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Green’s functions for random resistor networks
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We analyze random resistor networks through a study of lattice Green’s functions in arbitrary dimensions. We
develop a systematic disorder perturbation expansion to describe the weak disorder regime of such a system. We
use this formulation to compute ensemble-averaged nodal voltages and bond currents in a hierarchical fashion.
We verify the validity of this expansion with direct numerical simulations of a square lattice with resistances
at each bond exponentially distributed. Additionally, we construct a formalism to recursively obtain the exact
Green’s functions for finitely many disordered bonds. We provide explicit expressions for lattices with up to
four disordered bonds, which can be used to predict nodal voltage distributions for arbitrarily large disorder
strengths. Finally, we introduce a novel order parameter that measures the overlap between the bond current and
the optimal path (the path of least resistance), for a given resistance configuration, which helps to characterize
the weak and strong disorder regimes of the system.
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I. INTRODUCTION

Electrical networks have often been used to model a wide
variety of condensed matter phenomena, both in steady-
state as well as transient regimes. While they have recently
arisen as synthetic experimental test-beds for topological
quantum matter [1–3], a longstanding application of electri-
cal networks—in particular, resistor networks—has been to
model the conductivity of disordered random media. This
problem of fundamental interest is relevant for transport
measurements [4–7] and also the study of critical phenom-
ena [8–11]. In order to model natural systems, microscopic
disorder in such model systems is an important ingredient.
Such situations often require a subtle understanding of the
properties of the lattice Green’s function (which is related
to the inverse of the lattice Laplacian) [12,13], and there-
fore an investigation into techniques that can be used to
compute Green’s functions for disordered electrical networks
represents a fundamental direction of theoretical as well as
experimental relevance.

Within this context, random resistor networks (RRN) are a
popular paradigm for modeling transport in disordered media
such as semiconductors [4,14–21] but also in directed poly-
mers [22–24] and porous rocks [25,26]. Formally defined,
an RRN is a network of resistors such that the resistances
are sampled from a probability distribution, and the dis-
order strength may be controlled by a tunable parameter
[27–29]. Studies of such networks can be approached through
a multitude of ways, most primarily by percolation theory
[5,14,18,27,30–34] but also through random walks [35,36]
and optimization theory [22,37–39].
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While transport in directed polymers and porous rocks is
classical, transport in mesoscopic systems can often be in
the quantum (ballistic) regime, where the conductances are
described by the Landauer-Büttiker formalism [40]. However,
we investigate RRNs in the Ohmic limit, which is relevant
for mesoscopic transport in the diffusive regime, whenever
the conduction length exceeds the mean free path and phase
coherence length of the electronic wave function [40], as
achieved in various contexts [41–43]. In fact, this formalism is
valid whenever the dc resistance can be defined independent
of the voltage between the terminals, which is also achieved in
quantum transport whenever eV and kBT are smaller than the
transmission coefficient [44] (see for instance Refs. [45–47]).

In this work, we consider an RRN with resistances sam-
pled from an exponentially wide distribution [19,28,48]. This
model is also termed as the hopping percolation model
[5,21,31] and can be motivated from physical considerations:
the conductance between sites in disordered media is often
proportional to exp(−ri j/r0 − Ei j/kBT ), where r0 is a length
scale for the decay of the wave function of the grains, ri j is the
distance, and Ei j is the energy difference between two sites i
and j. Thus, an exponential disorder of the form exp(axi j )
is natural: The strength a represents an energy and/or length
scale of the disordered system corresponding to the random
variable xi j [21].

In exponentially disordered networks, past studies have
identified two disorder regimes—a weak disorder regime
when L � aν and a strong disorder regime for L � aν , where
ν is the percolation connectedness exponent (ν = 4/3 in two
dimensions) [5,21,31,48,49]. The strong disorder regime is
characterized by optimal behavior: the current distribution
collapses to a self-similar fractal optimal path [39,48] (see
Fig. 2 for a visualization), whose critical exponents (dopt =
1.22 in two dimensions) have been numerically computed
[22]. In the weak disorder regime, the current distribution
is delocalized throughout the lattice and the optimal path
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(defined as the path of least resistance) is shown to be self-
affine with critical exponents belonging to the universality
class of directed polymers [38,39]. This crossover from self-
affine to self-similar is a characteristic of wide exponential
disorder; studies for Gaussian and uniform distributions give
self-affine optimal paths across disorder strength [50]. Opti-
mal paths have, of course, been understood as equivalent to
domain walls in spin systems as well, where the impurities of
the system help pin the wall to energetically favorable sites in
the system [51–53]. While critical exponents of the disorder
regimes have been explored in depth, a scalable analytical
toolbox to analyze such disordered networks has not yet been
developed.

In this article, we fill this gap by demonstrating the use
of two analytic techniques to compute the lattice Green’s
functions of the disordered system. First, we construct a per-
turbation theory that provides a hierarchical expansion for the
nodal voltages in powers of the disorder variables. Pertur-
bative expansions have been attempted in prior literature for
computing the lattice conductance [14,54] or in lattices with a
small number of disordered bonds [55]; however, our formu-
lated expansion helps to explicitly compute disorder-averaged
system observables such as nodal voltages and bond currents
by solving the Dyson equation order by order. Similar pertur-
bation expansions for Green’s functions have been helpful in
studying disordered crystalline media [56–62].

Next, we develop an exact formulation using a dyadic per-
turbation of the lattice Green’s function that can in principle
yield exact results for arbitrary disorder. The dyadic bond for-
mulation enables us to provide exact formulas for the Green’s
function for a finite number of disordered bonds in the lattice.
Although similar ideas were adopted previously for a single
broken bond in the system [55], we extend such a formulation
to an arbitrary number of bonds with disorder and are able
to give an analytically tractable expression for lattices with
a small number of disordered bonds. In particular, we provide
explicit formulas for lattices with up to four disordered bonds.

We also perform numerical simulations that corroborate
our theoretical results, as well as help us probe the different
disorder regimes of the system. We compute disorder-
averaged nodal voltages with one, two, and three disordered
bonds in the system and study their fluctuations. The fluctu-
ations are shown to peak at a critical disorder strength and
our numerics match perfectly with the analytical predictions
from exact formulas for the Green’s functions. We also pro-
vide a novel order parameter, which we term bond current
fidelity. This is defined as the overlap between the current
distribution at a particular disorder strength and the optimal
path for a particular resistance configuration. We demonstrate
clear signatures of the weak and strong disorder regimes in
this order parameter, and its scalings are shown to be in line
with previously known critical exponents and our analytical
predictions using the Green’s function formalism.

The rest of the paper is organized as follows. In Sec. II we
introduce the random resistor model and its lattice Laplacian
formulation. We discuss the disorder perturbation expansion
for the Green’s function and compute the nodal voltages per-
turbatively in Sec. III. In Sec. IV, we introduce the exact
formulation to obtain Green’s functions for arbitrarily many
bonds with disorder in the lattice. This work is supplemented

FIG. 1. The lattice convention used in this paper. Each lattice
site i is represented by an Ns = Ld -dimensional column vector |si〉
that forms an orthonormal basis. The basic lattice translation vectors
are denoted by {êm} with (1 � m � d ) and to each site i, we assign
the d bonds along ê, as shown using the solid arrows along the
bonds. Two representative bond vectors are thus |bα〉 ≡ |si〉 − |s j〉
and |bβ〉 ≡ |si〉 − |sk〉, where 1 � α, β � Nb = 2Ld .

by numerical techniques for nodal voltages and discussion of
an order parameter in Sec. V. Finally, we discuss and conclude
the work in Sec. VI and present directions for future research.

