0 → 0, due to the behavior of Kν (z) at
infinity [85],

Kν (z) ∼
√

π

2z
e−z

[
1 + O

(
1

z

)]
, z → ∞. (89)

Moreover, by computing p̃b(0, x0) we obtain

p̃b(0, x0) =
{( x0

b

)β
if β > 0

1 if β � 0
, (90)

which corresponds to the splitting probability ER = 1 − EL

of leaving � from b, see Eq. (77) for the expression of EL.
We can interpret this result as follows: When β � 0, as we
mentioned earlier, the origin is an entrance boundary, and
hence it cannot be reached from the interior of � and all
the trajectories starting from x0 > 0 leave the interval from
b. Therefore, the functional Z can be measured over each
trajectory and Eq. (88) describes the full distribution, that is,
p̃(w, x0) = p̃b(w, x0). On the other hand, when β > 0, a tra-
jectory can leave the interval from any of the two boundaries,
but those that leave � from the origin yield a diverging Z
for γ < 0. In other words, Z is not well defined if we allow
the particle to hit the origin. As we can deduce from the fact
that it is normalized to ER, Eq. (88) in this case describes the
distribution of Z measured on the set of trajectories that leave
the interval from b, namely it is the conditional distribution.
We can then define p̃(w, x0) = p̃b(w, x0)/ER, so that p̃(w, x0)
always denotes the normalized PDF. In summary, we have

p̃(w, x0) =
⎧⎨⎩
(

b
x0

)β/2 Kν (2x̂0 )
Kν (2b̂)

if β > 0( x0
b

)β/2 Kν (2x̂0 )
Kν (2b̂)

if β � 0
. (91)

The fact that p̃(w, x0) tends to zero as x0 approaches the
origin means that Z is diverging, so contributions from paths
passing near x = 0 can be expected to cause a heavy-tailed
decay of the distribution. Indeed, by expanding in powers of

w, we find

p̃(w, x0) ∼
{

1 + Cνw
|ν| + . . . for 0 < |ν| < 1

1 − 〈Z〉w + Cνw
|ν| + . . . for 1 < |ν| < 2

,

(92)

with logarithmic corrections appearing for ν = 0 and ν =
±1. By using Tauberian arguments [94], we can conclude that
the PDF is characterized by a power-law decay as p(z, x0) ∼
z−1−|ν|. This can be shown even more explicitly if we consider
ν = ± 1

2 , for which the inversion can be carried out easily.
Indeed, in both cases we have

p̃(w, x0) = e
−2
√

w
γ 2D (xγ /2

0 −bγ /2 )
, (93)

and the inversion yields

p(z, x0) = xγ /2
0 − bγ /2√
πγ 2Dz3

e
− (xγ /2

0 −bγ /2 )2

γ 2Dz , (94)

which indeed decays as p(z, x0) ∼ z−3/2.

3. The case γ = 0

We now analyze the particular case γ = 0. For any β, the
limit a → 0 of p̃b(w, a, x0) yields

lim
a→0

p̃b(w, a, x0) ≡ p̃b(w, x0) =
(

x0

a

)k+β/2

, (95)

with

k =
√

w

D
+ β2

4
, (96)

whereas p̃a(w, b, x0) vanishes in the limit. So we are in the
same situation as the case γ < 0: For β > 0, there is a pos-
itive probability EL = 1 − ER that a trajectory hits the origin,
yielding a diverging Z , and hence the distribution must be
measured only on the walks that leave � from b. For β � 0
instead, a trajectory leaves from b with probability 1, and
hence p̃b(w, x0) corresponds to the full distribution. In both
cases, we can set p̃(w, x0) = p̃b(w, x0)/ER and write

p̃(w, x0) = exp
(

−
(√

w

D
+ β2

4
− |β|

2

)
ln

(
b

x0

))
, (97)

which satisfies p̃(0, x0) = 1 and p̃(w, b) = 1 and vanishes for
x0 → 0. The inverse transform of Eq. (97) is

p(z, x0) = ln(b/x0)√
4πDz3

e− [D|β|z−ln(b/x0 )]2

4Dz . (98)

We see that for z → 0 the PDF goes to zero as

p(z, x0) ∼ ln(b/x0)√
4πDz3

exp
(

− ln2(b/x0)

4Dz

)
, z → 0, (99)

while for z → ∞

p(z, x0) ∼ ln(b/x0)√
4πDz3

exp

(
−Dβ2z

4

)
, z → ∞. (100)

Hence, for β �= 0 there is an exponential cutoff ensuring the
convergence of all moments, while for β = 0 we observe a
pure power-law decay p(z, x0) ∼ z−3/2 as z → ∞.
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FIG. 3. PDF of the functional Z = ∫ T
0 [x(t )]−2dt for trajectories

in � = (0, 1). The starting point is x0 = 0.7 and the diffusion coeffi-
cient is set to 1. The solid black curves are the theoretical predictions
given by Eq. (98), the symbols represent the numerical distributions
obtained from simulations. We have considered β = −0.5 (magenta
squares), β = 0 (blue circles), and β = 0.5 (turquoise asterisks),
with good agreement in all cases. Note that data corresponding to
the same |β| overlap, confirming the symmetry in β of the PDF. In
the inset, a plot in logarithmic scale of the case β = 0, which shows
that the simulations also capture the heavy tail of the distribution.
The number of simulations is 108 for β = 0.5 and 107 in the other
cases. The trajectories are evolved up to the first-passage time with
small time step �t = 10−5.

