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We study the percolation properties of geometrical clusters defined in the overlap space of two statistically
independent replicas of a square-lattice Ising model that are simulated at the same temperature. In particular,
we consider two distinct types of clusters in the overlap, which we dub soft- and hard-constraint clusters, and
which are subsets of the regions of constant spin overlap. By means of Monte Carlo simulations and a finite-size
scaling analysis we estimate the transition temperature as well as the set of critical exponents characterizing
the percolation transitions undergone by these two cluster types. The results suggest that both soft- and hard-
constraint clusters percolate at the critical temperature of the Ising model and their critical behavior is governed
by the correlation-length exponent v = 1 found by Onsager. At the same time, they exhibit nonstandard and
distinct sets of exponents for the average cluster size and percolation strength.
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I. INTRODUCTION

In simple ferromagnets the definition of an order parameter
is straightforward, and in the vast majority of cases one simply
considers the magnetization [1]. For more intricate problems
such as some frustrated systems with quenched disorder and
certain quantum-spin models (easily measurable) order pa-
rameters are harder to come by [2-5]. In spin glasses the
free-energy landscape has many minima that are occupied
at low temperatures, but which are not related to each other
by simple symmetry transformations (such as, e.g., spin-flip
symmetry) [6]. For such systems it was proposed to con-
sider self-consistent definitions of ordering by constructing
order parameters that capture the tendency of such systems
to occupy the same set of metastable configurations. As Parisi
showed [7], such overlap definitions allow one to describe the
transition to a short-range-ordered spin-glass phase [8]. Dif-
ferent order parameters in general might also lead to different
scaling and associated critical exponents, however. One of the
simplest examples of this type is the ordering in the overlap
space of the square-lattice ferromagnetic Ising model which is
studied here. The overlap is a more general and conceptually
robust order parameter also for this ferromagnetic system, and
so it is worthwhile to study its behavior. In addition, such
setups might have some more general relevance, for example,
for the description of layered Ising models with (asymptoti-
cally) vanishing coupling as present, for example, in multiplex
networks [9], where ordering might occur independently in
the different levels of the graphs. More generally, a system
composed of two or several layers of magnetic material with
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Ising-like anisotropy that are very weakly coupled would also
be represented by such a model.

The study of ordering transitions of spin systems from a ge-
ometrical perspective has greatly enhanced our understanding
of phase transitions. Such approaches naturally fall into the
realm of percolation theory [10] in which spin systems can be
described by appropriately defined clusters, capable of encod-
ing the critical behavior of the system. Fortuin and Kasteleyn
(FK) [11] showed that the g-state Potts model is equivalent to
a site-bond correlated percolation problem, where clusters are
defined as neighboring parallel spins, and the bonds between
them are deleted with a certain temperature-dependent prob-
ability. Such clusters percolate at the transition temperature
and, even more importantly, they encode the critical behav-
ior of the system, as suitably defined cluster exponents are
found to be identical to the thermal ones (such clusters were
independently also analyzed by Coniglio and Klein [12]).
Apart from the conceptual importance of these results, they
also allowed for the construction of powerful Monte Carlo
algorithms by Swendsen and Wang [13] and Wolff [ 14], where
entire FK clusters are flipped in contrast to local update
schemes, such as the Metropolis algorithm [15]. It is well
established that the main advantage of this approach is the
reduction of autocorrelation times in the vicinity of the critical
point as compared to local update schemes.

While FK clusters encode the critical behavior of the sys-
tem, this is generally not the case for the geometrical or
spin clusters [16]. Instead, such clusters undergo a perco-
lation transition that is normally distinct from the thermal
one, with the related critical exponents also being different
from the thermal ones (see Refs. [17,18] for a review). In
two dimensions, however, the geometrical clusters percolate
at the thermal transition point [19] and it has been shown
that they encode the tricritical behavior of the site-diluted
g = 1 Potts model [20]. In fact, analogous interrelations have
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been reported for the more general g-state Potts model and its
diluted version for 0 < ¢ < 4 in both analytical and numerical
terms; see Refs. [20-24] and references therein. It is hence a
natural question to investigate how such geometrical clusters
defined in the overlap of the Ising model behave, and whether
they percolate at the critical temperature of the ordering
transition.