II. RANDOM RESISTOR NETWORK

In this work, we consider a d-dimensional hypercubic
lattice of linear dimension L with periodic boundary con-
ditions and resistors placed at each bond. There are Ld (=
Ns) sites and dLd (= Nb) bonds on such a d-dimensional
torus. While we consider a hypercubic lattice with periodic
boundary conditions, our formulation can be easily adapted
to other lattices with alternate boundary conditions as well.
Each lattice site is denoted by a site index (in Latin alphabets)
i ≡ (x1, x2, . . . , xd ), where {xk} (1 � k � d ) are the Cartesian
coordinates of the real space vector corresponding to site i
(1 � i � Ns). For the formulation developed in this paper,
we find it convenient to use bra-ket notation to denote the
total degrees of freedom on the lattice. The bras and kets
are vectors in Ns-dimensional space. We define a basis set of
site vectors {|si〉} that denote the sites so that the vector |si〉
(denoted equivalently by site index i) is the ith unit vector
in Ns-dimensional space. Thus, 〈si|s j〉 = δi j (1 � i, j � Ns)
and the site vectors form a complete orthonormal set, that is,∑

i |si〉 〈si| = 1. A site index subscript on a ket denotes the
corresponding entry of the column vector, for example, |si〉 j is
the jth entry of this column vector. The notation 〈i j〉 indicates
that sites i and j are connected by a bond on the lattice (nearest
neighbors). Analogously to the site vectors, it is also useful to
define bond vectors. We denote a (positive) unit vector along
a Cartesian axis by ê. Then, to each site i, we unambiguously
associate the d bonds along the positive Cartesian axes and
denote the oriented bond along ê by the notation 〈i j〉ê. We
can now define the bond vectors for the bonds in the lattice
(indexed by Greek letters) by

|bα〉 := |si〉 − |s j〉 with 〈i j〉ê. (1)

The bond index α (1 � α � Nb) is equivalent to the tuple
(i, ê) which uniquely marks the bond starting at i along ê (see
Fig. 1).
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In the network, each of the bonds between two sites i and
j has a resistance of magnitude Ri j . For the voltages at each
site, we define a nodal voltage vector |V 〉. We also define a
nodal current vector |I〉, which represents the algebraic sum
of currents exiting a site. At all sites i in the lattice not
connected to external leads, Kirchhoff’s current law trivially
demands |I〉i = 0. Thus, typically, the nodal voltages are the
most relevant (unknown) degrees of freedom. To denote the
bond currents, we define d bond current vectors {|Jê〉} cor-
responding to the current flowing in the ê direction in the
relevant bond assigned to each site. The Nb-dimensional com-
plete bond current vector is denoted by |J〉 ≡ |Jê1 |Jê2 | . . . |Jêd 〉,
where | separates the d blocks of the ket.

Our formulation in the following sections is independent
of the specificities of the external current or voltage config-
uration that sets up a steady state in the lattice (which we
solve for). In conductivity measurements, a popular choice is
a bus-bar configuration, where the voltages are fixed on two
opposite sides [4]. In our numerics, we consider a simpler
configuration—we fix a current source node iin and current
sink node iout which input and output unit current respectively.
We thus set the nodal current configuration to be given by

|I〉i := δi,iin − δi,iout , (2)

without loss of generality. We find this choice particularly
useful to demonstrate current localization to optimal paths in
the circuit.

As stated before, the theory holds for any arbitrary voltage
or current source-sink configuration. In this particular work,
we present simulations for iin ≡ (−(L − 1)/2, 0) and iout ≡
(0, 0) on the square lattice in two dimensions, so that the
current enters at the midpoint of the left boundary and exits
at the center node of the lattice (see Fig. 2 for reference). This
source-sink configuration forces the system size L to be an
odd integer.

A. Lattice Laplacian formulation

We assume that the bond resistances in the RRN are in-
dependent of the voltage difference between the sites (as in
Ohm’s law) and obtain the following:

|Jê〉i = |V 〉i − |V 〉 j

Ri j
with 〈i j〉ê. (3)

Now, due to local charge conservation in the steady state, we
apply Kirchhoff’s current law, given by

|I〉i =
∑

j with 〈i j〉

|V 〉i − |V 〉 j

Ri j
. (4)

where j with 〈i j〉 indicates a sum over index j whenever i and
j are connected by a bond. We study RRNs where the bond
resistances are perturbed from a mean resistance R0, which
without loss of generality we can set equal to 1 unit. We can
recast Eq. (4) in the following linear algebraic form:

L |V 〉 + |I〉 = 0, (5)

FIG. 2. Current distributions for a 25 × 25 lattice with expo-
nential disorder (see Sec. III) at disorder strengths of (a) a = 1,
(b) a = 15, (c) a = 30, and (d) a = 45. The resistances at each
bond are distributed as Ri j := eaxi j , with the random variables {xi j}
remaining fixed as the disorder strength a is increased. The current
source and sink are at (−12, 0) and (0,0), respectively. Convergence
to an optimal path [dark red path in (d)] can be clearly observed with
increasing disorder strength

where L is the lattice Laplacian (or conductance matrix) [63].
Explicitly, the Laplacian is given by

[L]i j :=

⎧⎪⎨
⎪⎩

−∑
j with 〈i j〉(Ri j )−1 if i = j

(Ri j )−1 if 〈i j〉
0 otherwise

. (6)

Observe that when all resistances are equal to R0, L reduces
to the usual circulant form of the lattice Laplacian of a d-
dimensional torus, as expected. Clearly, Eq. (5) can be solved
by inverting the Laplacian, thus |V 〉 = −L−1 |I〉. Thus our
basic object of study is the lattice Green’s function given by

G ≡ −L−1
, (7)

which provides all the system properties. We must be careful
to note that due to the sum rule implemented by Kirchhoff’s
current law [64], the Laplacian is a noninvertible matrix and
hence must be inverted by projecting out the zero mode
|0〉 = (1 1 . . . 1)T of the Laplacian. Specifically, the Green’s
function and the Laplacian are related by

LG = GL ≡ −(1 − |0〉 〈0|). (8)

Since the voltages in the system are equivalent up to an arbi-
trary constant, this Green’s function can be used as an inverse
without concern. While, in principle, such an inversion may
be performed numerically, in Secs. III and IV, we construct
analytic techniques to compute the Green’s function for a
disordered lattice in terms of the Green’s function for the
perfect lattice.

We now demonstrate how to compute the bond currents
generally. The relationship in Eq. (3) may be recast into the
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following linear algebraic form:

Dê |V 〉 + |Jê〉 = 0, (9)

where the difference matrices are given explicitly by

[Dê]i j := (
R〈i j〉ê

)−1

⎧⎪⎨
⎪⎩

−1 if i = j

1 if 〈i j〉ê

0 otherwise

, (10)

where R〈i j〉ê is the resistance on 〈i j〉ê. Again, notice that
when all the resistances are equal to R0, this generalized
difference matrix becomes the usual difference operator for
a d-dimensional torus. Thus, once the voltages are known, the
bond currents can be simply computed using |Jê〉 = −Dê |V 〉.

Our formulations in the following sections will be indepen-
dent of the explicit choice of disorder in the resistances. As
motivated in the introduction, however, we intend to study the
crossover from the regimes of weak to strong disorder in the
hopping percolation model [48], which is obtained by setting

Ri j := eaxi j , (11)

where xi j ∈ (0, 1) (and i and j share a bond) is a uniformly
distributed random variable and a controls the strength of the
disorder. The limit a → 0 yields a lattice with zero disorder
(perfect lattice), while a → ∞ provides the strong disorder
limit. For ease of analytical calculations, we find it conve-
nient to introduce the scalar variables {ζi j} which represent
the disorder in the bond resistances. The explicit relationship
considered is given by

Ri j := (1 − ζi j )
−1. (12)

Then, from Eqs. (11) and (12), one can find that the distribu-
tion of the variables ζ is given by (for a � 0)

f (ζ ) = a−1(1 − ζ )−1 for 0 < ζ < 1 − e−a. (13)

This also implies that the resistances obey an inverse
probability distribution, that is, f (R) = 1/(aR) for 1 �
R � ea. The moments of the disorder ζ can also be
computed exactly; in particular, the first three mo-
ments are given by 〈ζ 〉 = (−1 + a + e−a)/a, 〈ζ 2〉 = (−3 +
2a + 4e−a − e−2a)/(2a), and 〈ζ 3〉 = (−11 + 6a + 18e−a −
9e−2a + 2e−3a)/(6a), where 〈·〉 denotes a disorder ensemble
average.

III. DISORDER PERTURBATION EXPANSION

For the weak disorder regime, that is, a small deviation
from the perfect lattice, we can compute the degrees of free-
dom accurately using a perturbation expansion in the disorder.
We control such a perturbation by a tuning parameter λ, such
that 0 < λ < 1 and λ = 0 corresponds to the zero disorder
state. Therefore, we associate the tuning parameter to the
disorder ζ so that the resistances are redefined as Ri j ≡ (1 −
λζi j )−1. We consider linear perturbations on the Laplacian and
difference operators as follows:

L := L(0) + λL(1)
, (14a)

Dê := D(0)
ê + λD(1)

ê . (14b)

Note that the explicit forms of the perfect lattice’s Laplacian
L(0) and difference operator D(0)

ê can be obtained from Eqs. (6)
and (10) by setting all resistance magnitudes Ri j to 1.

A linear order perturbation in these operators of the net-
work is complete and should induce perturbation expansions
(in λ) up to all higher orders for the system variables. Thus,
we assume

|V 〉 := |V 〉(0) + λ |V 〉(1) + λ2 |V 〉(2) + O(λ3), (15a)

|Jê〉 := |Jê〉(0) + λ |Jê〉(1) + λ2 |Jê〉(2) + O(λ3), (15b)

where the superscript denotes the order of the expansion;
naturally, the (0) index denotes the values of the quantities
in the zero disorder state.