The PDF is displayed in Fig. 3 and compared to the
results obtained from numerical simulations, showing good
agreement. The chosen values of β cover all the cases: For
β = 0.5 the theoretical result of (98) corresponds to the full
distribution, while for β = 0 and β = −0.5 it is the PDF of Z
measured on walks that leave the interval from b, normalized
dividing by ER. Note that p(z, x0) only depends on the sign of
β, and hence the PDFs of the data with β = 0.5 and β = −0.5
are described by the same theoretical curve, as we observe in
the figure.

B. Infinite intervals of the kind � = (a,∞)

The case of infinite intervals marks a difference with the
previous one in that the particle is not guaranteed to leave �

in a finite time. Indeed, if we consider Ea(b) given by (67),
and take the limit b → ∞, then we get

lim
b→∞

Ea(b) ≡ E =
{

1 if β � 0( x0
a

)β
if β < 0

, (101)

meaning that for negative values of β, there is a nonzero
probability 1 − E to observe an infinite first-passage time.
Note that if we take also the limit a → 0, then E converges
to 0 for β < 0, i.e., the set of trajectories that do not leave
� = (0,∞) has probability 1, as is known [35]. To avoid
having to deal with generalized functionals of the form

Z =
∫ ∞

0
[x(t )]γ−2dt, (102)

in the following we restrict ourselves to the case where actu-
ally T < ∞. Note that it would not be appropriate to speak

about first-passage functionals if the first-passage time is not
finite.

1. Functionals with γ > 0

When γ has positive sign, the limit b → ∞ corresponds to
the limit b̂ → ∞. Since

Hν (x̂, ŷ) ∼ −Iν (2ŷ)Kν (2x̂), ŷ → ∞, (103)

then as b → ∞ the function p̃a(w, b, x0), see Eq. (66), con-
verges to

lim
b→∞

p̃a(w, b, x0) ≡ p̃a(w, x0) =
(

x0

a

)β/2 Kν (2x̂0)

Kν (2â)
, (104)

which is the same result obtained for the problem in (0, b) in
the case γ < 0, see Eq. (88). The limiting function satisfies
p̃a(w, a) = 1 and vanishes for x0 → ∞, i.e., p̃a(w,∞) = 0.
The latter condition may be explained by the fact that if
the motion starts very far from a one observes a very large
first-passage time, and thus we should expect larger and larger
values of Z , with p̃(w, x0) = 〈e−wZ〉 consequently vanishing.
Regarding the normalization, we get p̃a(0, x0) = E ; therefore
we conclude that Eq. (104) is the PDF describing the full
distribution of Z for β � 0, while for β < 0 it describes
the distribution of Z measured only on the trajectories that
actually leave � = (a,∞) at some finite T . Hence we define
again the normalized distribution as

p̃(w, x0) = p̃a(w, x0)

E . (105)

Note that this is equivalent to (91), and hence the same con-
siderations follow.

2. Functionals with γ < 0

Here the limit b → ∞ is equivalent to b̂ → 0. By using

Hν (x̂, ŷ) ∼ I|ν|(2x̂)K|ν|(2ŷ), ŷ → 0, (106)

we see that as b → ∞ (b̂ → 0), the Laplace transform
p̃a(w, b, x0) goes to

lim
b→∞

p̃a(w, b, x0) ≡ p̃a(w, x0) =
(

x0

a

)β/2 I|ν|(2x̂0)

I|ν|(2â)
, (107)

which satisfies p̃a(w, a) = 1, while p̃a(0, x0) = E ; see the
expression for E in Eq. (101). Therefore, when E = 1, i.e., for
β � 0, we have p̃(w, x0) = p̃a(w, x0), whereas in the opposite
case we set p̃(w, x0) = p̃a(w, x0)/E , that is

p̃(w, x0) =
⎧⎨⎩
( x0

a

)β/2 I−ν (2x̂0 )
I−ν (2â) β � 0(

a
x0

)β/2 Iν (2x̂0 )
Iν (2â) β < 0

, (108)

Remarkably, for x0 → ∞, this function converges to

lim
x0→∞ p̃(w, x0) = â|ν|

�(1 + |ν|)I|ν|(2â)
, (109)

which implies the convergence of all the moments even in the
large-x0 limit.
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3. The case γ = 0

The limit b → ∞ of (66) yields

lim
b→∞

p̃a(w, b, x0) ≡ p̃a(w, x0) =
(

a

x0

)k−β/2

, (110)

which satisfies p̃a(w, a) = 1 and vanishes in the limit x0 →
∞ for the same reason of the case γ > 0. We have once
again p̃a(0, x0) = E , and hence the normalized distribution is
p̃(w, x0) = p̃a(w, x0)/E , which can be inverted, yielding

p(z, x0) = ln(x0/a)√
4πDz3

e− [D|β|z−ln(x0/a)]2

4Dz . (111)

This result is equivalent to what we obtained in the interval
(0, b); therefore the considerations made in that case still hold.

VI. POSITIVE REAL AXIS

It is straightforward now to obtain the solution of the prob-
lem in the positive real axis � = (0,∞). It should be clear
that Z is well defined only for β > 0 and γ > 0. Indeed, as
we discussed previously, the condition β > 0 is necessary for
the first-passage time to be finite, while γ > 0 ensures that Z
does not diverge when a trajectory hits the origin. Hence we
restrict to β > 0 and γ > 0, viz., ν > 0.

