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Floquet theory is an indispensable tool for analyzing periodically driven quantum many-body systems.
Although it does not universally extend to classical systems, some of its methodologies can be adopted in
the presence of well-separated timescales. Here we use these tools to investigate the stroboscopic behaviors
of a classical spin chain that is driven by a periodic magnetic field and coupled to a thermal reservoir. We
detail and expand our previous work: we investigate the significance of higher-order corrections to the classical
Floquet-Magnus expansion in both the high- and low-frequency regimes; explicitly probe the evolution dynamics
of the reservoir; and further explore how the driven system and the reservoir synchronize with the applied field at
low frequencies. In line with our earlier results, we find that the high-frequency regime is characterized by a local
Floquet-Gibbs ensemble with the reservoir acting as a nearly-reversible heat sink. At low frequencies, the driven
system rapidly enters a synchronized state, which can only be fully described in a global picture accounting
for the concurrent relaxation of the reservoir in a fictitious magnetic field arising from the drive. We highlight
how the evolving nature of the reservoir may still be incorporated in a local picture by introducing an effective
temperature. Finally, we show that generic local-dissipation models that account for the influence of the reservoir
on the driven system phenomenologically through Markovian dissipative equations of motion can generally not
reproduce the rich behavior that our microscopic simulations reveal. In particular, such models prove insufficient
to account for the suppression of overall energy absorption that is induced by the here observed synchronization
between driven system and reservoir.
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I. INTRODUCTION

Floquet’s theorem states that any homogeneous system of
linear differential equations with time-periodic coefficients
can be mapped to an autonomous system by means of a
linear basis transformation [1]. This transformation carries the
same periodicity as the original system and can be chosen to
become the identity at integer multiples of the period. When
applied to the Schrödinger equation this theorem implies that
any periodically driven quantum system is connected by a
time-periodic unitary transformation to an undriven system
whose dynamics is stroboscopically equivalent [2–6]. Classi-
cal equations of motion, however, are generally nonlinear and
there is indeed no intuitive counterpart to Floquet’s theorem
in Hamiltonian mechanics, as can be seen from the following
argument [7]. Any autonomous classical system with one de-
gree of freedom is integrable as energy provides the required
conserved quantity. By extension, if it were always possible to
find a time-periodic canonical transformation that renders its
Hamiltonian time independent, any periodically driven sys-
tem with one degree of freedom would be integrable. This
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hypothesis is easily falsified by a counterexample: Kapitza’s
pendulum, for instance, is known to be nonintegrable despite
having only one degree of freedom [8–10]. This observation
seems to leave us with a fundamental gap between quantum
and classical mechanics.

Indeed, driven by recent experimental advances [11], stud-
ies of periodically driven many-body systems have so far
mainly focused on the quantum regime, where Floquet the-
ory has exposed a rich landscape of phenomena including
sharp notions of nonequilibrium phases with no static counter-
part [12,13], new perspectives on many-body quantum chaos
[14], and the possibility of engineering specific band struc-
tures through precisely tunable driving fields [15,16]. Still,
although there is no “classical Floquet theorem,” much of the
methodology used to describe periodically driven quantum
systems, such as the Floquet-Magnus expansion, formally
extends to Hamiltonian systems. It is therefore not a priori
obvious what phenomenology is particular to the quantum
realm. In fact, quantum and classical many-body systems
are alike in that they generically tend to absorb energy
from a periodic drive until they approach a trivial “infinite-
temperature ensemble” [17–20]. Some routes to avoid this
overheating, such as preventing thermalization through many-
body localization [13], draw on quantum effects. Others, like
conservation laws [21], may cause observables to synchronize
thus giving rise to Gibbs ensembles with time-periodic La-
grange multipliers [22], or the high-frequency limit, where
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FIG. 1. Top: System. A chain of L classical spins, l of which
are subject to a uniform periodic magnetic field B(t ) = B(t + τ ).
All spins have nearly isotropic nearest-neighbor interactions, with
small disorder breaking conservation laws. Bottom: Emerging states.
The plots show a comparison between dynamical evolutions of the
system over the time t and predicted equilibrium expectation values
of spatially resolved z magnetization. After a transient phase, both
regimes may be described by effective Gibbs ensembles sampled
via Monte Carlo techniques. For high frequencies, e.g., τ = 0.5,
the driven sites (shaded region) locally see significant evolution.
The reservoir, initialized in a thermal state with zero magnetization,
remains unchanged up to noise beyond a small correlation length.
In contrast, the low-frequency profile, e.g., τ = 10, continues to
spread deep into the reservoir at late times, indicating the global
nature of the emerging steady state. We have set the parameters
L = 2000, � = 40, einitial = −0.66, and δJ = 10−3 and averaged over
N = 8000 initial states and disorder realizations (see Sec. II for
details).

heating rates are typically exponentially suppressed in the
driving frequency [23–27], should, however, be equally ac-
cessible in the classical regime. This paper represents a
contribution to a growing literature oriented around exploring
the phenomenology of classical many-body systems [28–31].
We aim to shed light on the so far relatively unexplored class
of classical periodically driven many-body systems, which is
potentially ripe with interesting physics. Furthermore, we set
out to investigate how the dynamics of such a system can be
stabilized away from the high-frequency limit by coupling to
a large thermal reservoir.

To these ends, we consider a classical spin chain with
nearest-neighbor interactions and weak disorder. A small frac-
tion of this chain, to which we refer as the “system proper,”
is subject to a rotating magnetic field, with the remainder
acting as a “reservoir” (see Fig. 1). Expanding on our previous

work [32], we simulate the full dynamics of this system and
compare its emergent steady states with those predicted by
Gibbs ensembles. This analysis yields three major insights,
which are exposed by the plots of Fig. 1.

First, in the high-frequency regime, the system proper
dissipatively relaxes to a stroboscopic Gibbs ensemble at
the initial temperature of the reservoir, as if being locally
quenched to a new Hamiltonian. During this process, the
reservoir absorbs residual heat while nearly remaining in its
initial equilibrium state. It thus plays the role of a passive
heat sink. The new Hamiltonian of the system proper can be
accurately determined by the lowest orders of the classical
Floquet-Magnus expansion, which is essentially a systematic
method to average over the periodic driving, order by order in
the inverse frequency.

Second, even at low and intermediate frequencies, the sys-
tem proper quickly attains a stroboscopic steady state, which
survives well beyond initial transient behavior and is only
slowly destabilized by residual heating. Since, in contrast to
the high-frequency regime, the driven spins can now follow
the applied magnetic field, this state is characterized by syn-
chronization between the drive and the system proper, which
leads to a drop in its energy density. At the same time, the
state of the reservoir is altered qualitatively as an emerging
magnetization profile spreads out from the driven sites and
eventually covers the entire spin chain. This effect corre-
sponds to a second stage of synchronization, now between
system proper and reservoir, and enables the redistribution
of energy over large spatial distances. From the perspective
of statistical mechanics, it can be understood as a relaxation
process in a rotating reference frame, where the full system
approaches a new Gibbs state. The corresponding effective
Hamiltonian differs from the original one in both the driven
and the undriven parts of the chain. As a result, the effective
temperature of the new Gibbs ensemble can deviate substan-
tially from the initial temperature of the reservoir. Notably,
this mechanism leads to a strong suppression of the overall
energy absorption compared with generic local-dissipation
models that rest on the assumption that the reservoir remains
constantly in its original equilibrium state.

Third, despite being fundamentally different in nature, the
low- and the high-frequency regime are separated only by
narrow crossover on the inverse frequency axis. The onset
of this transition is predominantly determined by the strength
of the interaction between neighboring spins and features a
rapid increase in energy absorption. As the driving frequency
decreases beyond the crossover, the energy density of the
system proper falls off monotonically, while its stroboscopic
steady state smoothly approaches the instantaneous Gibbs
state that is determined by the original Hamiltonian and the
initial temperature of the reservoir.