Applying the constraint that the above equations must obey
Ohm’s and Kirchhoff’s laws at each order of λ, we obtain a
hierarchical scheme to explicitly determine the higher-order
corrections to each of the above quantities. We first use
Eqs. (4) and (5) to determine the corrections to the Laplacian
matrices and the nodal voltages. Using Eq. (12) in Eq. (4), we
have the following exact relationship between the currents and
the nodal voltages, given a realization of the disorder:

|I〉i =
∑

j with 〈i j〉
(|V 〉i − |V 〉 j )(1 − λζi j ). (16)

Next, comparing this with Eq. (5), we notice that

[L(1)]i j =

⎧⎪⎨
⎪⎩

∑
j with 〈i j〉 ζi j if i = j

−ζi j if 〈i j〉
0 otherwise

. (17)

Now putting Eqs. (15a) and (15a) in Eq. (5), and equating
the terms at each order of λ, we obtain the explicit form of the
voltage expansion in Eq. (15a). The contribution of each order
is obtained in a hierarchical fashion using the contribution of
the previous order, and we obtain

|V 〉 = G(0)[1 + λL(1)G(0) + λ2(L(1)G(0) )2 + O(λ3)] |I〉 ,

(18)
where 1 denotes the identity matrix. Here G(0) is the perfect
lattice Green’s function of the lattice Laplacian L(0). Explic-
itly, the value of the perfect lattice Green’s function is given
by the d-dimensional integral,

[G(0)]i j :=
∫ π

−π

dx1

2π
. . .

∫ π

−π

dxd

2π

ei(l1x1+l2x2+...)

2
∑d

i=1(1 − cos xi )
, (19)

where |i − j| := (l1, l2, . . . , ld ). This integral can generally be
evaluated numerically; however, there also exist closed-form
expressions and recurrence formulas for d = 2 and 3, which
are summarized in Ref. [63]. In this study, however, we find it
simpler to evaluate the perfect Green’s function numerically
by using Eq. (8).

The complete disordered Green’s function G satisfies the
Dyson equation, given by

G = G(0) + G(0)L(1)G. (20)

Thus, the disordered Laplacian L(1) is the so-called self-
energy of the system. It is important to note that as the
perturbation expansion in Eq. (14a) terminates at order 1, the
above equation, is in principle exact at all orders. However,
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FIG. 3. Nodal voltages in a 35 × 35 lattice with periodic boundary conditions. The current source and sink are at (−17, 0) and (0,0),
respectively. The disorder strength is a = 0.01. The plots depict (a) nodal voltages obtained from the simulations |V 〉, (b) nodal voltages
predicted from the theory up to linear order |V 〉(0) + |V 〉(1), (c) nodal voltages obtained from the difference of the simulations and the theoretical
predictions up to first order |V 〉 − [|V 〉(0) + |V 〉(1)], and (d) nodal voltages predicted by the theory at second order |V 〉(2). The numerical results
and theoretical predictions match exactly at first order [(a) and (b)] as well as second order [(c) and (d)]. Note the difference in the magnitudes
between the solutions at first and second order.

inverting such an equation is in general hard and therefore
is usually solved in a perturbative manner, as we proceed to
do. Note that if we set λ = 1, and write |V 〉 = G |I〉, where
G is the Green’s function for the disordered system, then we
recover the Dyson series given by

G = G(0) + G(0)L(1)G(0) + G(0)L(1)G(0)L(1)G(0) + . . . .

(21)
The nth term of the Dyson series gives us the nth order cor-
rection to the Green’s function, as is evident from the form we
obtained in Eq. (18). Computing the nodal voltages is thus
simply a task of computing the terms of the Dyson series
order by order, which is trivial by the explicit knowledge of
the disordered Laplacian as given in Eq. (17).

One can also compute the corrections to the difference
matrices and the bond currents. Observe that Eq. (3) can be
rewritten as follows:

|Jê〉i = (|V 〉i − |V 〉 j )(1 − λζi j ) with 〈i j〉ê, (22)

and comparing this with Eq. (9), we obtain

[
D(1)

ê

]
i j

= ζ〈i j〉ê

⎧⎪⎨
⎪⎩

1 if i = j

−1 if 〈i j〉ê

0 otherwise.

(23)

Now putting Eqs. (14) and (15b) in Eq. (9), and again com-
puting in a hierarchical fashion, we obtain the explicit form of
the bond current expansion in Eq. (15b) as follows:

|Jê〉 = − [
D(0)

ê G(0) + λ
(
D(0)

ê G(0)L(1)G(0) + D(1)
ê G(0))

+ λ2
(
D(0)

ê G(0)L(1)G(0)L(1)G(0)

+ D(1)
ê G(0)L(1)G(0)) + O(λ3)

] |I〉 . (24)

The perturbation expansion developed above should lead
to an exact answer for the voltage (respectively, current) at a
given site (respectively, bond) for any small value of the disor-
der. The small value of the disorder is controlled by the scale
after which the perturbation expansion is divergent, and this
disorder scale is estimated in Sec. IV A. In convergent cases,
one only needs to consider the first few terms in the expansion,
which rapidly decay at large orders. We illustrate the exact
convergence of such an expansion scheme in a 35 × 35 lattice

with exponentially distributed disorder in Fig. 3. In Figs. 3(a)
and 3(b), we demonstrate the exact matching between the
perturbation expansion up to first order with the numerically
obtained (simulation) nodal voltages, and in Figs. 3(c) and
3(d), we show that the difference between the above two
is exactly reproduced by the second-order contribution. We
find that an excellent match is found between the theoreti-
cal and numerical results as evident from the nodal voltage
distributions.

We mention that a similar disorder perturbation expansion
was attempted by Kirkpatrick [14] and by Derrida and Luck
[65]. We have provided a detailed exposition and confirmed
the validity of such a perturbation scheme through an explicit
demonstration of the various terms in the expansion for both
nodal voltages and bond currents. Below, we demonstrate
the applicability of such techniques for RRNs through the
computation of disorder averages. This involves introducing a
dyadic formulation to compute moments of the nodal voltages
and bond currents. In the next section, we also introduce a
recursive scheme that can be used to, in principle, compute
the exact Green’s function for such a system.

A. Ensemble averages

The perturbation expansion formalism developed above
provides the nodal voltages and bond currents for a particu-
lar resistance configuration in the lattice. From experimental
considerations, it is more helpful to understand the behavior
of the system in an averaged fashion over disorder; we thus
compute the disorder ensemble averages of the nodal voltages
and bond currents as a function of the moments of the disorder
ζ . The averaging is performed over the disorder ensemble
with each instance of the ensemble representing a resistance
configuration generated from an independent sampling of
the disorder distribution. We first compute the ensemble av-
erages of the nodal voltages. Observing the Dyson series
[Eq. (21)], we realize that this problem reduces to calculating
the ensemble averages of matrix products of alternating disor-
dered Laplacians and perfect lattice Green’s function, that is,
quantities of the kind 〈L(1)G(0)L(1)

. . . G(0)L(1)〉, with 2r − 1
matrices for the rth order contribution. Clearly, from inspec-
tion of the disordered Laplacian [see Eq. (17)], we notice that
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〈L(1)〉 = −〈ζ 〉L(0). To compute the higher-order contributions
efficiently, we utilize a convenient dyadic bond representation
of the perturbed Laplacian. Thus, notice that the perfect and
perturbed lattice Laplacians can be recast in the following
form:

L(0) = −
Nb∑

α=1

|bα〉 〈bα| , (25a)

L(1) =
Nb∑

α=1

ζα |bα〉 〈bα| . (25b)

Notice the generality of the formalism in Eq. (25b). By at-
taching a correction ζα to any bond |bα〉 in the lattice, one
can construct the lattice Laplacian of any arbitrary (disor-
dered or ordered in some fashion) resistor network using the
simple formula L = L(0) + L(1). Its further usefulness will be
expanded on in Sec. IV.