The solution can be obtained by simply considering the
limit b → ∞ of (29), which yields

p̃(w, x0) = 2x̂ν
0

�(ν)
Kν (2x̂0). (112)

This is basically equivalent to the result obtained for free
Brownian motion, see Ref. [17], which can be recovered by
setting V0 = 0, viz., β = 1, yielding the exponent ν = 1/γ .
By introducing a logarithmic potential, one thus obtains a
generalized exponent ν = β/γ . The Laplace transform can be
inverted exactly by using [95]

1

2
t−ν−1e−y/t = 1

2π i

∫
B

est

(
s

y

)ν/2

Kν (2
√

ys)ds, (113)

valid for R(y) > 0, yielding

p(z, x0) = Zν
D

�(ν)
z−1−νe−ZD/z. (114)

We note that the PDF can be written in scaling form as
p(z, x0) = P(ζ )/ZD, where

P(ζ ) = 1

�(ν)
ζ−1−νe−1/ζ , ζ = z

ZD
= γ 2Dz

xγ

0

. (115)

For ζ → 0 the function P(ζ ) vanishes displaying an essen-
tial singularity, while for ζ → ∞ we get a power-law decay
P (ζ ) ∼ ζ−1−ν . Therefore, the mth moment of the distribution
is finite only for m < ν, in which case is equal to

〈Zm〉 =
∫ ∞

0
zm p(z, x0)dz = �(ν − m)

�(ν)
Zm

D . (116)

Note that ν > m means β > mγ ; hence for fixed γ we can
tune β so that all moments up to the mth are finite. On the
other hand, for fixed β the mth moment is finite only if γ <

β/m, and therefore we can for instance have a finite 〈T 〉 but a
diverging 〈A〉 (first-passage area).

In Fig. 4 we present the distribution of the scaled variable
Z/ZD given by Eq. (115) and compare it with numerical data.
We show the cases γ = 3 and γ = 1, each with three different
values of β, chosen so that for both functionals a case with
0 < ν < 1 (infinite mean and variance), one with 1 < ν < 2
(finite mean, infinite variance) and one with ν > 2 (finite
mean and variance) is displayed. The agreement between data
and theory is evident in all cases.

A. Heterogeneous diffusion

We now extend the results of this section to the case where
Z is measured over stochastic trajectories generated by

dy(t )

dt
=

√
2D[y(t )]θη(t ), (117)

with θ < 1. As discussed in Sec. II, different interpretations
can be assigned to this Langevin equation, and we will see
how the results are affected by the interpretation. One possible
approach to this problem would be to write down Eq. (16) for
D(x) = Dx2θ and μα (x) = αD′(x) and then solve the resulting
equation, namely[

∂2

∂y2
0

− wF (y0)

Dy2θ
0

− αθ (αθ − 1)

y2
0

]
ψ (w, y0) = 0, (118)

accompanied by the appropriate boundary conditions. The
solution may be then used to obtain the Laplace transform of
the PDF. However, as it has already been pointed out [59–61],
there exists a close relation between Brownian motion in loga-
rithmic potentials and heterogeneous diffusion which we may
exploit to obtain the solution in a much more straightforward
way.

Let us call x(t ) a trajectory generated by

dx(t )

dt
= − V0

x(t )
+

√
2Dη(t ), (119)

with x(0) = x0 > 0 and evolving in � = (0,∞) until the
first-passage time to the origin T . Let θ < 1 and define the
following transformation on the trajectory:

y(t ) = [(1 − θ )x(t )]
1

1−θ . (120)

By applying Itô formula on y(t ), we see that the transformed
trajectory evolves according to

dy

dt
= D(1 − β + βθ )y2θ−1 +

√
2Dyθη(t ), (121)

which is interpreted in the Itô scheme. We recall β = 1 +
V0/D. This is the Langevin equation of a system with a space-
dependent diffusion coefficient D(x) = Dx2θ and a drift term
that may be written as

μ(x) =
(

1 − β

2θ
+ β

2

)
D′(x). (122)

Thus, by setting the coefficient in front of D′(x) equal to α,
we obtain exactly the Itô form of ẏ = √

2D(y)η(t ) in the α

interpretation. It is immediate to see that α = 1
2 , which corre-

sponds to Stratonovich interpretation, is recovered by setting
β = 1, i.e., by identifying x(t ) as free Brownian motion,
with a free choice of θ < 1. This mapping between Brow-
nian motion and heterogeneous diffusion with Stratonovich
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FIG. 4. PDF of the scaled variable Z/ZD, with Z representing the functionals (a) Z = ∫ T
0 x(t )dt and (b) Z = ∫ T

0 [x(t )]−1dt for trajectories
in the positive real axis starting from x0 = 1 and evolved up to the first-passage time to the origin. The diffusion coefficient is set to 1. The solid
black curves are the theoretical predictions given by Eq. (115), and the symbols represent the numerical distributions obtained from simulations.
For both values of γ we considered different values of β: (a) In the case γ = 3 we choose β = 1.5 (red squares), β = 4 (blue circles), and
β = 7 (green triangles) and (b) in the case γ = 1 we take β = 0.8 (red squares), β = 1.5 (blue circles), and β = 4 (green triangles). The
number of simulations depends on β: For β = 0.8 and β = 1.5 it is 3 × 105 and for β = 4 and β = 7 it is 3 × 106. All the trajectories are
evolved with small time step �t = 10−5.