Our analysis of this phenomenology proceeds as follows.
In Sec. II we define the system and outline the numerical
techniques for both dynamical simulation, and for statistical
sampling of known distributions. In Sec. III we validate these
numerical procedures for the undriven system, where we al-
ready have a firm theoretical footing in the standard results
of statistical mechanics. Here, we set the scene for the main
quantities of interest. In Sec. IV we turn towards our main
program: investigating the periodically driven dynamics of
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a classical many-body system. We approximately construct
ensemble descriptions at both high and low frequencies, going
beyond the leading order analysis of Ref. [32]. We demon-
strate that further corrections are indeed small and consistent
with observed data. In Sec. V we investigate the behavior
of the reservoir itself and further examine the two stages of
synchronization that characterize the low-frequency regime.
We further work out an explicit comparison with a generic
local-dissipation model, where the reservoir is described ef-
fectively through stochastic and dissipative corrections to the
equations of motion of the system proper. In Sec. VI, we
discuss the broader implications of our results along with
perspectives for future research.

II. SYSTEM AND SIMULATION

A. Dynamics

The system under consideration, sketched in Fig. 1, com-
prises a chain of L three-component classical spins S j

normalized such that |S j | = 1. Its Hamiltonian is given by

H(t ) = −
L∑

j=1

S�
j J jS j+1 +

�∑
j=1

B(t ) · S j, (1)

where we assume periodic boundary conditions SL+1 = S1.
The rotating magnetic field B(t ) = (cos(ωt ), sin(ωt ), 0)�,
with period τ = 2π/ω, acts on the sites j = 1, . . . , �, to
which we refer as the system proper. Accordingly, we call
the undriven L − � sites the reservoir. The coupling matrices
are diagonal, Jj = diag[Jx

j , Jy
j , Jz

j ]. To break any exact con-
servation laws constraining the dynamics [33], we choose the
Jα

j independently and identically distributed from a normal
distribution, with mean J which we set equal to 1 throughout,
and variance δJ i.e., Jα

j ∼ N (1, δJ ). To match the dimen-
sions of energies and frequencies, we formally set the reduced
Planck constant h̄ equal to 1, hence the spins being dimension-
less. The equations of motion are determined by the Poisson
bracket {Sα

j , Sβ

k } = δ jkε
αβγ Sγ

j via Hamilton’s equations

dS j

dt
= −{H(t ), S j}. (2)

This rule yields a coupled system of nonlinear differential
equations for the spin degrees of freedom,

dS j

dt
= −� j × S j,

� j = Jj−1S j−1 + JjS j+1 −
{

B(t ), 1 � j � �

0 otherwise. (3)

If the applied field B were to vanish and all Jj were the iden-
tity matrix, the total magnetization M = 1

L

∑L
j=1 S j would

be an exactly conserved quantity. To apply the principles of
statistical mechanics, we would then have to include these
additional conserved quantities through Lagrange multipliers
determined by the initial conditions, and any statistical sam-
pling would have to respect this constraint. We add a small
amount of Gaussian noise to the couplings Jj to preclude such
fine tuning. This disorder breaks all conservation laws, and
even in the absence of driving only energy conservation holds,

but does not significantly affect the macroscopic properties of
the system otherwise.

To fully determine the dynamics, we now specify the initial
conditions for the equations of motion (3). To understand the
general behavior of the system, we take a statistical approach
rather than focusing on individual trajectories, which may be
subject to fluctuations. Our initial states are therefore drawn
from a Gibbs ensemble defined by

P0 = e−βH0/Z0,

H0 = −
L∑

j=1

S�
j J jS j+1, (4)

with β being an inverse temperature chosen to fix a specific
initial mean energy density, and Z0 being a normalization con-
stant. With these initial conditions, the system would remain
statistically invariant under its time evolution if no magnetic
field were applied. Hence, when the field is applied to the
system proper, the dynamics of the reservoir are locally in
equilibrium and we do not need to account for quenchlike
effects. We expect both the slow and fast driving regimes
to result in minimal energy absorption, and that the state of
the reservoir is only gradually modified. In the following,
unless otherwise indicated, all presented results correspond
to averages over both initial conditions and realizations of
disorder for Jj .

B. Numerical techniques

As given by Eqs. (3), the instantaneous evolution of each
spin S j is a rotation in an effective magnetic field determined
by the on-site magnetic field and the field from its nearest
neighbors S j−1 and S j+1. The dynamics of the spin chain may
therefore be efficiently simulated using alternated updating
[34]. The basic idea of this approach is to split the spin chain
into two interleaving subchains A and B comprising the even
and odd sites, respectively. The local field for each spin in A
depends only on those in B, and vice versa, and we can up-
date these fields alternately. More precisely, the technique we
implement is drawn from Refs. [34,35] and uses the simplest
Suzuki-Trotter decomposition of the time-evolution operator
from time t to t + δt , U (t + δt, t ). That is, we have

U (t + δt, t ) = e
δt
2 LA

t+δt/2 eδtLB
t+δt/2 e

δt
2 LA

t+δt/2 + O(δt3). (5)

The Liouville operator LA/B
t+δt/2 generates rotations on the sub-

chain A or B in the effective field determined from subchain
B or A at time t + δt/2. The error of this decomposition is
bounded by terms of order δt3. As the propagation over a time
step δt is now formulated solely in terms of rotations, the spin
normalization is manifestly preserved by this procedure.

We will make extensive use of Monte Carlo (MC) tech-
niques to sample from particular Gibbs distributions. We use
standard Metropolis-Hastings sampling, where a site is chosen
randomly with equal probability, and a proposed update of the
spin at the particular site pointing in a new direction chosen
uniformly from the surface of the unit sphere. The proposed
update is then accepted if the energy of the new configuration
decreases, i.e., �E � 0, or accepted with probability e−β�E

if �E > 0. As the number of proposals accepted or rejected
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increases, this procedure is asymptotically guaranteed to sam-
ple from the Gibbs ensemble [36].

III. UNDRIVEN SYSTEM

To set the stage for our main investigations and to confirm
the validity of our numerical approach, we first consider the
undriven system, reproducing results from Ref. [34]. That is,
we set B = 0 so that the Hamiltonian of the entire spin chain
is given by H0 of Eq. (4). We initialize the entire spin chain in
a random state with a fixed mean energy and zero total mag-
netization, which then evolves under the equations of motion
(3). The fundamental postulate of statistical mechanics asserts
that time averages and ensemble averages are equivalent in
an ergodic system. This equivalence extends to all moments
of observables, and therefore their full distributions. In a
canonical ensemble with inverse temperature β the probability
distribution of any observable Ô = Ô({S j}) reads

Pcan(O) = 1

Z0

∫
dS1 · · · dSLe−βH0δ[O − Ô({S j})], (6)

with Z0 being a normalization, which sums the probability of
all configurations compatible with Ô = O. Note that we use
the canonical ensemble as a matter of convenience throughout.
This approach should be equivalent to a microcanonical one
up to finite-size corrections.

To confirm that the undriven spin chain satisfies ergodicity,
we compute the full probability distributions of macroscopic
observables over a single trajectory and compare them with
the corresponding ensemble distribution (6). For an arbitrary
observable Ô, we may sample at times t1, . . . , tN , and write
the binned probability density with bin width ε as

PT (O) = 1

N

N∑
n=1

ε[O − Ô({S j (tn)})], (7)

where the sample times are given by tn = t0 + n�t , choosing
t0, �t , and N sufficiently large such that the result is insen-
sitive to specific values. The function ε counts the number
of points along the trajectory, where the value of Ô lies within
the window of width ε centered at O. In other words, ε is an
approximation of a delta function, formally given by

ε[x] = 1

ε

{
1, −ε/2 � x � ε/2
0 otherwise. (8)

MC sampling is a numerical technique that generates sam-
ples in the correct proportions as determined by a given
probability distribution, without having to exhaustively ex-
plore the phase space of the system. We may therefore
construct the ensemble distribution (6) for any observable by
using M MC samples as outlined in Sec. II B. Specifically, the
equivalent of Eq. (7) for the Gibbs ensemble is

Pcan(O) = 1

M

M∑
m=1

ε

[
O − Ô

({
S(m)

j

})]
, (9)

where S(m)
j is the mth MC sample. We note that the MC algo-

rithm samples from the canonical ensemble, and due to energy
conservation the dynamical trajectory is sampling from the
microcanonical ensemble. However, when comparing local

observables involving only degrees of freedom of the first
� � L sites, even the energy density will fluctuate, and the
equivalence of ensembles implies that all results should be
identical up to finite-size effects.