An additional motivation relates to the rather less clear
connection between clusters and thermal phase transitions in
spin-glass systems [25]. For such models the FK represen-
tation does not properly describe the phase transition, and
the constructed clusters percolate at a temperature way above
the spin-glass transition [26,27]. Several types of clusters in
the overlap of two copies, including geometric clusters, have
been considered as potential candidates for the construction of
cluster updates [26,28,29]. It is found there that the spin-glass
transition is connected to the onset of a density difference of
the two largest clusters of a suitable type, while percolation
of such clusters occurs already above the spin-glass transition
point [26,30]. As we shall see below, the clusters considered
for the Ising model in the present work are related to some
of the cluster types discussed in the context of the spin-glass
transition, cf. Ref. [30].

The rest of this paper is organized as follows. In Sec. I we
introduce the replicated Ising model and the associated con-
cept of soft- and hard-constraint clusters. We further outline
the cluster-update Monte Carlo scheme used in the following
to study the problem numerically. In Sec. III we elaborate
on the relevant observables whose percolation properties are
investigated in detail. In Sec. IV we report on a finite-size
scaling analysis of the simulation data leading to estimates
of the percolation temperature 7;, and the critical exponents v,
B/v, and y /v characterizing the transition for the two cluster
types. We also comment on the influence of corrections to
scaling in the estimation of the exponent ratios 8/v and y /v
when different definitions are used for the involved observ-
ables. Finally, in Sec. V we provide a summary of our work
and an outlook.

II. MODEL AND SIMULATION DETAILS

We study the nearest-neighbor, zero-field Ising model with
Hamiltonian

HZ—]ZS,'SJ', (1)

(i.)

where J > 0 indicates ferromagnetic interactions, s; = %1 de-
notes the spin on lattice site i, and (. . .) refers to a summation
over nearest neighbors only.

We now consider two identical copies of the system, each
being described b?/ the Hamiltonian (1), resulting in two spin
configurations, sE ) and sl@ . Both systems are at the same
temperature and do not interact with each other, thus being
statistically independent. We then consider overlap variables

q; at each Site, i.e.,
1) (2
qi = S; )Sl( ). (2)

The behavior of this overlap parameter has been discussed in
depth for the case of spin-glass systems (see, e.g., Ref. [8]).

(d) Hard-constraint clusters.

(¢c) Soft-constraint clusters.

FIG. 1. Spin configurations as well as soft- and hard-constraint
geometrical clusters of the two-dimensional Ising model at the Ising
critical temperature 7. (a) Spin configuration of the first replica.
(b) Spin configuration of the second replica. (c) The resulting soft-
constraint clusters. (d) The resulting hard-constraint clusters. In
(c) and (d) all clusters, apart from the largest percolating one, are
assigned colors at random. For the largest percolating cluster of both
the soft- and hard-constraint definitions, the same color (black) is
assigned.

Since ¢; = %1, the overlap configuration has the same
configuration space {41}V as the spin lattices themselves
(here, N denotes the total number of lattice sites). As a conse-
quence, all derived observables usually considered for {s;} can
also be defined for {g;}. While for spin glasses this approach
leads to the spin-glass susceptibility and related quantities
such as the spin-glass correlation length, and exploitation of
the available gauge symmetry of the couplings results in a
possible approach towards understanding the spin-glass phase
[31], the behavior of the overlap has hardly been studied for
the case of ferromagnets.

In overlap space we may then define geometrical clusters,
i.e., sets of neighboring lattice sites with the same values of
the overlap, that can be formed in two particular ways:

(1) Soft-constraint clusters are created by joining spins on
neighboring sites (i, j) with g; = g;.

(2) Hard-constraint clusters are formed by joining neigh-
boring spins with sfl) = sﬁl) and sfz) =s?.

From the above it is obvious that the hard-constraint clus-
ters trivially satisfy g; = ¢; and they are a subset of the
soft-constraint clusters. The construction of these clusters
is illustrated through the snapshots shown in Fig. 1, where
configurations of the two replicas are shown (top row) along
with the soft- and hard-constraint clusters (bottom row) for a
system of linear size L = 128 at the critical temperature of the
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square-lattice ferromagnetic Ising model. It is apparent that
the typical clusters in the overlap are smaller than those in
the two replicas, and that the hard constraint leads to smaller
clusters than the soft constraint. We note that in the spin-glass
setup, the prescription for soft-constrained clusters leads to
what is there known as Houdayer clusters [28], while the hard
constraint corresponds to a geometric-cluster version of the
Chayes-Machta-Redner construction [30,32].