interpretation is well known; see for instance Ref. [62]. All
other interpretations can be obtained by observing that the
parameters α, β, and θ are related by

θ = β − 1

β − 2α
. (123)

This also means that for fixed α we can tune θ by changing the
value of β in the original model. One must recall, however,
that since θ < 1, one is limited to take β < 2α when α > 1

2
and β > 2α when α < 1

2 .
It is clear that the first-passage time to the origin of the

original trajectory x(t ), starting from x0, is the same as the
transformed trajectory y(t ), with the initial condition y0 =
[(1 − θ )x0]1/(1−θ ). Hence by using Eq. (120) we can write∫ T

0
[y(t )]γ−2dt = C

∫ T

0
[x(t )]γ

′−2dt, (124)

with

γ ′ = γ − 2θ

1 − θ
, C = (1 − θ )

γ−2
1−θ . (125)

If the functional at the right-hand side has a proper distribu-
tion, with PDF p(z, x0), then the left-hand side has a proper
distribution, too, with PDF

g(z, y0) = 1

C p

(
z

C ,
y1−θ

0

1 − θ

)
. (126)

We recall that this is true for x(t ) if both β and γ ′ are positive.
The first condition is always met when α < 1

2 , because θ < 1
implies β > 2α > 0; when α > 1

2 instead, this must be added
to the previous condition β < 2α, obtaining 0 < β < 2α,
which implies that we are limited to θ < 1

2α
. The condition

γ ′ > 0 is equivalent to

γ > 2θ, (127)

and hence the lower bound for γ is the exponent appearing in
the expression of the diffusion coefficient. By using Eq. (114),

we obtain

g(z, y0) = Kνα

D

�(να )
z−1−να e−KD/z, (128)

where

KD = yγ−2θ

0

(γ − 2θ )2D
(129)

να = 1 − 2αθ

γ − 2θ
. (130)

Hence, the interpretation given to the Langevin equa-
tion strongly affects the distribution by changing the power-
law decay exponent of the PDF.

The results are displayed in Fig. 5 for the cases γ = 3 and
γ = 3

2 , with a diffusion coefficient D(x) = Dx2/3. For each
γ , we choose three possible interpretations: α = 0 (Itô), α =
1
2 (Stratonovich), and α = 1 (Hänggi-Klimontovich), corre-
sponding to the exponents

νI = 1

γ − 2θ
, (131)

νS = (1 − θ )νI , (132)

νHK = (1 − 2θ )νI . (133)

Note that for θ > 0 we have νI > νS > νHK, whereas the
opposite happens for θ < 0. For the chosen values of θ and
γ , we obtain in every case an heavy-tailed distribution: For
the first-passage area we have νI = 3

7 , νS = 2
7 , and νHK = 1

7 ,
while for γ = 1.5 we get νI = 6

5 , νS = 4
5 , and νHK = 2

5 . The
agreement between theory and numerical results is generally
good. The data can replicate all the features of the PDF,
including the tails; see the insets in both panels. We remark
that the numerical results have been obtained by measuring Z
over trajectories generated by Eq. (117), and hence they are
independent of the method we discussed here.
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FIG. 5. PDF of (a) Z = ∫ T
0 y(t )dt and (b) Z = ∫ T

0 [y(t )]−1/2dt for trajectories in the positive real axis generated by Eq. (117) and evolved
up to the first-passage time to the origin. The starting point is y0 = 1 and the space-dependent diffusion coefficient is D(x) = x2/3. The solid
black curves are the theoretical predictions given by Eq. (128), and the symbols represent the numerical distributions obtained from simulations.
For both values of γ we considered three different interpretations, corresponding to Itô (α = 0, green triangles), Stratonovich (α = 1

2 , blue
circles), and Hänggi-Klimontovich (α = 1, red squares). The insets, which are presented in log-log scale in (a) and semilog scale in (b),
display the heavy-tails of the distributions. All datasets are obtained by evaluating Z over 106 trajectories, with small time step �t = 10−4.
The integration scheme used to integrate Eq. (117) is the Itô scheme, and the desired interpretation is obtained by adding the appropriate drift
μα (x) = αD′(x).

VII. CONCLUSIONS AND DISCUSSION

In this paper we have studied the statistical properties of
random variables of the kind Z = ∫ T

0 [x(t )]γ−2dt , where x(t )
is a one-dimensional trajectory of Brownian motion with dif-
fusion constant D evolving under the effect of a logarithmic
potential V (x) = V0 ln(x) that can be either attractive or re-
pulsive. The trajectory starts from x0 inside a given interval
� and leaves it for the first time at some random instant T .
We initially considered the problem for � = (a, b) entirely
contained in the positive real axis, which can be treated for any
γ and any value of V0. We then generalized to intervals of the
kind � = (0, b) or � = (a,∞). Both these generalizations
introduce some limitations: In the former case, for γ < 0 the
functional Z is defined in terms of a divergent integral when
measured on trajectories hitting the origin. In the latter case,
the presence of a repulsive potential may prevent the particle
to leave �, which implies an infinite first-passage time. In-
terestingly, we have underlined that there is a correspondence
between the solutions of the two cases if we always restrict
the study of Z on trajectories for which it is well defined.
Finally, we have computed exactly the density of Z when
it is constructed on trajectories in � = (0,∞), with γ > 0
and V0 > −D. By using a close relation between Brownian
motion in logarithmic potentials and heterogeneous diffusion,
we have also obtained the distribution of Z measured on
trajectories x(t ) generated by ẋ = √