In Fig. 2, we show that single-trajectory and ensemble
distributions are in excellent agreement for the representative
observables

m = 1

�

�∑
j=1

S j,

e = − 1

� − 1

�−1∑
j=1

S�
j J jS j+1, (10)

i.e., the magnetization and energy density of the system
proper. This result confirms that the undriven system behaves
ergodically even if δJ = 10−3 is small. For the isotropic
chain, δJ = 0, we may also compute the exact probability
distribution for the energy density at large �. We here consider
open boundary conditions, which are equivalent to periodic
boundary conditions up to finite-size corrections. First, the
partition function is given by

Z =
∫

dS1 · · · dS� eβ
∑�−1

j=1 S j ·S j+1 , (11)

where dS j = 1
4π

sin θ jdθ jdφ j indicates integration over the
spherical angles of each spin. Rewriting this expression in
terms of the angle between adjacent spins in the chain, we
find

Z =
[

1

2

∫ 1

−1
d cos θeβ cos θ

]�−1

=
(

sinh β

β

)�−1

. (12)

Hence, the free energy density of the isotropic chain at inverse
temperature β is given by [37]

f (β ) = − 1

β(� − 1)
ln Z = − 1

β
ln

sinh β

β
. (13)

We may thus calculate the probability distribution for the
energy density e of Eq. (10) as

P(e) = 1

Z

∫
dS1 · · · dS�eβ

∑�−1
j=1 S j ·S j+1

×
∫ ∞

−∞

dz

2π
eiz(e(�−1)+∑�−1

j=1 S j ·S j+1 ), (14)

where we have used the Fourier representation of the Dirac
delta function appearing in Eq. (6). Employing the method of
steepest descent [38], this integral may be approximated as

P�(e) = Q√
(� − 1)|g′′(z∗)|e−(�−1)g(z∗ ), (15)

where Q is a normalization constant, and β is chosen to fix the
mean energy density 1

β
− coth β = 〈e〉. The function g(z) =

(β − z) f (β − z) + ez determines the saddle point, which is
given by z∗ such that g′(z∗) = 0. Figure 2(a) shows that
the exact distribution (15) agrees well with both numeri-
cal approaches. This result confirms weak disorder δJ � 1
eliminates conservation laws but has no visible effect on the
distributions of macroscopic observables.
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FIG. 2. Undriven system. Histograms showing PT (O) of Eq. (7) determined from one trajectory with N = 64 000 samples (crosses),
compared with Pcan(O) of Eq. (9), where each Monte Carlo curve is binned from M = 64 000 samples. The shown observables are (a) energy
density, (b) x magnetization, (c) y magnetization, and (d) z magnetization. For all plots, we have set L = 2000, � = 40, and δJ = 2×10−3, and
chosen the energy density of the entire system einitial = −0.66, which implicitly fixes the inverse temperature β for the MC simulation. The
exact result (dashed line) of Eq. (15) is also shown in (a).

IV. DRIVEN SYSTEM

Having established that the undriven system is ergodic, we
now turn to the effect of periodic driving. Our basic expecta-
tions are as follows: at high frequencies, the driving “averages
out” and the dynamics are described by the Hamiltonian with
no applied field H0 of Eq. (4); at very low frequencies, the
system relaxes to its instantaneous Gibbs state. Here, we de-
velop these expectations into quantitative descriptions of the
two regimes, which we show to predict the behavior of the
system over a remarkably wide range of frequencies [32]. We
note that, for the driven system, we use the definition

e = − 1

� − 1

�∑
j=1

S�
j J jS j+1 + 1

�

�∑
j=1

B(t ) · S j (16)

for the energy density of the system proper, while the magne-
tization density is still defined as in Eq. (10).

A. High frequency

Intuitively, the physics at high frequencies should be well
approximated by the averaged Hamiltonian. This intuition is
captured by the Floquet-Magnus expansion. This technique
proceeds by assuming that a time-independent generator for

the stroboscopic dynamics does exist, and then constructs it
order by order in the driving period [39]. The Floquet-Magnus
expansion was originally devised for linear systems, and is
expansively used for the description of periodically driven
quantum systems. It can, however, be adapted to classical
Hamiltonian systems, whose dynamics are nonlinear, by for-
mally treating the Poisson bracket as a linear operator. That is,
we write the equations of motion for a phase-space observable
of the isolated system proper, Ô(S1, . . . , S�), in the form

dÔ(t )

dt
= LH (t )Ô(t ), (17)

where LH (t )· = −{H (t ), ·} denotes the Liouville operator and

H (t ) = −
�−1∑
j=1

S�
j J jS j+1 +

�∑
j=1

B(t ) · S j (18)

is the Hamiltonian of the driven system proper. If the Floquet
theorem were to hold, the formal solution of Eq. (17) at t = nτ

would take the form

Ô(nτ ) = enτLHF Ô(0), (19)

where HF would be the Floquet Hamiltonian. While such an
object does not exist in general, it can still be perturbative
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constructed close to the infinite frequency limit τ → 0, where
HF → 1

τ

∫ τ

0 dtH (t ). To this end, we introduce the dimension-
less time s = t/τ and make the ansatz

Ô′(s) = Ô(sτ ) = eLK (s) Ô′(s), (20)

with 0 � s � 1 and the Magnus Hamiltonian

K (s) =
∞∑

n=0

τ nK (n)(s). (21)

Upon inserting this ansatz into the equation of motion for
Ô′(s) and following the formal steps of the conventional Mag-
nus expansion [2], K (s) can be determined order by order.
Returning to original units then yields the effective Floquet
Hamiltonian

HF = 1

τ
K (t = τ ) =

∞∑
n=0

H (n)
F , (22)

where the first few terms are given by

H (0)
F = 1

τ

∫ τ

0
dt H (t ),

H (1)
F = 1

2!τ

∫ τ

0
dt1

∫ t1

0
dt2 {H (t1), H (t2)},

H (2)
F = 1

3!τ

∫ τ

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

× {H (t1), {H (t2), H (t3)}}
+ {H (t3), {H (t2), H (t1)}}. (23)

This expansion can in general only be expected to be
asymptotic [40–42], and one usually truncates the sum in
Eq. (22) after the first few terms. Evaluating the first two
expressions explicitly, we find

H (0)
F = −

L∑
j=1

S�
j J jS j+1,

H (1)
F = − 1

ω

�∑
j=1

′(
1

2
Sz

j + ŷ · (� j × S j )

)
, (24)

where we have introduced the notation
∑�

j=1
′

meaning that
summation is restricted to terms only including spins living
on sites 1, . . . , �, with all other terms being set to zero. Noting
that H (0)

F is equal to the Hamiltonian of the initial ensemble
in Eq. (4), we must consider at least the first order in τ of
the Floquet-Magnus expansion to observe deviations from the
initial state. In our previous work the corrections from H (1)

F
were observable and consistent with the true dynamics for τ �
1 [32].