In the present work, we study these clusters for the case
of the Ising model on the square lattice. In particular, we
simulate the Ising model by considering two replicas on the
square lattice with periodic boundary conditions for a range
of temperatures including the exact Ising critical tempera-
ture, i.e., T. =2/(1 + ﬁ) ~ 2.269185. Configurations were
generated via the Swendsen-Wang algorithm [13] applied to
systems of linear sizes in the range 8 < L < 2048. For all sys-
tem sizes and on each replica the total number of simulation
steps was 1.1 X Tjp, g X 10° sweeps, of which Tint, E X 10*
sweeps were discarded during equilibration. Here, iy, g de-
notes the integrated autocorrelation time of the energy [33].
After every i g Sweeps a measurement was taken, result-
ing in 10° measurements per run. The estimates of Tint, Es
rounded up to the next largest integer, varied from 5 sweeps
for L = 8 to 15 sweeps for L = 2048. Note that to identify
wrapping clusters we employed the method of Machta et al.
[34]. Finally, for all curve fitting performed throughout this
paper we restricted ourselves to data with L > Ly, adopting
the standard yx? test for goodness of the fit. Specifically, we
considered a fit as being acceptable only if Q > 0.01, where
Q is the quality-of-fit parameter [35].

III. OBSERVABLES

To investigate the percolation transition of geometrical
overlap clusters, the main relevant quantities are the percola-
tion strength P.,, the average cluster size S, and the wrapping
probability R [10]. The last of these is defined as the prob-
ability that, given a spin configuration, at least one cluster
wraps around the periodic boundaries of a finite lattice and
is connected back to itself. In the thermodynamic limit, one
expects that R = 1 for temperatures below the percolation
transition at 7,, and R = 0 at temperatures above T,. The
wrapping of a cluster can occur in various ways, and here we
consider the following cases, in analogy to Ref. [36].

(1) Ryory is the probability that a cluster wraps around the
lattice in horizontal or vertical (or both) direction(s).

(2) Ryandy is the probability that a cluster wraps in hori-
zontal and in vertical direction.

(3) R, is the probability that a cluster wraps in horizontal
direction. Obviously, on the square lattice the probability that
a cluster wraps in vertical direction R, = R,.

(4) Ryangy is the probability that a cluster wraps around
one but not the other direction. Here we choose the probability
that a cluster wraps around the horizontal and not the vertical
direction. The symmetry of the square lattice indicates that
R, andy = Ry and x-

The wrapping probability R is a dimensionless quantity,
and so one expects finite-size scaling of the form [10,37]

R=R[(T — T,)L'"]. 3)

Hence, the R curves for systems of different sizes are ex-
pected to cross, up to finite-size corrections, at the same
point, marking the transition temperature 7;,. In addition, since
the scaling function R is expected to be universal, so is the
value of R = R(0) at the crossing point [10]. This behavior
is nicely verified in Figs. 2 and 3, where the various wrap-
ping probabilities are plotted as a function of temperature
T for the larger system sizes studied and for both soft- and
hard-constraint clusters. Except for Ry and 3, all wrapping prob-
abilities increase with decreasing temperature, indicative of
the onset of the percolating phase. The crossing of data sets
for different system sizes is found to occur very close to the
critical temperature T of the Ising model shown in Figs. 2 and
3 as a dashed vertical line. This later observation also holds
for Ry nqy with the essential difference that this observable
exhibits a maximum, the position of which is expected to shift
to its asymptotic value as L — oo [36]. In numerical studies
of ordinary, uncorrelated site or bond percolation, however, it
was shown that R, ,,q y exhibits both crossing points and max-
ima only in three dimensions [38], whereas in two dimensions
the crossing region is absent [36,38]. Thus, the existence of
both maxima and crossing points in R, 4nqy in two dimensions
marks an interesting feature of the percolation signature of
geometrical clusters in the overlap of the Ising model.