To compute the aforementioned matrix product averages,
we will require moments of the disorder variables on the
bonds, which implies that they obey a cluster averaging
scheme. Thus, we recall that 〈ζαζβ〉 ≡ 〈ζ 2〉δαβ + 〈ζ 〉2(1 −
δαβ ) and 〈ζαζβζγ 〉 = 〈ζ 3〉δαβδαγ + 3〈ζ 2〉〈ζ 〉δαβ (1 − δαγ ) +
〈ζ 〉3(1 − δαβ )(1 − δαγ ). Therefore, we obtain the following
averages:

〈L(1)〉 = −〈ζ 〉L(0)
, (26a)

〈L(1)G(0)L(1)〉 = κ2(ζ )
∑

α

G0
αα |bα〉 〈bα|

+ 〈ζ 〉2
∑
α,β

G0
αβ |bα〉 〈bβ | , (26b)

〈L(1)G(0)L(1)G(0)L(1)〉 = κ3(ζ )
∑

α

(
G0

αα

)2 |bα〉 〈bα|

+ (3〈ζ 2〉〈ζ 〉 − 2〈ζ 〉3)

×
∑
α,β

G0
ααG0

αβ |bα〉 〈bβ |

+〈ζ 〉3
∑
α,β,γ

G0
αβG0

βγ |bα〉 〈bβ | , (26c)

where we define a dressed Green’s function between two
bonds given by G0

αβ ≡ 〈bα|G(0)|bβ〉. The cumulants of the
random variable ζ are κ2(ζ ) ≡ 〈ζ 2〉 − 〈ζ 〉2 and κ3(ζ ) ≡
〈ζ 3〉 − 3〈ζ 2〉〈ζ 〉 + 2〈ζ 〉3. Notice that the first-order correction
[Eq. (26a)] reproduces the result we predicted simply by in-
spection of the matrices as well.

The ensemble averages for the bond currents can be com-
puted in a similar fashion. The perfect and the perturbed lattice
difference matrix can also be written in a dyadic representa-
tion as follows:

D(0)
ê = −

Nb∑
α=1

|si(α)〉 〈bα| , (27a)

D(1)
ê =

Nb∑
α=1

ζα |si(α)〉 〈bα| . (27b)

where |si(α)〉 is the site vector associated with the site i as well
as the bond |bα〉 such that α ≡ (i, ê). As evident from Eq. (24),
the relevant quantities to calculate in this case are again ma-
trix products of alternating perfect lattice Green’s function
and perturbed Laplacian, except that the first matrix is the
disordered difference matrix, that is, quantities of the kind
〈D(1)

ê G(0)L(1)
. . . G(0)L(1)〉. Owing to the similar structure of

the dyadic representation, it is clear that the disorder-averaged
quantities are exactly the ones computed in Eqs. (26), with any
dyad |bα〉 〈bβ | replaced by |si(α)〉 〈bβ | on the right-hand site
and the initial L(1) replaced by D(1)

ê in the matrix products,
and L(0) replaced by D(0)

ê on the left-hand side of the equation.
Given the computed averaged quantities in Eqs. (26), it is

straightforward to compute the disorder-averaged cumulants
of the nodal voltages or bond currents. For example, using
the Dyson series for the voltages and series expansion for
the current in Eq. (18) and (24) we obtain explicit series
expansions for the first moment up to second order,

〈|V 〉〉 =[G(0) + λG(0)〈L(1)〉G(0)

+ λ2G(0)〈L(1)G(0)L(1)〉G(0) + O(λ3)] |I〉 , (28)

〈|Jê〉〉 = − [
D(0)

ê G(0) + λ
(
D(0)

ê G(0)〈L(1)〉G(0)

+ 〈
D(1)

ê

〉
G(0)) + λ2(D(0)

ê G(0)〈L(1)G(0)L(1)〉G(0)

+ 〈
D(1)

ê G(0)L(1)〉G(0)) + O(λ3)
] |I〉 , (29)

and the relevant averages have been provided in Eq. (26).
It is also useful to notice that these disorder averages are
general for any arbitrary disorder distribution. Higher- (rth)
order corrections are also straightforward to calculate—they
would involve r sums and the cluster-averaged rth moments
of the disorder variables. A convenient way to compute these
correlation functions systematically may be via a diagram-
matic expansion and can be formulated, in principle, for this
setup as well. A typical route to diagrammatics is through
a cumulant expansion in Fourier space [66–68], which can
also be attempted within our formulation; however, we do not
pursue such computations in this study (a similar attempt at
diagrammatics has been pursued in Ref. [54]).

IV. RECURSIVE DYADIC BOND DISORDER

While the perturbative expansion gives us accurate results
up to the desired order in the weak disorder regime, it is unable
to explain the behavior of the system at strong disorder values.
This is because the higher-order corrections are of comparable
magnitudes and therefore cannot be ignored. This is a caveat
in using a perturbative approach, and hence we now present
an alternative formulation for computing disordered Green’s
functions for this problem exactly. Although we demonstrate
the explicit applicability of this technique for a small number
of bonds with disorder in the lattice, instead of the scenario
with disorder in all bonds studied before, the technique is
general and can be extended to the aforementioned system as
well.

We denote the Green’s function of the system when there
are n bond impurities in the lattice by G[n] (thus, G[0] is the
perfect lattice Green’s function, equivalent to G(0) in the per-
turbative framework). Note the distinction in the notation with
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the perturbative corrections to the Green’s function—G[n]

(square brackets in superscript) denotes the lattice Green’s
function for the system with n disordered bonds, while G(n)

(round brackets in superscript) denotes the nth order correc-
tion to the lattice Green’s function (with disorder in all bonds)
in the disorder perturbation expansion. The mathematical trick
we employ is to use the Sherman-Morrison formula for matri-
ces given by

(A + |u〉 〈v|)−1 = A−1 − A−1 |u〉 〈v| A−1

1 + 〈v|A−1|u〉 , (30)

where A is an invertible square matrix and u and v are
column vectors of appropriate size [69]. Such ideas were
demonstrated by Cserti et al. [55] for the case of a single
broken bond in the lattice. In this section we extend such a
procedure to incorporate disorder in multiple bonds of the
lattice. As illustrated before in Sec. III A, each bond α can
be represented in a dyadic form in terms of its bond vectors
|bα〉. Earlier, our bond vectors were free of disorder; however,
in this formulation, it is convenient to work with bond vectors
with the disorder variable attached; thus, we define

|b̃α〉 ≡
√

ζα |bα〉, (31)

where ζα is the disorder variable on the αth disordered bond.
Note here the index on the bond vector is not its index on the
overall lattice but instead locates it among the n disordered
bonds, with 1 � α � n � Nb. Now the above matrix identity
may be used iteratively (with A replaced by the lattice Lapla-
cian L) to obtain the disordered Green’s functions for finitely
many bond impurities n.

The central idea is a recursive application of the Sherman-
Morrison formula in Eq. (30) to substitute perfect bonds by
disordered bonds step by step to construct the full disordered
lattice. Consider the addition of a single disordered bond in
the lattice, which modifies the Laplacian of a perfect lattice as
follows:

L[1] = L[0] + |b̃1〉 〈b̃1| , (32)

which should also be evident from Eq. (25b). Here, in line
with the notation for the Green’s functions, a square bracket
subscript on the lattice Laplacian denotes the network with
finitely many disordered bonds. Similarly, adding a second
disordered bond to the lattice modifies the Laplacian matrix
of a system with an additional disordered bond, so that L[2] =
L[1] + |b̃2〉 〈b̃2|. Therefore, we can create an entire disordered
lattice with n disordered bonds in a hierarchical fashion with

L[n] = L[n−1] + |b̃n〉 〈b̃n| . (33)

It is clear that each level of this recursion of adding disordered
bonds is amenable to an exact inversion via the Sherman-
Morrison formula in Eq. (30), as enabled by the disordered
bonds entering as dyadic additions to the perfect lattice Lapla-
cian. We therefore obtain the following recursive relation
between the Green’s functions G[n] and G[n−1] for a system
with n and n − 1 bond impurities, respectively,

G[n] = G[n−1] + G[n−1] |b̃n〉 〈b̃n| G[n−1]

1 − 〈b̃n|G[n−1]|b̃n〉
. (34)

Equation (34) represents a central result of our study, with the
rest of this section devoted to methods that can yield exact
results for these recursion relations. For a small number of
disordered bonds these may be computed directly. However,
we demonstrate a generalized formalism that enables us to
calculate the disordered Green’s functions for an arbitrary
number of bonds with disorder in an analytically tractable
manner.

First, to calculate the Green’s function with a single disor-
dered bond, we simply apply the inversion formula in Eq. (30)
for the Laplacian in Eq. (32), which is the n = 0 case of the
recursion in Eq. (34). We thus obtain the Green’s function for
a single bond with disorder

G[1] = G[0] +
(

1

g̃1

)
G[0] |b̃1〉 〈b̃1| G[0]

, (35)

where we have defined

G̃0
αβ := 〈b̃α|G[0]|b̃β〉 (1 � α, β � n), (36a)

g̃α := 1 − G̃0
αα, (1 � α � n). (36b)

We term G̃0
αβ as the disordered dressed Green’s function (as

a generalization of the definition in Sec. III A). As a limiting
case, one can consider the bond percolation limit, where we
set the disorder variable ζ1 → 1 in Eq. (35) and recover the
single broken bond Green’s function expression derived in
Refs. [55,70], as expected.