2Dxθη(t ), with θ < 1.
This work extends some previously known results regard-

ing first-passage functionals of Brownian motion [17]. By
introducing a potential, we were able to study how it affects
the statistical properties of Z for a fixed value of γ . We em-
phasize that the logarithmic potential has unique properties,
which stem from the fact that it grows as a slowly varying
function for x → ∞, yielding a force that is proportional
to 1/x. As already noted in the literature, this causes both
the drift term and the diffusion term in the Fokker-Planck
equation to scale as 1/x2 [25,29]. Therefore, the two effects
(diffusion and drift) are comparable as long as the dynam-

ics takes place away from the origin, and the system can
be treated effectively as a perturbation of Brownian motion.
Not surprisingly, the results we obtained in Sec. VI have
the same functional form as those obtained for free Brown-
ian motion [17]. Nevertheless, the system is far from being
trivial, as its behavior can be drastically modified by ad-
justing the parameters that govern the intensity of the drift
and diffusion terms, namely the strength of the potential and
the diffusion coefficient. This has consequences regarding
for example the emergence of nonnormalizable steady states
[25,26,29] or the recurrence properties, of which this system is
a critical case study, as evident from the analysis of related dis-
crete models [51,56–58]. For the problem considered in this
paper, for instance, we found that in the case � = (0,∞)
the PDF has a power-law decay as p(z, x0) ∼ z−1−ν , with
ν = (D + V0)/(Dγ ), which means that the distribution has
infinite variance for V0 < D(2γ − 1) and also infinite mean
for V0 < D(γ − 1).

Another interesting feature of Brownian motion in a log-
arithmic potential is that it is associated with heterogeneous
diffusion, which is studied in many contexts. Our results can
be easily extended to the case where the dynamics is generated
by ẋ = √

2D(x)η, with D(x) = Dx2θ and θ < 1, as we have
done for � = (0,∞). In this context, a key role is played
by the interpretation given to the Langevin equation, and
we have seen how the value of the interpretation parameter
α contributes, along with the exponent θ , to determine the
statistics of Z for a given value of γ .

Finally, let us remark that the densities of Z over
trajectories in � = (0,∞) for logarithmic potentials and
heterogeneous diffusion, given in Eq. (114) and Eq. (128)
respectively, have the same structure, viz., in both cases we
obtain the PDF of an inverse gamma random variable [96].
This fact is strictly connected to the property of self-similarity,
which is shared by both models, as shown in Refs. [60,61].
There the author proves that for any self-similar diffusion
process the first-passage time to the origin has inverse gamma
statistics. We have found that the same statistics describes
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also Z = ∫ T
0 [x(t )]γ−2dt if it exists. Although this observation

could be deduced from scaling arguments, at least with regard
to the asymptotic behavior for large z [3,17], it was not trivial
to determine how the entire distribution changes with γ .

As a future perspective, one can ask how the different
functionals studied in this article are correlated. The corre-
lation can be measured, for example, by computing the joint
probability distribution between two observables Z1 and Z2

evaluated for two different γ . In particular, the case where one
of them corresponds to the first-passage time may be particu-
larly relevant, so that information on the correlation between
spatial and temporal variables can be obtained directly. This
type of joint distribution is indeed useful for comprehensively
quantifying the properties of stochastic search processes, as
recently observed and studied in Ref. [97].

APPENDIX A: SOME PROPERTIES OF THE FUNCTION
Hν(x, y)

1. Expansion in powers of w

Here we consider

Hν (x̂, ŷ) = Iν (2x̂)Kν (2ŷ) − Iν (2ŷ)Kν (2x̂), (A1)

where ν ≡ β/γ and the notation q̂ indicates

q̂ =
√

wqγ

γ 2D
. (A2)

We wish to compute the power series expansion up to first
order in w, i.e., up to q̂2, which can be used to compute the
splitting probabilities or the first moment. Here the modified
Bessel function of the first kind Iν (z) is defined as

Iν (z) =
( z

2

)ν
∞∑

k=0

(z2/4)k

k!�(k + ν + 1)
, (A3)

while Kν (z) denotes the modified Bessel function of the sec-
ond kind.

When ν is noninteger, we can use

Kν (z) = π

2

I−ν (z) − Iν (z)

sin(πν)
(A4)

to write

Hν (x̂, ŷ) = π

2 sin(πν)
[Iν (2x̂)I−ν (2ŷ) − Iν (2ŷ)I−ν (2x̂)].

(A5)

Note that we have the symmetry Hν (x̂, ŷ) = H−ν (x̂, ŷ).
Hence, recalling that ν = β/γ , the results do not change
under a change of sign in β, whereas a change of sign in γ

yields

Hν

⎛⎝√wxγ

0

Dγ 2
,

√
wyγ

0

Dγ 2

⎞⎠→ Hν

⎛⎝√wx−γ

0

Dγ 2
,

√
wy−γ

0

Dγ 2

⎞⎠. (A6)

By using the definition of Iν (z), we find

Hν (x̂, ŷ) ∼ f0(x, y; ν) + w

Dγ 2
f1(x, y; ν), (A7)

where f0(x, y; ν) and f1(x, y; ν) are

f0(x, y; ν) = xγ ν − yγ ν

2ν(xy)γ ν/2
, (A8)

f1(x, y; ν) =xγ νgν (x, y) − yγ νgν (y, x)

2ν(xy)γ ν/2
, (A9)

with

gν (x, y) = xγ

1 + ν
+ yγ

1 − ν
. (A10)

Note the property g−ν (x, y) = gν (y, x), from which it follows
fi(x, y; −ν) = − fi(x, y; ν).