Of central importance in percolation theory is the cluster
number ng, denoting the expected number of clusters of s
sites per lattice site [10]. Thus the average cluster size can
be expressed as

Zs’ S21’l5

S==—
Yosng

(4)

where sn, corresponds to the probability of a randomly picked
site to belong to a cluster of size s. The notation s’ indicates
that the sums are restricted to certain subsets of clusters.
Denoting the set of clusters in a configuration as C and letting
P be a subset of C containing the percolating clusters, we can
introduce the following definitions for S.

(1) All clusters are included: C.

(2) Exclude the largest cluster in each measurement:
C \ max C.

(3) Exclude all percolating clusters: C \ P.

(4) Exclude all clusters percolating in horizontal and in
vertical direction: C \ Py and y-

(5) Exclude all clusters percolating in one specific direc-
tion, e.g., horizontal: C \ P,.

(6) Exclude all clusters percolating in one but not the other
direction, e.g., horizontal and not vertical: C \ Py and 5.
In most numerical studies of percolation the employed defini-
tion of the average cluster size excludes the largest cluster in
each measurement, corresponding to our case (2) [10]. With
this convention, S has a maximum around the percolation
point since in the nonpercolating phase the size of many con-
tributing clusters increases, while in the percolating regime
most spins belong to the largest cluster which is not counted
towards the sum. This estimate is shown in Fig. 4 where S
is plotted as a function of T for the larger system sizes and
for both soft- and hard-constraint clusters. In the vicinity of
the percolation point, the average cluster size is expected to
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FIG. 2. Wrapping probabilities R® of the soft-constraint clusters
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(d) R;“;ndv. Only results for the larger system sizes are shown (L >

320). Here and in the following, the dashed vertical lines mark the
critical temperature 7, of the Ising model.
follow a scaling form according to [10]

S(L.T)=L""S((T — T)L'™], 5)

which can be used for determining the critical exponent ratio
y /v conventionally associated to the scaling of the magnetic
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FIG. 3. Wrapping probabilities R™ of the hard-constraint clus-
ters as a function of temperature 7, analogous to the data for
soft-constraint clusters shown in Fig. 2.

susceptibility. The behaviors of the remaining definitions of §
are shown for the soft-constraint and hard-constraint clusters
in Figs. 5(a) and 5(b), respectively. Most definitions show a
maximum of S, the exceptions being the full cluster set C as
well as C \ Py and5-

The percolation strength Py, corresponds to the fraction of
sites belonging to the infinite cluster in the thermodynamic
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FIG. 4. Average cluster size S according to the definition
C \ max C as a function of temperature on a semi-logarithmic scale.
Results for both (a) soft-constraint and (b) hard-constraint clusters
are presented for the larger system sizes studied (L > 320).

limit. For finite-size systems it is usually estimated from the
fraction of sites belonging to the largest cluster. In Fig. 6,
P is plotted against T for the full range of system sizes
studied and for both soft- and hard-constraint clusters. Note
that (i) as the temperature decreases P, increases, indicating
the appearance of a percolating cluster, and (ii) for 7 = 0 we
have P,, =1 as all spins belong to the percolating cluster.
We remind that when studying the FK clusters in magnetic
systems, the percolation strength corresponds to the magneti-
zation of the system [11]. Finite-size scaling theory suggests
a scaling form

Poo(L, T) =L PP (T — T,)L'"], (6)

where /v denotes the corresponding critical exponent ratio.

Analogous to the treatment of R and S, it is natural to also
consider modified percolation strengths P, by studying the
fractions of sites occupied by the following subsets.

(1) Largest cluster: max C.

(2) Largest percolating cluster: max P.

(3) Largest cluster that percolates in horizontal and in
vertical direction: max Py ynd y-

(4) Largest cluster that percolates in one specific direction,
e.g., horizontal: max P,.
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FIG. 5. Average cluster size S versus T of (a) the soft-constraint
and (b) the hard-constraint clusters for L = 1024 using the different
cluster sets defined in the text.

(5) Largest cluster that percolates in one but not the other
direction, e.g., horizontal and not vertical: max Py 4pq5-

The temperature dependence of the percolation strength
according to these definitions is shown for an L = 1024 sys-
tem and the soft-constraint and hard-constraint clusters in
Figs. 7(a) and 7(b), respectively. With the exception of the
unlikely Pyanay clusters, the different definitions lead to the
same behavior for temperatures below the percolation point,
but visible differences above.