Having obtained the Green’s function for the system with a
single disordered bond, one may obtain the Green’s function
for two disordered bonds by using Eq. (35) in the recursion
[Eq. (34)]. On doing so, we obtain the following formula:

G[2] = G[0] +
(

g̃2

g̃1g̃2 − (
G̃0

12

)2

)
G[0] |b̃1〉 〈b̃1| G[0]

+
(

g̃1

g̃1g̃2 − (
G̃0

12

)2

)
G[0] |b̃2〉 〈b̃2| G[0]

+
(

G̃0
12

g̃1g̃2 − (
G̃0

12

)2

)
[G[0] |b̃1〉 〈b̃2| G[0]

+ G[0] |b̃2〉 〈b̃1| G[0]]. (37)

Clearly, a pattern is evident for these formulas. The difference
between the disordered and perfect lattice Green’s function is
simply the sum of bilinears of the kind G[0] |b̃α〉 〈b̃β | G[0] for
1 � α, β � n with disordered coefficients that are functions
of the disordered dressed Green’s function G̃0

αβ . Computing
these formulas iteratively using the recursion, however, is hard
and below we propose an efficient manner in determining the
Green’s functions.

Thus, we now account for an arbitrary number of bonds
with disorder. We posit the following sum of bilinears as the
disordered lattice Green’s function with n disordered bonds,

G[n] ≡ G[0] +
n∑

α,β

c[n]
αβG[0] |b̃α〉 〈b̃β | G[0]

. (38)

It is straightforward to show that this solves the recursion
relation in Eq. (34), through mathematical induction. Re-
markably, the problem of evaluating the disordered Green’s
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function has now reduced to computing the coefficients c[n]
αβ .

By symmetry, c[n]
αβ = c[n]

βα and, thus, we need to only compute
n + n(n + 1)/2 coefficients for n disordered bonds. Multi-
plying by (G[n] )−1 = (G[0] )−1 − ∑n

α |b̃α〉 〈b̃α| on both sides,
and using the linear independence of the |b̃α〉 〈b̃β | dyads, we
obtain the following relation:

g̃αc[n]
αβ −

∑
γ 
=α

G̃0
αγ c[n]

γ β = δαβ (1 � α, β, γ � n), (39)

where g̃α and G̃0
αγ are defined as per Eq. (36). The above

Eq. (39) gives us a linear algebraic relation from which we can
determine the coefficients c[n]

αβ . The equivalent matrix equa-
tion can be formulated in terms of a Kronecker product ⊗ as
follows:

(G̃[n] ⊗ 1n) |C[n]〉 = |U [n]〉 , (40)

where |C[n]〉 = (c[n]
11 c[n]

12 . . . c[n]
nn )T is the n2 × 1 coefficient vec-

tor and |U [n]〉 is the constant vector with n unit vector blocks,
that is |U [n]〉 ≡ |e[n]

1 |e[n]
2 | . . . |e[n]

n 〉 (where |e[n]
α 〉 denotes the

n-dimensional αth unit vector). The dressed Green’s function
matrix G̃[n] is given explicitly by

G̃[n] ≡

⎛
⎜⎜⎜⎜⎜⎝

g̃1 −G̃0
12 −G̃0

13 · · · −G̃0
1n

−G̃0
21 g̃2 −G̃0

23 · · · −G̃0
2n

...
...

...
. . .

...

−G̃0
n1 −G̃0

n2 −G̃0
n3 · · · g̃n

⎞
⎟⎟⎟⎟⎟⎠, (41)

The block structure of Eq. (40) allows us to solve the matrix
equation in a reduced fashion from an n2 × n2 to an n × n
matrix, which gives us a significant computational advantage.
Observe that it suffices to solve n matrix equations of the
following kind:

G̃[n]
∣∣C[n]

α

〉 = ∣∣e[n]
α

〉
, (42)

where |C[n]
α 〉 = (c[n]

1 j c[n]
2α . . . c[n]

nα )T is the n × 1 reduced coeffi-
cient vector. Since the right-hand side of the matrix equation is
simply the unit vector, it is convenient to solve the above
systems of equations using Cramer’s rule, which gives us the
following neat result:

c[n]
αβ = det(G̃[n](α, β ))

det(G̃[n] )
, (43)

where G̃[n](α, β ) is the coefficient matrix with the αth column
replaced with |e[n]

β 〉. This simplifies to a particularly provoca-
tive form for the diagonal terms as follows:

c[n]
αα = det(G[n−1])

det(G[n] )
. (44)

Here G[n] is the coefficient matrix in Eq. (42). Thus, the
diagonal terms of the coefficients are simply the ratios of
the determinants of the dressed Green’s function matrix for
n and n − 1 disordered bonds. This is a remarkable result and
suggests that the disordered Green’s function are intrinsically
determined by the properties of the determinant of a quantity
encoding the lattice structure by means of the dressed Green’s
function matrix defined in Eq. (41). Properties of the coeffi-
cients of this matrix should help decipher the response of the
system as the disorder strength is increased.

We now enlist the coefficients for the disordered Green’s
functions for bond impurities of one, two, and three bonds,
respectively. We denote the numerator and denominator of
these coefficients by N [c[γ ]

αβ ] and D[c[γ ]], respectively, with

c[γ ]
αβ = N

[
c[γ ]
αβ

]
D[c[γ ]]

. (45)

Note that due to Eq. (43), there is only one (superscript) index
in the coefficient for the denominator since it is equal for all
coefficients for a given n. Then, for one disordered bond, we
have

N
[
c[1]

11

] = 1; D[c[1]] = g̃1, (46)

for two bond impurities, we have

N
[
c[2]

11

] = g̃2; N
[
c[2]

22

] = g̃1; N
[
c[2]

12

] = G̃0
12, (47a)

D[c[2]] = g̃1g̃2 − (
G̃0

12

)2
, (47b)

and for three bond impurities, we have

N
[
c[3]

11

] = g̃2g̃3 − (
G̃0

23

)2
, (48a)

N
[
c[3]

22

] = g̃1g̃3 − (
G̃0

13

)2
, (48b)

N
[
c[3]

33

] = g̃1g̃2 − (
G̃0

12

)2
, (48c)

N
[
c[3]

12

] = g̃3G̃0
12 + G̃0

13G̃0
23, (48d)

N
[
c[3]

13

] = g̃2G̃0
13 + G̃0

12G̃0
23, (48e)

N
[
c[3]

23

] = g̃1G̃0
23 + G̃0

12G̃0
31, (48f)

D[c[3]] = g̃1g̃2g̃3 − g̃1
(
G̃0

23

)2 − g̃2
(
G̃0

31

)2 − g̃3
(
G̃0

12

)2

−2G̃0
12G̃0

23G̃0
31. (48g)

This procedure may be extended to arbitrarily many num-
ber of bonds and the coefficients can be obtained as before.
Observe that the coefficients in Eqs. (46) and (47) are the same
as those computed in Eqs. (35) and (37) by directly solving the
recursion. Coefficients for four disordered bonds are enlisted
in Appendix A.

A. Connection with perturbation theory

The Green’s functions computed in this section are exact
for arbitrary disorder. To stay consistent, they must match with
the predictions from the perturbation theory in the weak disor-
der regime. This is indeed the case, and we demonstrate here
how one can reproduce the perturbation expansion results by
simply computing the series expansions of the Green’s func-
tions in the disorder variable ζ in the small disorder strength
limit. As an illustration, we consider the Green’s function
for one disordered bond in Eq. (35) and computing a series
expansion (in ζ1) of the denominator [under the assumption
that ζ1 � (G[0]

11 )−1], we obtain the following expansion:

G[1] = G[0] + ζ1G[0] |b1〉 〈b1| G[0] + ζ 2
1 G0

11G[0] |b1〉 〈b1| G[0]

+ ζ 3
1

(
G0

11

)2
G[0] |b1〉 〈b1| G[0] + . . . . (49)

Now recall that the perturbation theory predicts the Dyson
series [Eq. (21)] for the Green’s function. Considering that
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for one bond disorder, the correction to the Laplacian is
simply L(1) = ζ1 |b1〉 〈b1| [as seen from Eq. (25b)]; on using
this in the Dyson series we see that we exactly reproduce
Eq. (49). This clearly shows how our dyadic bond formulation
is consistent with the perturbation theory developed before.
This exercise can also be performed for a higher number of
disordered bonds with the same result.