When ν is instead an integer, we use the properties of the
modified Bessel functions [85],

I−ν (z) = Iν (z) + 2

π
sin(πν)Kν (z), (A11)

K−ν (z) = Kν (z), (A12)

to verify that we have again the symmetry Hν (x̂, ŷ) =
H−ν (x̂, ŷ). For ν = n, with n = 0, 1, 2, . . . , the modified
Bessel function of the second kind can be expanded as [85]

K0(2z) = − [ln(z) + γE ]I0(2z) + z2 + 1 + 1
2

(2!)2
z4 + . . . ,

(A13)

Kn(2z) = z−n

2
Gn(z) + (−1)n+1 ln(z)In(2z) + (−1)n zn

2
Fn(z),

(A14)

where in the first line γE is the Euler-Mascheroni constant,
and in the second line

Gn(z) =
n−1∑
k=0

(n − k − 1)!

k!
(−z2)k, (A15)

Fn(z) =
∞∑

k=0

ψ (k + 1) + ψ (k + n + 1)

k!(n + k)!
z2k . (A16)

For negative integers, the corresponding expansion is still
given by (A14), with n replaced by its absolute value. Assum-
ing from now on n � 0, for Hn(x̂, ŷ) we can write

Hn(x̂, ŷ) ∼ f0(x, y; n) + w

Dγ 2
f1(x, y; n), (A17)

so in each case we just need to identify the functions
f0(x, y; n) and f1(x, y; n). When n = 0, H0(x, y) can be ex-
panded as

H0(x, y) ∼ (1 + x̂2 + ŷ2)
γ

2
ln

(
x

y

)
+ ŷ2 − x̂2, (A18)

∼ γ

2
ln

(
x

y

)
+ w

Dγ 2

[
(xγ + yγ )

γ

2
ln

(
x

y

)
+ yγ − xγ

]
, (A19)

and hence we have

f0(x, y; 0) =γ

2
ln

(
x

y

)
, (A20)

f1(x, y; 0) = γ

2
(xγ + yγ ) ln

(
x

y

)
+ yγ − xγ . (A21)
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In the case n = 1, the expansion of H1(x̂, ŷ) is

H1(x, y) ∼ 1

2

(
x

y

)γ /2(
1 − x̂2

2

)
− 1

2

(
y

x

)γ /2(
1 − ŷ2

2

)
+ γ

2
(xy)γ /2 ln

(y

x

)
, (A22)

∼ xγ − yγ

2(xy)γ /2
+ w

Dγ 2

[
x2γ − y2γ

4(xy)γ /2
+ γ

2
(xy)γ /2 ln

(y
x

)]
,

(A23)

and therefore now

f0(x, y; 1) = xγ − yγ

2(xy)γ /2
, (A24)

f1(x, y; 1) =x2γ − y2γ

4(xy)γ /2
+ γ

2
(xy)γ /2 ln

(
y

x

)
, (A25)

and the same holds for n = −1. Finally, for ν = 2, 3, . . . , the
expansion of Hn(x̂, ŷ) is

Hn(x̂, ŷ) ∼ 1

2n

(
x

y

)nγ /2(
1 + x̂2

n + 1

− ŷ2

n − 1

)
− 1

2n

(
y

x

)nγ /2(
1 − x̂2

n − 1
+ ŷ2

n + 1

)
(A26)

from which we find that f0(x, y; n) and f1(x, y; n) have the
same expressions of the noninteger case,

f0(x, y; n) = xnγ − ynγ

2n(xy)nγ /2
, (A27)

f1(x, y; n) = xnγ gn(x, y) − ynγ gn(y, x)

2n(xy)nγ /2
, (A28)

with

gn(x, y) = xγ

1 + n
+ yγ

1 − n
, (A29)

and the symmetry fi(x, y; n) = − fi(x, y; −n) allows us to
claim that the same holds for n = −2,−3, . . . .

2. Behavior for small and large values of the argument

We now want to evaluate the behavior of Hν (x̂, ŷ) when
x̂ → 0 and x̂ → ∞. Note from the definition (A1) that
Hν (x̂, ŷ) = −Hν (ŷ, x̂), and hence the behavior of Hν (x̂, ŷ) as
x̂ → 0 (x̂ → ∞) corresponds to the behavior of −Hν (x̂, ŷ) as
ŷ → 0 (ŷ → ∞).

As we have shown before in this Appendix, Hν (x̂, ŷ) has
the symmetry Hν (x̂, ŷ) = H−ν (x̂, ŷ), and hence the results do
not depend on the sign of ν and we can thus limit the study
to the case ν � 0. When z → 0, the modified Bessel function
of the first kind Iν (z) behaves as zν , whereas Kν (z) diverges as
z−ν for ν > 0 or logarithmically for ν = 0. Keeping in mind
the symmetry in ν, we therefore have

Hν (x̂, ŷ) ∼ −I|ν|(2ŷ)K|ν|(2x̂), x̂ → 0. (A30)

When z → ∞, the leading-order behavior of both Bessel

function is independent of ν. In particular, Iν (z) diverges and
Kν (z) vanishes, both exponentially. Therefore

Hν (x̂, ŷ) ∼ Iν (2x̂)Kν (2ŷ), x̂ → ∞. (A31)

Note that in the asymptotic expansions of Iν (z) and Kν (z) for
large z appear ν-dependent coefficients, which, however, have
the symmetry cν = c−ν , see Ref. [85].