In general, we may write

H (n)
F = h(n)

SB + h(n)
MB, (25)

where h(n)
SB accounts for single-body terms, and h(n)

MB accounts
for many-body terms. Accordingly,

h(1)
SB = − 1

2ω

�∑
j=1

′
1

2
Sz

j,

h(1)
MB = − ŷ

ω
·

�∑
j=1

′

� j × S j, (26)

where again sums are restricted to terms only involving spins
on the sites 1, . . . , �. It is interesting to ask if including higher-
order corrections from H (2)

F improves the results of Ref. [32]
further. Calculating H (2)

F = h(2)
SB + h(2)

MB yields

h(2)
SB = 1

2ω2

�∑
j=1

′

Sx
j ,

h(2)
MB = 1

2ω2

�∑
j=1

′{
2x̂ · [� j × (� j × S j )

+ (Jj−1(� j−1 × S j−1) + Jj (� j+1 × S j+1)) × S j]

+ 1

2

(
3�x

jS
x
j + �

y
jS

y
j − Jy

j−1Sz
jS

z
j−1

− Jy
j Sz

jS
z
j+1 − Jz

j−1Sy
j S

y
j−1 − Jz

j S
y
j S

y
j+1

− 3Jx
j−1Sz

jS
z
j−1 − 3Jx

j Sz
jS

z
j+1

− 3Jz
j−1Sx

j S
x
j−1 − 3Jz

j S
x
j S

x
j+1

)}
. (27)

The single-body terms h(n)
SB constitute the Floquet-Magnus

expansion under the free Hamiltonian Hfree = ∑�
j=1 B(t ) · S j ,

a linear system for which the expansion may be resummed to
yield the effective field of the rotating frame Brot = x̂ − ωẑ
[43]. The many-body terms have more complex structure and
become increasingly nonlocal at each subsequent order.

Assuming that the stroboscopic dynamics of the system
proper is asymptotically equivalent to the autonomous dy-
namics of the associated Floquet system, we may define the
N th-order Floquet-Magnus ensemble by

P(N )
F = 1

Z (N )
F

exp

(
−β

N∑
n=0

H (n)
F

)
, (28)

where Z (N )
F accounts for normalization. As we expect absorp-

tion to be exponentially small in ω at high frequencies [44],
we neglect heating and assume the temperature of the ensem-
ble to be well approximated by that of the initial state defined
by Eq. (4). As may be seen in Fig. 3, including additional
terms in the Magnus ensemble beyond N = 1 produces only
minimal improvement on the previously observed results at
τ = 0.5. We can thus conclude that the two lowest orders
of the Floquet-Magnus expansion are indeed sufficient to de-
scribe the stroboscopic steady state of the system proper, even
well away from the infinite-frequency limit.

B. Low frequency

1. Leading order

The results of the previous section show that the high-
frequency regime can be fully described in a local picture
focusing only on the system proper and treating the reser-
voir as a passive heat sink. To understand the low-frequency
regime, we must adopt a global picture, where both system
proper and reservoir are affected by the driving. This approach
is motivated by the observation that the stroboscopic dynam-
ics of the full system are nearly equivalent to the dynamics of
an autonomous Floquet system for sufficiently small δJ but
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FIG. 3. High-frequency picture. Histogram distributions for τ = 0.5 of the energy density and z magnetization of the system proper, e and
mz, and the z component of the spin at site f = �/4, Sz

�/4, in the N th-order Floquet-Magnus ensembles as defined by Eq. (28) for N = 0, 1, 2
compared with dynamical evaluations. Statistical ensembles are sampled according to Eq. (9), and the dynamical ones according to Eq. (7)
using multiple trajectories and choosing t0 long enough for observables to relax. For all plots, we have set L = 2000, � = 40, and δJ = 0.02,
and chosen the initial energy density einitial = −0.66, which fixes the inverse temperature β for the MC simulation. Due to the minimal energy
absorption, we sample multiple points from each trajectory after a transient period to improve statistics. Here we sample 4000 points each from
200 separate trajectories, from the interval t = 6000τ to t = 10 000τ . The ensemble histograms were generated from M = 32 000, 64 000, and
32 000 MC samples for P(0)

F , P(1)
F , and P(2)

F , respectively.

arbitrary ω. Specifically, upon introducing the rotating-frame
variables

S̃ j =
⎛⎝ cos(ωt ) sin(ωt ) 0

− sin(ωt ) cos(ωt ) 0
0 0 1

⎞⎠S j, (29)

the equations of motion (3) may be recast as

dS̃ j

dt
= −�̃ j × S̃ j + O(δJ ),

�̃ j = J̄ j−1S̃ j−1 + J̄ j S̃ j+1

− ωẑ +
{

x̂, 1 � j � �

0 otherwise. (30)

Thus, upon neglecting time-dependent terms of order δJ , the
dynamics in the rotating frame are generated by the time-
independent Hamiltonian

Hrot = −
L∑

j=1

(̃
S�

j J̄ j S̃ j+1 + ωẑ · S̃ j
) +

�∑
j=1

x̂ · S̃ j, (31)

where J̄ j = diag[ 1
2 (Jx

j + Jy
j ), 1

2 (Jx
j + Jy

j ), Jz
j ]. This result

shows that the observable Hrot, which plays the role of
a global Floquet Hamiltonian, is nearly conserved in the
rotating frame. At the same time Hrot is a sum of local
densities. Hence, by usual arguments of statistical mechanics,
the entire system should relax to an ensemble of the form

Prot = e−βrotHrot /Zrot. (32)

Note that formally, the system should be described by a mi-
crocanonical ensemble. However, for all local observables
the canonical ensemble above should provide an equivalent
description up to finite-size effects.

The effective inverse temperature βrot may now be deter-
mined from the fact that Hrot is an almost conserved quantity:

assuming that the system has fully relaxed to the ensemble
described by Eq. (32), and that persistent heating has only
minor effects, the mean value of Hrot in the initial state P0

of Eq. (4) should be nearly identical to its mean value in the
steady state of Eq. (32). That is, the equation∫

dS1 · · · dSLHrotP0 =
∫

dS1 · · · dSLHrotProt (33)

implicitly fixes βrot according to standard arguments of statis-
tical mechanics. Upon integrating out the reservoir degrees of
freedom in Eq. (32), we thus find the effective stroboscopic
ensemble

Prot = 1

Zrot
e−βstat

rot Hrot , (34)

where Zrot is a normalization and now the rotating-frame
Hamiltonian is, up to δJ corrections and boundary effects,

Hrot = −
�−1∑
j=1

S̃�
j J̄ j S̃ j+1 +

�∑
j=1

(x̂ − ωẑ) · S̃ j . (35)

As reported in Ref. [32], the ensemble of Eq. (34) yields excel-
lent results for the distribution of system-proper observables at
very low frequencies, e.g., τ = 10. In this limit, the effective
inverse temperature βrot can be regarded as a property of the
reservoir only, since the contributions of the system proper to
both averages in Eq. (33) are negligible for L � l (see Fig. 4,
left panel).

For higher frequencies, however, we find in Fig. 5 that
these ensemble distributions deviate significantly from the
dynamical ones (see also Fig. 4, right panel). Nonetheless, the
ensemble of Eq. (34) reproduces the dynamical full distribu-
tions if βstat

rot is replaced with some βrot = β∗
rot < βstat

rot , which
can be found by fitting the mean energy density of the system
proper. These discrepancies highlight the limitations of the
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FIG. 4. Effective temperature of the rotating-frame ensemble. Left: The full system is initially prepared in a Gibbs state with respect
to its free Hamiltonian H0 and the inverse temperature β = 2.888, which corresponds to einitial = −0.66. We then determine the effective
inverse temperature βrot of the rotating-frame ensemble (32) so that condition (33) is satisfied. The plot has been obtained from M = 8000 MC
samples with δJ = 10−3, � = 20, and different values of L. For L � 1500, the deviation |β − βrot| does not change significantly anymore with
L, which shows that, in the thermodynamic limit, βrot does not depend on the size and properties of the system proper. Right: Energy density
of the system proper as determined from dynamical simulations and the ensembles of Eq. (28) with N = 1 (high frequency), and Eq. (34)
(low frequency), with βrot determined from Eq. (33). Here, we have set einitial = −0.66, � = 20, L = 2000, t = 1000τ , and δJ = 10−3. The
dynamical data correspond to averages over N = 8000 trajectories; the curves for the high- and low-frequency ensembles were obtained from
M = 8000 MC samples. The first-order Floquet-Magnus ensemble reproduces the energy density of the system proper accurately for τ � 1,
while the rotating-frame ensemble is accurate for τ � 7.

assumptions made in writing down Eq. (33), which we explore
further in Sec. V. Still, our results indicate that, even close
to the crossover into the high-frequency regime, the statistics
of the system proper is described by an effective Gibbs state,
which depends only on a single fitting parameter.