An alternate benefit of this exercise is that it provides an
estimate for the disorder strength up to which the perturba-
tion theory converges. Indeed, we find that as long as ζ �
(G[0]

i j )−1, or equivalently in terms of the disorder strength,

axi j � ln(1/(1 − (G[0]
i j )−1)) where 0 � xi j � 1 (here i and j

can be identical or nearest-neighbor sites on the lattice), the
perturbation theory is expected to provide reasonable results
to match with experiments.

Calculating the system variables from these exact Green’s
functions is straightforward—|V 〉 = G[n] |I〉, and |Jê〉 =
−D(0)

ê |V 〉. Further, just as we did in the perturbation theory,
these disordered Green’s functions can be averaged analyt-
ically to obtain the ensemble-averaged nodal voltages and
bond currents. We expand on this in greater detail in Sec. V A.

B. Numerical implementation

At this point, it is useful to discuss the applicability of the
recursive method from a numerical standpoint. To compute
a disordered Green’s function G, assuming that the perfect
lattice Green’s function G[0] is known, one typically inverts
the disordered Laplacian L. Since the Laplacian is a ma-
trix of size Ns × Ns, this operation costs O((Ns)3) time. We
argue that using the recursive formula in Eq. (34) can pro-
vide a computational advantage against direct inversion. In
the recursion, one needs to compute outer products of the
kind G[n−1] |bα〉 〈bβ | G[n−1]. Naively, computing G[n−1] |bα〉
costs O((Ns)2) time; however, we note that |bα〉 = |si〉 − |s j〉
(where α is the index for the bond between i and j), and since
the site vectors are unit vectors, such a computation is equiv-
alent to accessing a column from the Green’s function matrix,
which can be performed in O(Ns) time. Thus, computing the
outer product requires O((Ns)2) time, and multiplying it with
a disorder variable ζα and coefficient 1/(1 − 〈bα|G[n−1]|bβ〉)
can both be performed in O((Ns)2) time (as well as adding the
result to G[n−1]). Now we note that for n disordered bonds, the
recursion runs n times and the total time complexity becomes
O(n(Ns)2) time. This becomes equivalent to the complexity
for linear inversion for disorder in all bonds [n = Nb = O(Ns)]
but is faster whenever n is sublinear in Nb—an advantage
which is not accessible in the linear inversion technique. Thus,
our recursive method also provides a numerically viable ap-
proach to compute the lattice Green’s function for a disordered
network. It would be interesting to devise algorithms to test
such an implementation and compare efficiency with other
recursive techniques such as the transfer matrix approach [71],
which we have not attempted here.

In addition to the recursive algorithm, we also provide the
exact solution to the recursion in Eqs. (38) and (43). While
they provide excellent analytical control, from a numerical
standpoint, computation of the coefficients may appear to
be expensive due to the evaluation of the determinants in
Eq. (43). Here we point out instead of computing O(n2) many

determinants, one only needs to compute three—the denomi-
nator D[c[n]] and two numerators N [c[n]

αα] and N [c[n]
αβ], where

α, β can be any index from 1 to n. The rest of the determi-
nants can be constructed by inspection (since they have the
same polynomial form, for instance, see Appendix A). It is,
therefore, reasonable to expect that a symbolic computation
of this expression in the disorder variables {ζi j} can enable
a disorder average for the Green’s function in a much more
efficient manner than inverting a Laplacian each time. Thus,
there does appear to be a significant advantage in devising
algorithms using the recursive method.

V. NUMERICAL RESULTS

Finally, we test the validity of our theoretical results
through numerical simulation of an L × L square lattice in
two dimensions with exponential disorder. In Sec. V A, we
first numerically compute the mean nodal voltages and its
fluctuations at a generic lattice site for one, two, and three
disordered bonds in the lattice. These results are then matched
with theoretical predictions from the hierarchical dyadic bond
disorder formalism, which show an exact match for the entire
disorder range for the weak as well as strong regimes. In
Sec. V B, we propose a novel order parameter, termed bond
current fidelity, which measures the overlap between current
distributions at arbitrary and infinite disorder. We provide
finite-size scaling estimates of this order parameter in the
weak and strong disorder regime, albeit for small lattice sizes.

A. Nodal voltage fluctuations

We first numerically compute the nodal voltages and fluc-
tuations at an observation site io in the lattice. The nodal
voltages {|V 〉io} are calculated using Kirchhoff’s law [Eq. (5)]
while the fluctuations are given simply as an average over dis-
order realizations Var[|V 〉io] ≡ 〈|V 〉2

io〉 − 〈|V 〉io〉2. The choice
of the observation site io is arbitrary, as our formalism predicts
the values at all lattice sites. We notice and expect a similar be-
havior at any such lattice site in the bulk and thus it suffices to
probe the behavior at a single arbitrary lattice site. For illustra-
tive purposes, our simulations are performed on a 5 × 5 square
lattice with one, two, and three disordered bonds. The loca-
tions of the disordered bonds and the observation site are de-
picted in the schematic in the insets of Figs. 4(a), 4(c) and 4(e).

For the cases with one, two, and three disordered bonds,
one can also compute analytically the quantities of interest
using the recursive dyadic bond disorder formulation. It is
easy to compute the moments of the nodal voltages using
Eq. (38). The mean nodal voltage at site io is given by

〈|V 〉io〉 = |V 〉(0)
io

+
n∑

α,β

I [n]
αβ (a) 〈sio|G[0]|bα〉〈bβ |G[0]|I〉, (50)

where I [n]
αβ (a) is a disorder-averaged coefficient obtained by

computing an n-dimensional integral over the disorder dis-
tributions (see Appendix B for explicit formulas). These
integrals may be computed analytically for simple cases (and
numerically otherwise) and the computed nodal voltages are
matched with the numerics [cf. Fig. 4(a), 4(c) and 4(e)]. We
can also compute the fluctuations by a somewhat more tedious
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FIG. 4. Plot of the disorder-averaged nodal voltages 〈|V 〉io〉 in panels (a), (b), and (c) and their fluctuations Var[|V 〉io] in panels (d), (e),
and (f) for one, two, and three disordered bonds in the lattice, respectively. The plots display an exact match between the theory (red line) and
numerical simulations (blue circles). The insets display a schematic of the 5 × 5 RRN used in the computation, with the red circles denoting the
locations of the source and sink, whereas the green, orange, and purple bonds depicting the disordered bonds |b̃1〉 , |b̃2〉, and |b̃3〉, respectively,
and the blue circle denotes the observation point io. The averaging is performed over 1000 realizations of the bond disorder. The analytic
predictions were computed using Eqs. (50) and (51), with the exact formulas for the n-dimensional integrals therein given in Appendix B.

calculation. For this, we must compute the second moment of
the nodal voltage at site io, which may be written as〈( |V 〉io

)2〉
= ( |V 〉(0)

io

)2 + 2 |V 〉(0)
io

n∑
α,β

I [n]
αβ 〈sio|G[0]|bα〉〈bβ |G[0]|I〉

+
n∑

α,β,γ ,δ

J [n]
αβγ δ〈sio|G[0]|bα〉〈sio|G[0]|bβ〉〈bγ |G[0]|I〉〈bδ|G[0]|I〉,

(51)

where I [n]
αβ (a) and J [n]

αβγ δ (a) are disorder-averaged coeffi-

cients. I [n]
αβ (a) is the n-dimensional integral described above,

while J [n]
αβγ δ (a) is an n-dimensional integral connecting four

bonds (again, exact formulas are provided in Appendix B).
Clearly, the fluctuations are given simply by the four-point
term [the third term in Eq. (51)] with a disorder-averaged coef-
ficient given by J [n]

αβ (a) − I [n]
αβ (a)I [n]

γ δ (a). We show the match
of the voltage fluctuations with the simulations in Figs. 4(b),
4(d) and 4(f). From Fig. 4, we notice that the nodal voltages
increase with increasing disorder strength a and then saturate
to a constant value. The saturation is due to the fact that in the
strong disorder limit, the current distribution collapses to an
optimal path, and hence small changes in the disorder strength
does not alter the voltage configuration of the network sub-
stantively. The fluctuations, on the other hand, depict a very
interesting behavior—they peak at a critical disorder value
and then decrease as we approach the strong disorder limit.
This peak in the fluctuations is representative of the crossover
between the weak and strong disorder regimes in the system
for the chosen configuration of small number of impurities.

The fluctuations in the nodal voltages thus may be considered
as a useful order parameter for the system, at least, for systems
with a small number of bonds with disorder.

Although we have provided theoretical expressions and
numerical results for a small lattice size, the case of an infinite
lattice size with one, two, and three disordered bonds does not
require greater effort, as the only change is the replacement of
the Green’s function elements for the infinite lattice. Analytic
expressions for the same are easy to compute through known
recursion relations for the perfect infinite lattice Green’s func-
tion [63,72].