APPENDIX B: COMPUTATION OF THE MEAN VALUE

1. Case γ �= 0

Starting from the results of Appendix A, we can consider

p̃(w, x0) =
(x0

a

)β/2 Hν (x̂0, b̂)

Hν (â, b̂)
+
(x0

b

)β/2 Hν (â, x̂0)

Hν (â, b̂)
, (B1)

to compute the mean value of Z , namely the coefficient of the
linear term in the series expansion in powers of w. We note
that, while Hν (x̂, ŷ) has the symmetry Hν (x̂, ŷ) = H−ν (x̂, ŷ),
the expression of p̃(w, x0) contains the prefactors (x0/a)β/2

and (x0/b)β/2 that depend on the sign of β and thus on the
sign of ν. In general, 〈Z〉 can be written in terms of the
functions f0(x, y; ν) and f1(x, y; ν), see Appendix A for their
definitions, as

〈Z〉 = 1

Dγ 2

[
f1(a, b; ν)

f0(a, b; ν)
−
(x0

a

)γ ν/2 f1(x0, b; ν)

f0(a, b; ν)

−
(x0

b

)γ ν/2 f1(a, x0; ν)

f0(a, b; ν)

]
. (B2)

Let us first take |ν| �= 0, 1. Then the term between square
brackets in the previous equation reads

[. . . ] = aγ ν
(
bγ − xγ

0

)+ bγ ν
(
xγ

0 − aγ
)+ xγ ν

0 (aγ − bγ )

(1 − ν)(aγ ν − bγ ν )
,

(B3)
which yields

〈Z〉 = ZD

1 − ν

[
bγ
(
xγ ν

0 − aγ ν
)+ aγ

(
bγ ν − xγ ν

0

)
xγ

0 (bγ ν − aγ ν )
− 1

]
. (B4)

When ν = ±1, the corresponding expression is

[. . . ] = a2γ − b2γ

2(aγ − bγ )
−
(

x0

a

) γ

2 (±1−1) x2γ

0 − b2γ

2(aγ − bγ )

−
(

x0

b

) γ

2 (±1−1) a2γ − x2γ

0

2(aγ − bγ )

+ γ

aγ − bγ

[
(ab)γ ln

(
b

a

)
−
(

x0

a

) γ

2 (±1−1)

(x0b)γ

× ln

(
b

x0

)
−
(

x0

b

) γ

2 (±1−1)

(x0a)γ ln

(
x0

a

)]
, (B5)

where the ± sign corresponds to the sign of ν. For ν = 1, the
term between square brackets in (B5) is the only nonvanishing
term, and thus we obtain

〈Z〉 = ZD

[
bγ (xγ

0 − aγ ) ln(b/x0) − aγ (bγ − xγ

0 ) ln(x0/a)

xγ

0 (bγ − aγ )

]
.

(B6)
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On the contrary, for ν = −1 the term between square brackets
vanishes, while the remaining term yields

〈Z〉 = ZD

2x2γ

0

(
xγ

0 − aγ
)(

bγ − xγ

0

)
, (B7)

which corresponds to (B4) for ν = −1. Finally, the case ν = 0
is straightforward, and the corresponding mean value is

〈Z〉 = ZD

[
bγ ln(x0/a) + aγ ln(b/x0)

xγ

0 ln(b/a)
− 1

]
. (B8)

For the sake of completeness, we also consider

p̃s(w, q, x0) =
(

x0

s

)β/2 Hν (x̂0, q̂)

Hν (ŝ, q̂)
(B9)

and evaluate the coefficient of the linear term in the expansion
in powers of w. In general, we can write

p̃s(w, q, x0) = Es(q)

{
1 + w

Dγ 2

[
f1(x0, q; ν)

f0(x0, q; ν)

− f1(s, q; ν)

f0(s, q; ν)

]
+ o(w)

}
, (B10)

where the splitting probability is given by

Es(q) =
(

x0

s

)β/2 f0(x0, q; ν)

f0(s, q; ν)
. (B11)

Then the conditional first moment is just

〈Zs(q)〉 = 1

Dγ 2

[
f1(s, q; ν)

f0(s, q; ν)
− f1(x0, q; ν)

f0(x0, q; ν)

]
, (B12)

and one can verify that the previous general expression for 〈Z〉
can be obtained from 〈Z〉 = Es(q)〈Zs(q)〉 + Eq(s)〈Zq(s)〉. By
skipping details, for ν �= 0,±1 we find

〈Zs(q)〉 = 1

Dγ 2

{
sγ

1 − ν

[
1 − (s/q)γ (ν−1)

1 − (s/q)γ ν

− 1 − (x0/q)γ (ν−1)

1 − (x0/q)γ ν

(x0

s

)γ
]

+ qγ

1 + ν

[
1 − (s/q)γ (ν+1)

1 − (s/q)γ ν
− 1 − (x0/q)γ (ν+1)

1 − (x0/q)γ ν

]}
,

(B13)

the cases ν = ±1 are both covered by

〈Zs(q)〉 = 1

Dγ 2

{
sγ − xγ

0

2
+ γ qγ

[
sγ ln(q/s)

sγ − qγ

− xγ

0 ln(q/x0)

xγ

0 − qγ

]}
, (B14)

and ν = 0 yields

〈Zs(q)〉 = 1

Dγ 2

[
sγ − xγ

0 + 2(qγ − sγ )

γ ln(s/q)
− 2(qγ − xγ

0 )

γ ln(x0/q)

]
.