2. Higher-order corrections

We have so far discarded corrections in δJ , assuming their
effects are perturbatively small, but did not yet justify this sim-
plification. In the case of high-frequency driving, the Magnus
expansion provides a suitable scheme where corrections are

asymptotically small in τ . This technique can still be applied
in the low-frequency regime to obtain systematic corrections
to the leading-order picture discussed above. To this end, we
observe that the full equations of motion, retaining corrections
neglected in Eq. (30), in the rotating frame are given by

dS̃ j

dt
= − (J̄ j−1S̃ j−1 + J̄ j S̃ j+1) × S̃ j

− (δJj−1(t )̃S j−1 + δJj (t )̃S j+1) × S̃ j

+
{

x̂ − ωẑ, if 1 � j � �,

−ωẑ, if � < j � L

}
× S̃ j, (36)

FIG. 5. Low-frequency picture. Histogram distributions for observables of the system proper at τ = 4: comparing N = 6000 dynamical
evolutions sampled at t = 1000τ , with M = 256 000 MC samples from ensemble of Eq. (34) for both βrot = βstat

rot and best fit β∗
rot . For reference,

the initial ensemble P0 of Eq. (4) is shown in grey. From left to right, the plots show energy density, x-magnetization density, and a two-point
spatial correlation function of the x components of the spins at j = �/4 and j = 3�/4. Here we have set � = 40, L = 4000, δJ = 10−3, and
einitial = −0.66.
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where

J̄ j =

⎛⎜⎝ 1
2

(
Jx

j + Jy
j

)
0

0 1
2

(
Jx

j + Jy
j

)
0

0 0 Jz
j

⎞⎟⎠,

δJj (t ) = �Jj

2

⎛⎝− cos(2ωt ) sin(2ωt ) 0
sin(2ωt ) cos(2ωt ) 0

0 0 0

⎞⎠, (37)

�Jj = Jy
j − Jx

j .

These equations of motion are generated by the Hamiltonian

Hrot (t ) = −
L∑

j=1

[̃
S�

j (J̄ j + δJj (t ))̃S j+1 + ωẑ · S̃ j

]

+
�∑

j=1

x̂ · S̃ j . (38)

We see that time-dependent corrections are formally of or-
der δJ . While we are not in the high-frequency regime, we
nonetheless have an energy scale parametrically smaller than
the driving frequency, ω � δJ . Thus, over the course of one
cycle of the drive, we can average over the dynamics induced
by the oscillating contributions proportional to δJ . That is, we
may employ the Floquet-Magnus expansion in the rotating
frame, which will generate an asymptotic series in powers
of δJ/ω. After some algebra, we find the first-order global
Floquet Hamiltonian in the rotating frame,

Hrot
F = H(0)

rot + H(1)
rot + O(τ 2),

H(0)
rot = −

L∑
j=1

(̃
S�

j J j S̃ j+1 + ωẑ · S̃ j

) +
�∑

j=1

x̂ · S̃ j,

H(1)
rot = − 1

16ω

L∑
j=1

{�Jj�Jj (σ
zS̃ j ) · (σ xS̃ j ) × S̃ j+1

+ �Jj−1�Jj−1(σ zS̃ j ) · (σ xS̃ j ) × S̃ j−1

+ �Jj−1�Jj S̃ j · [(σ zS̃ j+1) × (σ xS̃ j−1)

− (σ xS̃ j+1) × (σ zS̃ j−1)]}, (39)

where we have introduced the matrices

σ z =
⎛⎝1 0 0

0 −1 0
0 0 0

⎞⎠, σ x =
⎛⎝0 1 0

1 0 0
0 0 0

⎞⎠. (40)

It is natural to ask whether we can distinguish these cor-
rections coming from H(1)

rot at the level of nonequilibrium
ensembles. Upon recalling that �Jj ∼ δJ , one would expect
the expansion to have a leading contribution with a prefactor
δJ/ω, which we would expect to be distinguishable in dis-
tributions of observables. For the specific drive considered,
however, we see from Eq. (39) that these corrections vanish
and the leading terms are in fact of order (δJ )2/ω. Hence,
for any practically relevant frequency regime, higher-order
corrections may be safely neglected.

V. NATURE AND ROLE OF THE RESERVOIR

Here we expand on the role that the reservoir plays in
stabilizing the stroboscopic nonequilibrium steady states con-
structed in Sec. IV. We first demonstrate how finite disorder
rapidly causes runaway heating in the bare driven system
away from high frequencies. Coupling a reservoir establishes
a channel for heat transport away from the driven sites.
Thus, at high frequencies, residual heating is compensated
by dissipation with the reservoir acting as a nearly-reversible
heat sink. At low frequencies, however, the system proper
and the reservoir synchronize with the drive on different
timescales. This effect suppresses the net heat uptake of
the entire spin chain and stabilizes a nontrivial steady state
of the system proper at low and intermediate frequencies.
To corroborate this picture, we evaluate spatially resolved
observables and explore the inhomogeneous distribution of
magnetization within the reservoir. To demonstrate the non-
Markovian nature of the reservoir and its role in suppressing
energy absorption in the low-frequency regime, we compare
our results with those obtained for a generic local-dissipation
model in which the reservoir is described phenomenologically
through dissipative corrections to the equations of motion of
the system proper.

A. High-frequency regime

To understand how the reservoir modifies the dynamics,
we calculate the mean energy absorption of the driven system
proper with and without a reservoir. The results of this analy-
sis, which are shown in Fig. 6, suggest that the high-frequency
regime is “universal” in that the leading-order Magnus physics
is insensitive to both weak disorder δJ and the presence of
a reservoir. This behavior can be intuitively understood from
the structure of the Floquet-Magnus expansion discussed in
Sec. IV. To this end, we may divide the Hamiltonian of the
entire spin chain into system-proper and reservoir contribu-
tions:

H(t ) = HS (t ) + HR,

HS (t ) = −
�−1∑
j=1

S�
j J jS j+1 +

�∑
j=1

B(t ) · S j, (41)

HR = −
L∑

j=�

S�
j J jS j+1.

The two lowest-order terms of the Floquet-Magnus expansion
are then given by

H(0)
F = 1

τ

∫ τ

0
dt H(t ) = H0,

H(1)
F = h(1)

F, loc + h(1)
F, int,

h(1)
F, loc = 1

2!τ

∫ τ

0
dt1

∫ t1

0
dt2 {HS (t1), HS (t2)}, (42)

h(1)
F, int = 1

2!τ

∫ τ

0
dt1

∫ t1

0
dt2

× ({HR, HS (t2)} + {HS (t1), HR}).
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FIG. 6. Energy density of driven sites for a closed spin chain (left, � = 40) and an open one (right, � = 20, L = 2000). For the dynamical
distributions, due to the symmetric structure of the Hamiltonian, energy density e = 0 corresponds to the “infinite-temperature” ensemble. In
both plots, the strength of the disorder δJ increases from bottom to top, which leads to an increasingly steep rise in energy absorption around
τ ≈ 1 in the closed system. The initial energy density has been chosen as einitial = −0.66, and curves are averages over N = 8000 trajectories
at t = 1000τ .

Here, h(1)
F, loc depends solely on degrees of freedom of the

system proper. Furthermore, since only nearest-neighbor spins
interact, h(1)

F, int depends only on the spins adjacent to the
boundary of the system proper. By extension, since the N th-
order correction H(N )

F involves N nested Poisson brackets, any
modification of the reservoir Hamiltonian a distance M away
from the system proper is suppressed by a factor of τM . As
a result, the reservoir is only significantly affected by the
driving in close vicinity to the system proper at sufficiently
high frequencies. The small tails visible in Fig. 1 arise from
such corrections. Consequently, we can expect net energy
absorption to be small and a local picture to be sufficient for
the description of the system proper in the high-frequency
regime.