In the following, we will use the scaling forms (3), (5),
and (6) with the universal scaling functions R, P, and S to
determine the correlation-length critical exponent v as well
as the exponent ratios y /v and B/v of the average cluster
size and the percolation strength, respectively, as well as the
percolation temperature T},.

IV. MAIN RESULTS

A. Correlation-length exponent

In Monte Carlo studies of phase transitions the temperature
derivative of the Binder cumulant [39] provides a reliable
estimate for the critical exponent v [40]. In random perco-
lation, a similar behavior is expected for the derivative of
the wrapping probability with respect to the bond occupa-
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FIG. 6. Percolation strength P, as a function of temperature for
both (a) soft-constraint and (b) hard-constraint clusters. For clar-
ity, only the legends of the smallest and largest system sizes are
highlighted.

tion probability [38]. For the present problem of clusters in
a thermal problem it is natural, in contrast, to consider the
temperature derivative of the wrapping probabilities. As the
wrapping probabilities are monotonic functions of the tem-
perature (except for R, ;nq5) one expects that the maximum of
the absolute value of its first derivative should scale as

dR

=~ LY. (7)

max

As shown in Sec. IIl, the exception to this rule is Ryandy
which is a nonmonotonic function of 7', showing both a
maximum and a crossing region. Nevertheless, if we re-
strict ourselves to the vicinity of the crossing regime, this
observable is also expected to follow the scaling behav-
ior of Eq. (7). Importantly, Eq. (7) allows one to obtain
estimates of v without prior knowledge of the percolation
temperature 7,. To determine the maximum of |dR/dT]|,
both the first and second derivatives are computed using the
symmetric-finite-difference definition, and the root is located
using the bisection method [35]. The required estimates at
nearby temperatures are extracted from the simulation data by
means of single-histogram reweighting [41], using a step size
AT =107".
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FIG. 7. Percolation strength P, versus 7 of (a) the soft-
constraint and (b) the hard-constraint clusters for L = 1024 and the
cluster types discussed in the main text.

In Fig. 8, |dR/dT | . is shown as a function of L for
the different wrapping probabilities of the soft- and hard-
constraint clusters. Fits of the form (7) were performed for
system sizes on intervals Ly, < L < Lyax by systematically
increasing the lower cutoff L;,, while keeping the upper
cutoff fixed at Ly,,x = 2048. The resulting effective values of
v are shown in Fig. 9. The final estimates we quote for both the

soft- and hard-constraint clusters using the Rff;nd y and R)(ch;ndy
definitions, respectively, are
v® = 1.005(5) (Lyin = 256), (8a)
v® = 1.003) (Lmin = 800). (8b)

These results suggest that the critical exponent of the corre-
lation length is the same for both cluster types and consistent
with that of the Ising model, i.e., v = 1.

B. Percolation temperature

For the estimation of the percolation temperature 7, we
considered the intersection of the wrapping probabilities of
pairs of system sizes (L, L") as a function of T, following the
original prescription by Binder for the magnetization cumu-
lant [39,40]. The points where these wrapping probabilities
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FIG. 8. Maximum slope of the wrapping probability |dR/dT |nax
as a function of system size L on a double logarithmic scale for all
variants of the wrapping probabilities and for (a) soft-constraint and
(b) hard-constraint clusters.

cross scale as [39]

b1

where a is a nonuniversal scaling parameter, @ is the
corrections-to-scaling exponent, and b = L’ /L is the quotients
ratio, fixed hereafter to b = 2. Crossings were determined us-
ing the bisection method [35] alongside the single-histogram
reweighting technique [41].

Figure 10 showcases the scaling of the crossing points
of the various wrapping probabilities for both the soft- and
hard-constrained clusters, which appear to be consistent with
the critical temperature of the Ising model, up to surprisingly
small finite-size effects. To obtain more accurate estimates of
T, we performed fits using Eq. (9). Due to the smallness of the
corrections, however, the accuracy of our data did not allow
us to resolve their detailed form, resulting in fits of poor qual-
ity and consequently in unreliable estimates of the involved
parameters. As an alternative, we fixed v to the expected
value v =1, so that Eq. (9) (ignoring scaling corrections)
simplifies to

b= —1
Tcross(La b) == Tp =+ aL(l/Uer)(—) , (9)

Teross = Tp + a/L- (10)
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FIG. 9. Effective values of the exponent v versus the inverse
lower cutoff size 1/Ly, on a semi-logarithmic scale. The estimates
were obtained from fits of the form (7) to the data of Fig. 8.