(B15)
2. Case γ = 0

For γ = 0, we start by considering

H (x, y) = sinh

(
ln
(y

x

)√w

D
+ β2

4

)
, (B16)

for which we may write

H (x, y) =
{

sinh
( |β|

2 ln
( y

x

)) + w ln(y/x)
|β|D cosh

( |β|
2 ln

( y
x

)) + o(w) for β �= 0√
w
D ln

( y
x

)+ 1
6

(
w
D

)3/2
ln3
(

w
D

)+ o(w3/2) for β = 0
. (B17)

Let us first evaluate the expansion of

p̃s(w, q, x0) =
(

x0

s

)β/2 H (x0, q)

H (s, q)
, (B18)

which is

p̃s(w, q, x0) = Es(q)[1 + 〈Zs(q)〉w + o(w)]. (B19)

By using Eq. (B17), we see that for β �= 0 we have

Es(q) =
(

x0

s

)β/2 sinh
( |β|

2 ln
( x0

q

))
sinh

( |β|
2 ln

(
s
q

)) =
(

x0

s

)β/2−|β|/2 1 − (x0/q)|β|

1 − (s/q)|β| = 1 − (x0/q)β

1 − (s/q)β
, (B20)

and the conditional first moment is

〈Zs(q)〉 = 1

|β|D
[

ln

(
s

q

)
coth

( |β|
2

ln

(
s

q

))
− ln

(
x0

q

)
coth

( |β|
2

ln

(
x0

q

))]
= 1

|β|D
[

ln
(q

s

)1 + (s/q)|β|

1 − (s/q)|β| − ln

(
q

x0

)
1 + (x0/q)|β|

1 − (x0/q)|β|

]
= 1

βD

[
ln
(q

s

)1 + (s/q)β

1 − (s/q)β
− ln

(
q

x0

)
1 + (x0/q)β

1 − (x0/q)β

]
. (B21)
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For β = 0 instead, the splitting probability is

Es(q) = ln(x0/q)

ln(s/q)
, (B22)

and the conditional first moment is given by

〈Zs(q)〉 = 1

6D

[
ln2

(
s

q

)
− ln2

(
x0

q

)]
= 1

6D
ln
(x0

s

)
ln

(
q2

sx0

)
. (B23)

Now, from 〈Z〉 = Es(q)〈Zs(q)〉 + Eq(s)〈Zq(s)〉 and setting
s = a and q = b, we obtain

〈Z〉 =

⎧⎪⎨⎪⎩
1

2D ln
(

b
x0

)
ln
( x0

a

)
for β = 0

1
βD

[
(bβ−xβ

0 ) ln(x0/a)−(xβ

0 −aβ ) ln(b/x0 )
bβ−aβ

]
for β �= 0

.

(B24)

APPENDIX C: DETAILS ON NUMERICAL SIMULATIONS

Here we illustrate the numerical scheme used to integrate
the stochastic differential equation

dx(t ) = a(x)dt + b(x)dW (t ). (C1)

To obtain the results illustrated in this paper, in the case of
diffusion in a logarithmic potential we used the weak order-
two Runge-Kutta method [98,99]:

xn+1 = xn + 1

2
[a(ϒ) + a(xn)]�t

+ 1

4
[b(ϒ+) + b(ϒ−) + 2b(xn)]�Wn

+ 1

4
[b(ϒ+) − b(ϒ−)]

(
�W 2

n − �t√
�t

)
, (C2)

where

ϒ = xn + a(xn)�t + b(xn)�Wn, (C3)

ϒ± = xn + a(xn)�t ± b(xn)
√

�t, (C4)

and �Wn are all independent and identically distributed ran-
dom variables drawn from a common distribution p(�W ),
such that E(�W ) = 0 and E(�W 2) = �t . For example, a
popular choice is

p(�W ) = 1√
2π�t

exp

(
−�W 2

2�t

)
. (C5)

We recall that a discrete-time approximation xn is said to
converge weakly to x(t ) if for all polynomials q(z) [98]:

lim
�t→0

E{q(xn)} = E{q[x(t )]}. (C6)

In practice, weak convergence implies the convergence of all
moments in the �t → 0 limit. The order of convergence m is
defined by the order of the error in the moments with the step
size:

|E{q(xn)} − E{q[x(t )]}| = O(�tm), (C7)

for sufficiently small �t [98]. In the case of heterogeneous
diffusion instead, we considered the Itô integration scheme
and used the Euler-Maruyama method. By taking into ac-
count the possible interpretations of the Langevin equation,
the method is implemented as

xn+1 = xn + αD′(xn)�t +
√

2D(xn)�Wn. (C8)

Finally, to compute the functional defined by (2) in the main
text, we approximate∫ T

0
F [x(t )]dt ≈

N∑
i=0

F (xi+1) + F (xi )

2
�t, (C9)

where T is the first-passage time outside a given interval �,
and N is the random number of steps needed for the approxi-
mated trajectory to exit from �.
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