B. Low-frequency regime

1. Synchronization of the system proper

To understand the differences between the closed and the
open systems in the low-frequency regime as exposed by
Fig. 6, we may again invoke the rotating-frame picture of
Sec. IV B. In the clean limit δJ → 0, the closed system is
described by the effective Hamiltonian

Hrot = Hint + Hmag with

Hint = −
�−1∑
j=1

S̃ j · S̃ j+1, (43)

Hmag =
�∑

j=1

(x̂ − ωẑ) · S̃ j .

As this Hamiltonian is time independent, one might a priori
expect the system to relax to a Gibbs state with respect to Hrot.
However, besides Hrot, Hmag is a conserved quantity, which is
also a sum of local densities. As such, one would expect a

generalized Gibbs ensemble of the form [45]

PG = 1

ZG
exp(−λintHint − λmagHmag), (44)

where ZG accounts for normalization, and the Lagrange mul-
tipliers λint and λmag are determined by the initial conditions.
Since we sample from an isotropic initial state, we must have
λmag = 0 so that also the ensemble (44) becomes isotropic;
that is, its mean magnetization density vanishes. The mean
magnetization density of the closed system is zero, and re-
mains so in the laboratory frame. Reintroducing the disorder
formally breaks all conservation laws and induces slow heat-
ing. However, since the rotational symmetry of the system
is preserved on average, we can still expect that 〈m〉 = 0
on the relevant timescales. That is, the closed system does
not synchronize with the drive. This expectation is indeed
confirmed by our numerical results shown in Fig. 7, where
residual oscillations can be attributed to the finite sample size
and the disorder for details see Appendix A).

Once the reservoir is included, all local conservation laws
of the system proper are broken and the full system is de-
scribed by a rotating-frame Hamiltonian Hrot that features an
inhomogeneous magnetic field [see Eq. (31)]. As a result,
even for δJ → 0, there are no obvious conserved quantities
other than Hrot. The full system therefore relaxes to the global
Gibbs state (32) on some long timescale, which we will fur-
ther examine in the following section. On a much shorter
timescale, the system proper attains the local Gibbs state
(34), which, in contrast to the generalized Gibbs ensemble
(44) is smoothly connected to the instantaneous equilibrium
state of the adiabatic limit τ → ∞. It further gives rise to
a finite mean magnetization in the rotating frame, which is
responsible for the drop in the mean energy density of the
system proper seen in Fig. 6. In the laboratory frame, the
persistent magnetization of the system proper translates into a
sinusoidally oscillating magnetization density, which may be
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FIG. 7. Lack of synchronization of closed system. Left: Local magnetizations mx and my, compared with the scaled magnetic field
projected onto the appropriate direction, where the scaling factor C = −0.00117 has been fitted. Right: Difference between these functions.
No synchronization is observable over any significant timescale. The observed oscillations result from the finite sample size and, to a lesser
degree, the disorder (see Appendix A for details). Here, we have set τ = 10, � = L = 40, einitial = −0.66, and δJ = 10−3, and simulations are
averaged over N = 4000 trajectories.

observed in Fig. 8. Hence, the open system does synchronize
with the drive up to small corrections, which are of the same
order of magnitude as the remnant oscillations in the closed
system and can likewise be traced back to disorder and finite
sample size. Furthermore, for the parameters chosen in Fig. 8,
the synchronized state is reached after about 100 cycles. For
sufficiently weak disorder, this timescale is much shorter than
that of the residual heating. However, since the local con-
servation laws of the system proper are broken only at its
boundaries, we expect the synchronization time to grow with
�. More specifically, under the plausible assumption that the
densities of magnetization and energy spread diffusively from
the edge spins, the synchronization time would scale as �2.

2. Synchronization of the reservoir

Our understanding of the low-frequency regime rests on
the assumption that in the rotating frame the system relaxes
to the global Gibbs state of Eq. (32) on a timescale that
is well separated from the heating timescale determined by
δJ . Given the form of the z field present in the Hamiltonian
of Eq. (31), one might expect that this relaxation happens
uniformly throughout the reservoir. As a matter of causality,
however, the reservoir spins far away from the driven sites

cannot be instantly affected by the driving. In fact, the in-
teraction strength sets the scale for a finite group velocity
v ∼ J = 1, and any correlation function involving solely de-
grees of freedom separated by a distance r cannot distinguish
between the driven and undriven systems outside of the light
cone r > vt . Hence, the rearrangement of local degrees of
freedom and the large-scale spread of correlations must occur
on different timescales.

To uncover the inhomogeneous nature of the relaxation
process explicitly, we calculate the spatial profiles of the
local observables Sx

j and Sz
j . These data, plotted in Figs. 1

and 9, show that for low-frequency driving the x and z
magnetizations of the system proper have settled to the flat
profiles predicted by the local Gibbs state of Eq. (34) after
around 1000 cycles. At this time, the z-magnetization profile
of the reservoir is neither homogeneous nor stationary. To
understand the mechanism of the subsequent global relaxation
process, we may observe that the z magnetization is a locally
conserved quantity everywhere in the bulk of the reservoir, up
to corrections of order δJ . The breaking of this conservation
law at the boundary of the reservoir, where the system proper
generates an oscillating magnetic field perpendicular to ẑ,
leads to the buildup of a z-magnetization profile at strobo-
scopic times, which spreads into the reservoir. In continuous

FIG. 8. Synchronization of open system. Left: Local magnetizations mx and my, compared with the scaled magnetic field projected onto
the corresponding direction, where the scaling factor A = 0.501 has been fitted. Right: Difference between these functions. There is a transient
period of approximately 100 cycles, after which the system is well synchronized up to small errors, which result from disorder and finite sample
size. Here, we have set τ = 10, � = 40, L = 2000, einitial = −0.66, and δJ = 10−3 and simulations are averaged over N = 800 trajectories.
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FIG. 9. Spatially resolved profiles for Sx
j and Sz

j in the slow-driving regime τ = 10 for � = 40, L = 2000, δJ = 10−3, and einitial = −0.66.
Shown are the dynamical results, averaged over N = 8000 trajectories, for various t , compared with the rotating-frame ensemble Prot of
Eq. (32) averaged over M = 32000 MC samples. Boundaries of the system proper are indicated by vertical dashed lines.

time, this process corresponds to a gradual synchronization
between the system proper and the reservoir. It continues until
the full system has entirely relaxed to the global Gibbs state
of Eq. (32) and the stroboscopic magnetization profile of the
reservoir becomes flat. For δJ = 0, the overall heating rate
would then go to zero. Again, assuming a diffusive spreading
of magnetization and energy densities would imply that the
timescale until the full system has synchronized grows as
L2. For finite disorder, deviations from synchronization in
the system proper cause small heat currents to flow into the
reservoir and elevate its overall energy density on the heating
timescale set by δJ . Notably, as we will see in the next section,
the synchronization mechanism strongly suppresses overall
energy absorption compared with local-dissipation models,
which effectively force the reservoir to remain constantly
in its original equilibrium state, that is, to act as a pure
heat sink.

We may now return to the question of how to determine
the effective inverse temperature βrot for the rotating-frame
ensemble encountered in Sec. IV B. According to statistical
mechanics, this parameter should be fixed by energy conserva-
tion, as indicated by Eq. (33). However, this approach assumes
that the system has fully relaxed to the global Gibbs state (32),
which, as shown by Figs. 1 and 9, is clearly not the case for the
evolution times considered in Fig. 5. It is therefore surprising
that βrot as determined by Eq. (33) yields excellent agreement
between ensemble and dynamical distributions at very low
frequencies [32]. A posteriori, this result may be attributed
to the fact that the virtual magnetic field on the reservoir
and, thus, the amplitude of the emerging magnetization profile
are small for ω � 1. Thus the initial state of the reservoir
does not deviate substantially from its rotating-frame Gibbs
state. Away from very low frequencies, agreement between
ensemble and dynamical distributions may still be achieved
by fitting βrot to the mean energy of the system proper, as we
have shown in Sec. IV B. This observation suggests that the
reservoir locally reaches an effective equilibrium state at its
boundary with the system proper on a much smaller timescale
than that of the global relaxation process.