B. Bond current fidelity

To investigate the behavior of the system in the weak and
strong disorder regimes, we construct a novel order parameter
in terms of the bond current observables. Previous studies of
the crossover between weak and strong disorder regimes have
focused on microscopic observables such as the distribution
of tracer path lengths [39], which requires collecting large
statistics over many samples or through the resistance mea-
surements before and after introduction of a perturbation at
the bond with a maximal current [5]. In this study, we propose
an alternate order parameter computed using a macroscopic
observable—the bond currents, thus making the study acces-
sible to experiments. The advantage of this parameter is that
it solely depends on the steady-state current distribution of
a single resistance configuration and thus does not require,
in principle, large averaging or perturbations to the circuit.
Knowledge of the resistance configuration, from an experi-
mental point-of-view requires the simultaneous measurement
of the nodal voltages and bond currents, which appears to be
accessible within reasonable arrangements.
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In order to quantify whether a given system is in a weak or
strong disordered phase, it is useful to look at how channel-
ized the flow of the current is. Each resistance configuration
has a corresponding optimal path, that is, the path of least
resistance between the source and the sink in the circuit. For
each disorder strength, the optimal path can be computed by
simply computing the path of least total weight in the graph
between the source and sink, which is implemented efficiently
by Djikstra’s algorithm [73]. In the perfect lattice, the optimal
path is the straight line connecting the source and the sink. As
the disorder is increased, in the weak regime, the optimal path
fluctuates about this straight line, with its statistics depicting a
self-affine behavior [22]. As the system enters the strong dis-
order regime, the optimal path changes behavior—displaying
self-similarity. We recover these signatures from the bond
current order parameter described in detail below.

In the strong disorder limit, the current distribution col-
lapses completely to the optimal path. Therefore, a relevant
order parameter is the deviation of the current distribution
in the system from the optimal path. To define the order
parameter, it is useful to define the optimal path in terms
of bond vectors. Similarly to the definition of the bond
current vector in Sec. II, we construct d Ns-dimensional op-
timal current vectors {|Jopt

ê (a)〉} along d directions and an
Nb-dimensional complete optimal current vector |Jopt(a)〉 ≡
|Jopt

ê1
|Jopt

ê2
| . . . |Jopt

êd
〉. We define |Jopt

ê (a)〉 as follows:

∣∣Jopt
ê (a)

〉
i

:=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if |bα〉 ∈ optimal path

and α ≡ (i, ê)

−1 if |bα〉 ∈ optimal path

and α ≡ ( j,−ê) with 〈i j〉ê

0 otherwise

. (52)

This construction is consistent with the current definitions and
accounts for possible overhangs in the optimal path. Note
that the length of the optimal path is given by the 1-norm of
the optimal current vector. We then define the bond current
fidelity F to be given by

F{ζ }(a) ≡ 〈Jopt(a)|J (a)〉, (53)

where the subscript {ζ } indicates that the fidelity is calculated
for a fixed instance of the resistance disorder configuration,
with the only variable being the disorder strength that is var-
ied. We conjecture that this order parameter F should measure
the behavior of the system succinctly with respect to the be-
havior of the optimal path and one should notice a significant
shift in the profile from the self-affine to self-similar profiles
of the optimal path in the weak and strong disorder regimes,
respectively. Since this parameter is an overlap between the
actual current distribution and the optimal path at each disor-
der strength, we term it the bond current fidelity of the system.
Similar fidelity parameters have been found useful in a variety
of contexts, including in information geometric contexts for
probing quantum phase transitions [74].

In Fig. 5, we show numerical simulations of the aver-
aged bond current fidelity for six different system sizes L =
5, 11, 15, 21, 25, and 31 given a fixed disorder configuration.
The disorder strength is varied from the weak to the strong
disorder regimes, that is, 0.1 � a � 100. We observe inter-

FIG. 5. Double logarithm plot of the averaged bond current fi-
delity 〈F〉 calculated for six system sizes L = 5, 11, 15, 21, 25, and
31. The strength of disorder is 0.1 � a � 100. The averaging is per-
formed over 50 realizations of the resistance configuration. The hor-
izontal dotted lines show the saturation values obtained analytically
using Eq. (54), that is, F (a = 0) = 0.64, 0.91, 1.01, 1.12, 1.17, 1.22
for the six system sizes, respectively. Inset: Scaling collapse for the
averaged bond current fidelity in a double logarithm plot, with the
symbols denoting five system sizes as per the legend in the main
plot from L = 11 to L = 31. The averaged bond fidelity in the strong
disorder regime is scaled by L1/dopt

where dopt = 1.22 is the optimal
path exponent in two dimensions.

esting signatures of the weak and strong disorder regimes in
this order parameter. In the weak disorder regime (L � a4/3)
we observe a saturated behavior of the fidelity, which is very
close to the value of the fidelity in the perfect network, with
negligible fluctuations. For our largest system size (L = 31),
we find that weak disorder is given at a � 13, while strong
disorder is given at a � 13. This is consistent with the pro-
files observed in Fig. 5. We can also compute the saturation
value of the weak disorder limit explicitly using the following
formula:

F (a = 0) =
iout∑
iin

∣∣J (0)
êx

〉
i
=

iout∑
iin

〈si|D(0)
êx

G(0)|I〉, (54)

where the bond currents have been computed using the lattice
Green’s function as per Eq. (9). These values are depicted
in Fig. 5 by the horizontal dotted values, explicitly given
by F (a = 0) = 0.64, 0.91, 1.01, 1.12, 1.17, 1.22 for system
sizes L = 5, 11, 15, 21, 25, and 31, respectively. We further
note that as described in Eq. (9), the currents are computed
using the Green’s functions, which scale logarithmically with
system size in two dimensions. This is consistent with the
aforementioned saturation values obtained from explicit com-
putation which scale as log(L) with increasing system size L.

In the strong disorder regime (L � a4/3), we notice a
steady rise in the fidelity up to a critical disorder strength,
after which there is a rapid fall in the fidelity to a value that
is simply given by the length of the optimal path at infinite
disorder. This critical disorder appears to be the state of the
system with maximum fluctuations from optimal behavior. As
previously understood from literature, the scaling of the sys-
tem in the strong disorder limit are given by the optimal path
exponent dopt = 1.22. Likewise, we find a scaling collapse of
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the system in the strong disorder regime using this exponent,
in particular, the collapse is obtained by scaling the fidelities
by L1/dopt

. Finally, an additional curious observation is a sys-
tematic decrease in the bond current fidelity in the crossover
regime between the weak and strong disorders, which, in fact,
is also the global minimum of the fidelity for all system sizes.
This appears to be a feature of the crossover regime which
demands further investigation.

VI. DISCUSSION AND CONCLUSION

In this paper, we have demonstrated a framework to
determine the disordered Green’s functions for RRNs. We
investigate two formulations, a perturbative framework that
can be used to compute system properties in the weak dis-
ordered regime and a novel exact (dyadic) framework that
can be used to compute quantities at even arbitrarily large
disorder strengths. We demonstrated the equivalence of the
two frameworks in the weak disorder regime. In addition,
we obtained explicit Green’s functions for arbitrary disorder
strength—with analytically tractable expressions—for lattices
with small number of disordered bonds. We also demon-
strated an exact match between numerical and analytical
predictions for nodal voltage fluctuations in such lattices with
small numbers of impurities (one, two, and three). We have
also explicitly demonstrated the generalization of the dyadic
framework for the case with a large number of disordered
bonds in the system; however, in this case, the explicit compu-
tations become more tedious to perform. Finally, we proposed
a novel order parameter, named the bond current fidelity,
which measures the deviation of the currents from the opti-
mal path given a disorder configuration. We found that this
order parameter is able to distinguish between the weak and
strong disorder regimes of the system, and finite size scaling
estimates are consistent with behavior obtained in previous
studies.

There are several directions for further investigation that
our study suggests. In this study, we have focused on fun-
damental observables relevant to experiments, i.e., nodal
voltages and bond currents, and our theoretical predictions
for the ensemble averages would be interesting to match
with steady-state experimental observations. As RRNs with
exponential disorder are paradigmatic systems in condensed
matter and statistical physics [5,20,28,31,48], our results have
interesting implications for the characteristics of systems with
wide disorder distributions. In particular, it would be very in-
teresting if our dyadic bond formulation can be systematically
computed in a manner that sheds more light on the optimal
path exponent (≈ 1.22 in two dimensions). In this endeavor,
it appears that the statistics of the determinant in Eq. (44) are
of crucial importance, and a systematic study of the growth
of these determinants could lead to an understanding of the
behavior of optimal paths in such systems.