Estimates of the percolation temperature resulting from the
linear fits of Eq. (10) are shown in Fig. 11 for both soft-
and hard-constraint clusters; they are found to be consistent
with the critical temperature of the Ising ferromagnet, i.e.,
1. = 2.269185.... We note that the results for R, ., have
slightly elevated statistical errors as compared to the other def-
initions, a feature that can be traced back to the fact that R, o,
is very close to 1 at T; such that the curves cross at a smaller
angle, cf. Figs. 2(a) and 3(a). In addition, the parameter a of
Eq. 10 for all fits is consistent with zero within error bars,
indicating that the data can also be described by a constant
Tiross(L) = T, = T¢, independent of L. For random percolation
it has been observed that most estimates of pseudocritical
points on the square lattice converge even more quickly to
the thermodynamic limit than expected from the L~!/" scaling
[42], namely, proportional to L~1/"*D. Performing fits with a
corresponding variant of Eq. (10) with the 1/L term replaced
by 1/L? yield perfectly compatible results, indicating that our
data are in fact not able to resolve these very small deviations
from the infinite-size behavior. At this point we may safely
conclude that soft- and hard-constraint clusters undergo a
percolation transition at the critical temperature 7. of the Ising
model.
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FIG. 10. Estimates of crossing temperatures for (a) soft-
constraint and (b) hard-constraint clusters on a semi-logarithmic
scale. The dashed horizontal line marks the transition temperature
of the Ising model.

C. Scaling at criticality

We proceed with the computation of critical exponents
related to the percolation strength, P, and the average cluster
size S for the two types of clusters at criticality. Since we
found convincing evidence of the identity of the percolation
and critical temperatures 7, = 1. = 2.269185.. .. in the pre-
vious section, we consider the scaling of Py, and S at the
fixed temperature T = T¢; the result is shown for the soft- and
hard-constraint clusters in Figs. 12 and 13, respectively. For
both observables, all data appear to follow straight parallel
lines, suggesting minor corrections to scaling and universal
exponents, independent of the definition used.

At the percolation point, according to Egs. (5) and (6) the
scaling functions become constant, thus allowing for the esti-
mation of the involved exponents from finite-size scaling. In
the following, we present the results of systematically fitting
those functional forms to the data for P, and S for all sets of
definitions, following the established protocol of varying L,
as described above, allowing us to monitor the influence of
corrections to scaling.
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FIG. 11. Estimates of the percolation temperature 7, versus
1/Lmin on a semi-logarithmic scale. Results obtained from fits of the
form (10) to the data of Fig. 10. The dashed horizontal line marks
here as well as the transition temperature of the Ising model.

Figure 14 shows our estimates of the effective exponent
ratios (B8/v)® and (8/v)™ while varying the cutoff Ly,. In
addition to the max P, ,,q y data, it is evident that the exponents
converge relatively quickly to the values (8/v)® & 0.095 and
(B/v)™ 22 0.12 for the soft- and hard-constraint clusters, re-
spectively. The fact that the numerical data for the max Py anay
definition provide unreliable estimates of the involved expo-
nent can be readily understood: clusters percolating in one but
not the other direction are sparse, leading to poor statistics in
the estimation of the percolation strength and the associated
exponent. This observation has also been reported in Ref. [43]
for the Ising model. We note, however, that it is also conceiv-
able that the rather special constraint “x and y” leads to an
asymptotically different fractal dimension for such clusters as
compared to the unconstrained case.

As there is no systematic trend visible in our data that
could possibly reveal the existence of corrections to scaling
for (8/v)® and (B/v)™, we do not attempt to perform fits
including correction terms. Instead, as a trade-off between
unavoidable corrections to scaling and reasonable values of
x2, we choose sufficiently large Ly, for our final estimates of
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perature of the Ising model on a double logarithmic scale for
(a) soft-constraint and (b) hard-constraint clusters.