This reasoning implies an implicit relationship between
the energy density of the system proper, e, and that of the
entire system, e, which can be probed quantitatively. In the

rotating-frame ensemble (32), both e and e are determined
by a single parameter, βrot. If we assume that relaxation to
this ensemble occurs on a much faster timescale than heating,
we may describe the system by an effective rotating-frame
Gibbs state with inverse temperature βrot = βrot (t ) after some
transient period. We may thus sweep βrot through a range of
values and plot the energy densities e(βrot ) against e(βrot ).
This plot can then be compared with the actual values of these
quantities obtained from dynamical simulations. The results
of this analysis are shown in Fig. 10. For τ = 10, the dy-
namical energy densities come fairly close to values predicted
by the effective ensemble for simulation times t � 1000τ . In
this regime, βrot can be accurately determined from energy
conservation, which yields excellent results as exhibited in
Ref. [32]. For τ = 5, Fig. 10 shows that this approach is viable
only for t � 5000τ , which explains why βrot required fitting in
order to achieve agreement between dynamical and ensemble
distributions as seen in Fig. 5 where t = 1000τ .

C. Langevin model

Throughout this paper, we have explicitly modeled the
reservoir and simulated its full microscopic dynamics. We
have, however, not yet considered the option of accounting for
the reservoir by modifying only the equations of the system
proper, which might reduce the computational cost of numer-
ical simulations. Arguably, the simplest way to construct the
dissipative dynamics of the system proper is to replace the
equations of motion for the edge spins with the Langevin
equation [46–48]

dS j

dt
= − � j × S j − γsS j × (S j × � j )

+ h j (t ) × S j, j = 1, �, (45)

and for the remaining sites j = 2, . . . , � − 1 the equations of
motion [Eqs. (3)] remain unchanged. Here, h j (t ) represents
a δ-correlated noise vector 〈hi,α (t )h j,β (t ′)〉 = μsδi jδαβδ(t −
t ′), μs is the noise strength, and γs is a damping con-
stant. To mimic a thermal reservoir at inverse temperature β,
these quantities must obey the fluctuation-dissipation relation
2γs = μsβ.
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FIG. 10. Implicit relationship between the energy density of the total system, e, and the system proper only, e. The green curve is produced
by sweeping βrot and evaluating the energy density of both system proper and total system from the ensemble of Eq. (32). The purple data points
are an average of N = 8000 dynamical evolutions with � = 40, L = 4000, δJ = 10−3, and einitial = −0.66. The number of cycles elapsed is
indicated by arrows.

If the effective magnetic field � j is time independent, the
system proper would relax to the Gibbs state (4) under the
dissipative dynamics generated by Eq. (45). One might now
include the driving by adding the on-site magnetic field B(t )
to the effective field � j . However, given our results so far,
we expect that this modification will invalidate the basic as-
sumptions underpinning Langevin equation (45). Specifically,
the Markovian limit, i.e., δ-correlated noise, is realized only
if the reservoir constantly remains in its initial equilibrium
state and its correlation functions decay fast on the obser-
vational timescale. As seen in Figs. 1 and 9, however, the
full dynamical simulation suggests that, even for L → ∞, an
ever-growing region of the reservoir departs from its initial
state while correlations with the system proper build up con-
tinuously. One should therefore not expect a simple Langevin
model with additively incorporated driving to reproduce the
dynamics of the system proper accurately, at least beyond
the limit of ultralow frequencies, which is characterized by
relaxation to an instantaneous Gibbs state.

To corroborate this expectation, we simulate the Langevin
model defined by Eqs. (3) and (45) for the bulk and the bound-
aries of the system proper, respectively; that is, the driving
is incorporated by adding B(t ) to � j as described above.
To this end, we follow the numerical approach of Ref. [46],
which still relies on the alternated updating algorithm de-
scribed in Sec. II B. The Suzuki-Trotter decomposition of the
time-evolution operator is now given by

U (t + δt, t ) = e
δt
2 LD

t+δt/2 e
δt
2 LA

t+δt/2 eδtLB
t+δt/2

× e
δt
2 LA

t+δt/2 e
δt
2 LD

t+δt/2 + O(δt3), (46)

where the operator LD
t+δt/2 describes the damping acting on

the boundary spins, i.e., the term proportional to γs in Eq. (45).
The stochastic magnetic fields are obtained from the for-
mula hi,α (t ) = η

√
μs/δt , where η is a random variable that

is independently sampled from a standard normal distribution
N (0, 1) for every field component i = x, y, z, every boundary
spin α = 1, �, and every time step δt . The stochastic fields are
then added to the systematic fields �1 and ��, which enter the
Liouville operators LA|B

t+δt/2. Note that the damping operator
LD

t+δt/2 does not directly depend on the stochastic fields.

Using the method described above, we calculate the mean
energy density of the driven system proper as a function
of the driving period τ and the exposure time t , where the
system is initially prepared in a Gibbs state with respect to
the inverse temperature β and the free Hamiltonian H0 =
−∑�−1

j=1 ST
j J jS j+1. The results of this analysis, which are

shown in the first row of Fig. 11, reveal clear qualitative
differences between the Langevin model and the Hamil-
tonian model that we have considered before. First, the
high-frequency regime, which is characterized by a strong
suppression of energy absorption for τ � 2 in the Hamiltonian
model, is not reproduced by the Langevin model at all; instead
the system proper seems to relax to a stroboscopic steady
state, which continuously approaches its instantaneous Gibbs
state as τ increases. Second, while in both models the mean
energy density of the system proper drops below its initial
value at low frequencies, which indicates synchronization
between the drive and the system proper, disorder-induced
heating persists for τ � 2 in the Hamiltonian model. By con-
trast, the stroboscopic energy density of the system proper
becomes time independent in the Langevin model at suffi-
ciently long times. Notably, these observations persist even
when the damping constant γs, which is the only parameter of
the Langevin model that does not have a direct correspondent
in the Hamiltonian model, is of the same order of magnitude
as the disorder strength δJ . However, we note that one would
naturally expect γs to be of the same order of magnitude
as the interaction strength between neighboring spins which
determines the rate of energy exchange between the system
proper and the reservoir. Following this argument, we should
set γs � 1 for a fair comparison.

For an even more striking comparison, we now consider the
total energy absorption �E (t ). For the Hamiltonian model,
this quantity can be found directly from the Hamiltonian of
the full system H(t ) as

�E (t ) = H(0) − H(t ). (47)

In the Langevin model, �E (t ) can be deter-
mined by integrating the rate of energy absorption,
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FIG. 11. Hamiltonian vs Langevin model. First row: Mean energy density of the system proper as a function of the driving period τ for
different values of the exposure time t . Second row: Total energy absorption as a function of τ for different values of t . The first column
corresponds to the Hamiltonian model with � = 20, L = 2000, and einitial = −0.66. The plots in the second column were obtained for a
Langevin model with � = 20 and β = 2.888, which corresponds to the equilibrium energy density eeq = −0.66. The damping constant cannot
be directly inferred by comparison with the Hamiltonian model. However, it is plausible to assume that this parameter should be of the
same order of magnitude as the strength of the interaction between adjacent spins. Therefore, we have set γs = 1 in the second column. For
completeness, we show in the third column the same plots as in the second one for γs = 5 × 10−2, i.e., a value of the damping constant that
is comparable with the disorder strength. For all plots, we have set δJ = 2 × 10−2 and averaged over N = 8000 trajectories corresponding to
different initial conditions and realizations of the disorder and the noise.

that is,

�E (t ) =
∫ t

0
ds

〈
d

ds
H (s)

〉
0

= �

∫ t

0
ds Ḃ(s) · 〈m〉0

= �ω

∫ t

0
ds [〈my〉0 cos(ωs) − 〈mx〉0 sin(ωs)], (48)

where 〈· · · 〉0 indicates the average over initial states and re-
alizations of the disorder and the noise. The corresponding
results are plotted in the second row of Fig. 11. Besides the
absence of the high-frequency plateau in the Langevin model,
we find that the total energy absorption is increased by one
order of magnitude for γs = 1 and still by a factor of 2 for
γs = 5 × 10−2 compared with the Hamiltonian model. This
observation confirms that the synchronization between system
proper and reservoir, which, as discussed in Sec. V B 2, is in-
dicated by a gradual buildup of a magnetization profile on the
reservoir in the Hamiltonian model, and cannot be reproduced
in the Langevin model, where the reservoir is assumed to be
constantly in thermal equilibrium, does indeed substantially
suppress the absorption of energy from the drive.