We also draw an interesting connection of our work to the
paradigmatic model of wave localization in condensed matter
systems—Anderson localization. While the current localiza-
tion we observe is a classical and nonwave phenomena—the
localization only occurs due to the geometric properties of
the network, like in a classical percolation model—we note
that a mathematical correspondence can be drawn between

the lattice Green’s function and a tight-binding Hamiltonian
[64,75,76]. Thus, we suspect that properties of disordered
Green’s functions (as analytically computed through our
perturbative and exact methods) could explain eigenvector lo-
calization in Anderson Hamiltonians with bond-disorder (also
known as off-diagonal disorder [77]).

Further, the results presented in this paper are easily gener-
alizable to any underlying disorder, not just exponential, and it
would be interesting to study how the nature of the underlying
disorder changes the behavior studied here. In addition, it
should be possible to use the scheme of constructing a dis-
ordered Green’s function as described in Sec. IV, to construct
any arbitrary electrical circuit, such as a bipartite lattice with
two types of bonds, a context frequently relevant in condensed
matter systems. There are also intriguing connections to be
made to the eigenvalues of disordered Laplacians (which
could represent Hessian matrices) through the study of their
resolvents, which are fundamental quantities of interest in
stability studies of random media.

Finally, in the steady-state regime of the network, we
studied the moments of the voltages and bond currents and
demonstrated techniques to compute them at arbitrary orders
exactly. However, given the addition of another fluctuating
degree of freedom (for instance, in studying transient proper-
ties of such networks), one could investigate the differences
between quenched and annealed disorder by choosing to
perform the disorder averaging at the level of the moment-
generating function or the cumulant generating function,
respectively. In particular, quenched disorder may also require
the need to use the replica trick [78]. Thus, it would be
interesting to check if the methods developed in this paper
can controllably demonstrate noteworthy differences between
quenched and annealed disorder in the approach to steady
state of such disordered systems.
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APPENDIX A: EXACT GREEN’S FUNCTIONS FOR FOUR
DISORDERED BONDS

Here we present exact disordered Green’s functions for
four disordered bonds. For this case we have the following
quartic polynomial in g̃ as the denominator of the coefficients:

D[c[4]] = g̃1g̃2g̃3g̃4 − g̃3g̃4
(
G̃0

12

)2 − g̃2g̃4
(
G̃0

13

)2

− g̃2g̃3
(
G̃0

14

)2 − g̃1g̃4
(
G̃0

23

)2

− g̃1g̃3
(
G̃0

24

)2 − g̃1g̃2
(
G̃0

34

)2 − 2
(
g̃4G̃0

12G̃0
13G̃0

23

+ g̃3G̃0
12G̃0

14G̃0
24 + g̃2G̃0

13G̃0
14G̃0

34 + g̃1G̃0
23G̃0

24G̃0
34

)
+ (

G̃0
12

)2(G̃0
34

)2 + (
G̃0

13

)2(G̃0
24

)2 + (
G̃0

14

)2(G̃0
23

)2
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− 2
(
G̃0

12G̃0
13G̃0

24G̃0
34 + G̃0

12G̃0
14G̃0

23G̃0
34

+ G̃0
13G̃0

14G̃0
23G̃0

24

)
. (A1)

We also compute the numerators of the coefficients, which are
cubic polynomials in g̃. Thus, we have

N
[
c[4]

11

] = g̃2g̃3g̃4 − g̃4
(
G̃0

23

)2 − g̃3
(
G̃0

24

)2 − g̃2
(
G̃0

34

)2

− 2G̃0
23G̃0

24G̃0
34, (A2)

N
[
c[4]

22

] = g̃1g̃3g̃4 − g̃4
(
G̃0

13

)2 − g̃3
(
G̃0

14

)2 − g̃1
(
G̃0

34

)2

− 2G̃0
13G̃0

14G̃0
34, (A3)

N
[
c[4]

33

] = g̃1g̃2g̃4 − g̃4
(
G̃0

12

)2 − g̃2
(
G̃0

14

)2 − g̃1
(
G̃0

24

)2

− 2G̃0
12G̃0

14G̃0
24, (A4)

N
[
c[4]

44

] = g̃1g̃2g̃3 − g̃3
(
G̃0

12

)2 − g̃2
(
G̃0

13

)2 − g̃1
(
G̃0

23

)2

− 2G̃0
12G̃0

13G̃0
23, (A5)

N
[
c[4]

12

] = g̃3g̃4G̃0
12 + g̃4G̃0

13G̃0
23 + g̃3G̃0

14G̃0
24

+ G̃0
13G̃0

24G̃0
34 + G̃0

14G̃0
23G̃0

34 − (
G̃0

12

)2G̃0
34, (A6)

N
[
c[4]

13

] = g̃2g̃4G̃0
13 + g̃4G̃0

12G̃0
23 + g̃2G̃0

14G̃0
34

+ G̃0
12G̃0

24G̃0
34 + G̃0

14G̃0
23G̃0

34 − (
G̃0

13

)2G̃0
24, (A7)

N
[
c[4]

14

] = g̃2g̃3G̃0
14 + g̃3G̃0

12G̃0
24 + g̃2G̃0

13G̃0
34

+ G̃0
12G̃0

23G̃0
34 + G̃0

13G̃0
23G̃0

24 − (
G̃0

14

)2G̃0
23, (A8)

N
[
c[4]

23

] = g̃1g̃4G̃0
23 + g̃4G̃0

12G̃0
13 + g̃1G̃0

24G̃0
34

+ G̃0
12G̃0

14G̃0
34 + G̃0

13G̃0
14G̃0

24 − (
G̃0

14

)2G̃0
23, (A9)

N
[
c[4]

24

] = g̃1g̃3G̃0
24 + g̃3G̃0

12G̃0
14 + g̃1G̃0

23G̃0
34

+ G̃0
12G̃0

13G̃0
34 + G̃0

13G̃0
14G̃0

23 − (
G̃0

13

)2G̃0
24, (A10)

N
[
c[4]

34

] = g̃1g̃2G̃0
34 + g̃2G̃0

13G̃0
14 + g̃1G̃0

23G̃0
24

+ G̃0
12G̃0

13G̃0
24 + G̃0

12G̃0
14G̃0

23 − (
G̃0

12

)2G̃0
34. (A11)

APPENDIX B: DISORDER-AVERAGED COEFFICIENTS
FOR NODAL VOLTAGES

We have the following integrals for the disorder-averaged
coefficients used to compute the nodal voltages—for one and
two disordered bonds,

I [1]
11 ≡

∫
c[1]

11 ζ1 f (ζ1) dζ1, (B1a)

I [2]
11 ≡

∫∫
c[2]

11 ζ1 f (ζ1) f (ζ2) dζ1 dζ2, (B1b)

I [2]
22 ≡

∫∫
c[2]

22 ζ2 f (ζ1) f (ζ2) dζ1 dζ2, (B1c)

I [2]
12 ≡

∫∫
c[2]

12

√
ζ1ζ2 f (ζ1) f (ζ2) dζ1 dζ2, (B1d)

where each of the integrals are integrated over the limits
0 to 1 − e−a. We also have I [2]

21 = I [2]
12 by symmetry. The

disorder-averaged coefficients for three bonds can also be
written similarly and are not provided here explicitly in view
of conciseness.

Finally, we also provide the four-point disorder average co-
efficients useful for calculating the nodal fluctuations—again,
for one and two disordered bonds,

J [1]
1111 ≡

∫ (
c[1]

11

)2
ζ 2

1 f (ζ1) dζ1, (B2a)

J [2]
1111 ≡

∫∫ (
c[2]

11

)2
ζ 2

1 f (ζ1) f (ζ2) dζ1 dζ2, (B2b)

J [2]
2222 ≡

∫∫ (
c[2]

22

)2
ζ 2

2 f (ζ1) f (ζ2) dζ1 dζ2, (B2c)

J [2]
1212 ≡

∫∫ (
c[2]

12

)2
ζ1ζ2 f (ζ1) f (ζ2) dζ1 dζ2, (B2d)

J [2]
1122 ≡

∫∫
c[2]

11 c[2]
22 ζ1ζ2 f (ζ1) f (ζ2) dζ1 dζ2, (B2e)

J [2]
1112 ≡

∫∫
c[2]

11 c[2]
12

√
ζ 3

1 ζ2 f (ζ1) f (ζ2) dζ1 dζ2, (B2f)

J [2]
2212 ≡

∫∫
c[2]

12 c[2]
22

√
ζ1ζ

3
2 f (ζ1) f (ζ2) dζ1 dζ2, (B2g)

where the integrals are again over the limits 0 to 1 − e−a. The
rest of the disorder-averaged coefficients in J [n]

αβγ δ (n = 1, 2)
are all equal to the entries in the above set by symmetry. The
coefficients for higher n can be constructed similarly.
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