VI. PERSPECTIVES

The central aim of this paper was to shed light on the
physics of classical many-body systems that are subject to
periodic driving while being coupled to a large reservoir.
To make progress in this direction, we have modeled both
the driven system and the reservoir as spin chains with
nearest-neighbor interactions and weak disorder. Since the full
Hamiltonian dynamics of this setup can be simulated exactly
at moderate numerical cost, we were able to avoid the use of

dissipative equations of motion that account for the reservoir
in a phenomenological or approximate way. While some of
our more quantitative results may be contingent on the specific
setting we have considered, we expect our main insights to be
representative for a broader class of systems. In particular, a
high-frequency regime, where energy absorption is strongly
suppressed and the stroboscopic dynamics of the driven sys-
tem is governed by its averaged Hamiltonian, plus leading
corrections obtained from the classical Floquet-Magnus ex-
pansion, should generically exist. Our results corroborate the
natural expectation that, in this regime, the reservoir acts, up to
small perturbations at its boundary with the driven system, as
a nearly-reversible heat sink balancing residual energy uptake
from the drive.

Perhaps more surprisingly, we found that this behavior
changes quite abruptly as the driving frequency decreases
below some threshold value, which is determined by the typ-
ical energy scale of the system and, to a lesser degree, by
the strength of the disorder (see Fig. 6). The system then
enters a crossover regime, which is characterized by a sharp
increase in energy absorption and covers only a small range
of frequencies. Understanding the microscopic mechanism
of this crossover as well as its putative dependence on the
dimensionality of the system, the nature of the drive, and the
range of interactions, provides an intriguing and presumably
challenging subject for future research.

Upon further reducing the driving frequency, the system
eventually enters a low-frequency regime, which connects
smoothly to the, most likely universal, quasistatic limit, where
the driven degrees of freedom are constantly described by an
instantaneous equilibrium state. This regime is characterized
by rapid synchronization between the driven system and the
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applied field. Away from the quasistatic limit, a continuous
rearrangement of reservoir degrees of freedom over long dis-
tances takes place. This process is accompanied by the steady
buildup of long-range correlations and the gradual synchro-
nization between the driven system and the reservoir. Here,
we were able to show that this behavior may in fact extend
over a large range of frequencies, which is limited from above
only by the crossover to the high-frequency regime. This anal-
ysis, however, crucially relies on the existence of a rotating
reference frame, where the Hamiltonian of the entire system
is nearly time independent, thus providing a stroboscopi-
cally conserved quantity. Whether or not almost conserved
quantities, which prevent the system from approaching an
infinite-temperature state on a practically long timescale, exist
for more general systems and driving protocols remains an
open question. It is, however, plausible to expect that such
quantities may be constructed at least perturbatively from the
quasistatic limit, where the instantaneous Hamiltonian serves
as an adiabatic invariant. It would then be interesting to ex-
plore whether a qualitatively new type of behavior emerges
between the low-frequency regime and the crossover to the
high-frequency regime and how it can be characterized.

Finally, our work opens an interesting prospect in the area
of open dynamical systems out of equilibrium. As we have
shown in Sec. V, the established Langevin approach to clas-
sical open-system dynamics fails to reproduce the behavior
of the driven system that we observe in our first-principles
simulations. In a wider perspective, our results show that
any attempt to describe the dynamics of the system proper
at intermediate frequencies by means of dissipative equa-
tions of motion would have to give up on the condition
of Markovianity, which rests on the assumption of a nearly
invariant reservoir with fast-decaying correlations on the ob-
servational timescales. For the system we have analyzed here,
this condition can be met only near the quasistatic limit, and
perhaps in the high-frequency regime upon replacing the sys-
tem Hamiltonian with a suitably truncated Floquet-Magnus
Hamiltonian; in the latter case, it may be possible to develop
a classical framework similar to the stochastic-wave-function
method in Floquet representation, which provides a dynami-
cal description for open quantum systems subject to rapidly
oscillating driving fields [49]. For intermediate frequencies,
however, our results strongly suggest that non-Markovian
equations of motion will have to be adopted to describe the
dynamics of periodically driven open systems, presumably
in both the classical and the quantum case. Understanding
whether it is indeed possible to derive such time-evolution
equations, e.g., by using Nakajima-Zwanzig projection-
operator techniques [50–52], and whether they can be cast into
a practically tractable form will require further research. Our
present work provides both a well-defined starting point for
such investigations and a valuable benchmark for their results.

The source code used for all simulations, and all data used
in figures, is freely available [53].
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APPENDIX A: CLOSED SYSTEM REVISITED

We consider the closed system as discussed in Sec. V A.
For δJ = 0, the magnetization vector M = ∑�

j=1 S j behaves
like a single spin and follows the equation of motion

d

dt
M = B(t ) × M. (A1)

For B(t ) = (cos(ωt ), sin(ωt )), 0)T, this differential equa-
tion can be solved exactly and yields a solution of the form
M(t ) = V (t )M(0), where the matrix V (t ) is a quasiperiodic
function of time with frequencies ω and ω± = √

1 + ω2 ± ω.
Thus, the mean magnetization density at the time t is given
by m(t ) = 1

�
V (t )〈M(0)〉0 = 0, where the average of M(0)

vanishes since we sample initial states from an isotropic
ensemble. This result shows that, for sufficiently small δJ ,
remnant oscillations of the magnetization density of the closed
system on observable timescales are an artifact of finite sam-
ple sizes, as we demonstrate explicitly in Fig. 12.

APPENDIX B: ERROR ANALYSIS

The results presented in this paper rely on numerical sim-
ulations and therefore on averages over necessarily finite
samples. To understand the error introduced by finite sampling
quantitatively, we here consider the energy density of the
system proper as a representative example. This quantity is
obtained as follows. We first sample a particular realization
of the disorder from the normal distribution N (1, δJ ) and
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an initial {S j (0)} state of the full system from the thermal
ensemble (4) for given inverse temperature β and system sizes
� and L. The initial state is then evolved for a given time t with
a fixed period τ of the oscillating magnetic field acting on the
system proper. This simulation yields a single sample for the
energy density at the time t ,

êk = e({S j (t )}), (B1)

where {S j (t )} is the evolved state of the full system. Upon
repeating this procedure N times, we obtain the average

e(N ) = 1

N

N∑
k=1

êk . (B2)

At the same time, we can calculate the approximate variance
of the distribution of the energy density,

σ 2
e (N ) = 1

N

N∑
k=1

ê2
k − e2(N ). (B3)

This quantity represents the width of the probability distribu-
tion around the mean, and is not a measure of the deviation
of the finite sum (B2) from its limit for N → ∞. An esti-
mate for the statistical error of the mean itself is obtained
by considering that, for any fixed set of parameters, the êk

−1.5

−1

−0.5

0

0 2 4 6 8 10 12 14
τ = 2π/ω

FIG. 13. Energy density of the system proper after 1000 driv-
ing cycles for L = 2000, � = 20, and δJ = 10−3. Here we have
averaged over N = 1000 trajectories. The error bars have a width
of σ̂e(N )/

√
N and show that errors due to finite sampling are not

qualitatively significant.

represent independent and identically distributed random vari-
ables. Thus, by the central limit theorem, the sum in Eq. (B2)
corresponds to the mean value of a normal distribution with
variance σ̂ 2

e = σ 2
e /N , where σ̂ 2

e = limN→∞ σ̂ 2
e (N ). For suf-

ficiently large N , the error may be estimated by σ̂e(N )/
√
N .

This quantity is shown in Fig. 13.
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