(B/v)® and (B/v)™,
(s)
(%) = 0.0950(7) (Lpin = 320), (11a)
,3 (h)
<;) = 0.1184(11) (Lmin = 512). (11b)

Estimates for the effective exponent ratios (y/v)® and
(y/v)® are shown in Fig. 15. For the C and C \ Py a5y
definitions, the exponent ratio converges relatively quickly
to the values (y/v)® ~ 1.81 and (y/v)™ ~ 1.77 for the
soft- and hard-constraint clusters respectively, indicating that
corrections to scaling are not substantial. On the other hand,
for the rest of the definitions, corrections to scaling become
important and the convergence to an asymptotic value is rather
slow. The fact that C and C \ P, 4045 give similar results is to
be expected, as the later definition excludes clusters that rarely
appear, thus not altering significantly the sums in Eq. (4). Note
that the reduction of scaling corrections for the average cluster
size through the choice of the C definition was also reported in
Ref. [24] for the Ising model, while a systematic study of the
behavior for the Ising model from all of the above definitions
was presented in Ref. [43].
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FIG. 13. Average cluster size S versus L at the critical tem-
perature of the Ising model on a double logarithmic scale for
(a) soft-constraint and (b) hard-constraint clusters.

More reliable estimates for the exponent ratio y /v can
be retrieved by taking into account corrections to scaling for
both soft- and hard-constraint clusters. To arrive at somewhat
stable estimates for the correction-to-scaling exponent, we
performed joint fits to the data for the different definitions of
S including one correction term using the Ansatz

S=al”"(1+ bL™®), (12)

where a and b are the noncommon fitting parameters,
and y/v as well as o the shared parameters. Since data
from different definitions are not statistically independent,
as they result from the same Monte Carlo series, a naive
implementation of the above fitting procedure will re-
sult in erroneous error estimation of the fit parameters.
Thus, to provide reliable estimates for the errors of the
involved parameters, we employ the jackknife method [44].
For all values of L,,, estimates of y /v agree within error bars
as is shown in Fig. 16. Additionally, in Fig. 17 the exponent
w is plotted as a function of Ly,;,. The fact that the error bars
in the estimates of y /v and w are increasing with Ly, is of
course a consequence of the decreasing number of degrees of
freedom. However, the errors in o increase rapidly, and for
Lmin = 320 they are comparable with the absolute values of w
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FIG. 14. Effective exponent ratios /v extracted from fits of the
functional forms (5) and (6) as a function of the inverse lower size
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for both cluster types. Our final estimates of the involved ex-
ponent ratio y /v for the soft- and hard-constraint clusters are

(%)(S) = 1.814(5) (L = 200), (13a)
y (h)
(;) = 1.765(4) (Lmin = 200). (13b)

We note that the estimated value of w =~ 0.2 for both soft-
and hard-constraint clusters represents a rather slow decay
of corrections, consistent with the slow convergence of y /v
for most definitions of S that is clearly visible in Fig. 15.
We are not aware of any theoretical estimates relating to the
value of w.

D. Fractal dimension and hyperscaling

At the percolation point the incipient spanning cluster is a
fractal object and its mass M (i.e., the number of spins that
belong to it) scales with the system size as M ~ LP. Here, D
denotes the fractal dimension of the incipient spanning cluster.
Since from the discussion in Sec. III the percolation strength
P, corresponds to the fraction of spins in the percolating
cluster, it follows that D = d — 8/v. From the estimates of
B/v for the soft- and hard-constraint clusters provided in
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FIG. 15. Effective exponent ratios y /v versus 1 /Ly, for (a) soft-
constraint and (b) hard-constraint clusters.

Egs. (11a) and (11b) we hence obtain

D® =1.9050(7), D™ = 1.8816(11), (14)

suggesting that the fractal dimension is different for the two
cluster types. Also, the fact that D® > D™ highlights that
the soft-constraint clusters are denser than the hard-constraint
ones, a reasonable expectation as the hard-constraint clusters
are a subset of the soft-constraint ones. Additionally, let us
point out that the fractal dimensions for both cluster types are
smaller than D = 187/96 ~ 1.9479, the fractal dimension of
geometrical clusters in the Ising model [20].

On the other hand, if hyperscaling is valid, the fractal
dimension can also be estimated from D = /v + y /v [10].
Combining our estimates from Egs. (11a) and (11b) with

Egs. (13a) and (13b), we arrive at
D® =1.909(5), D™ = 1.883(4), (15)

which is consistent with the estimates of Eq. (14), thus illus-
trating that hyperscaling is valid for both cluster types.

V. DISCUSSION

We studied the percolation properties of clusters defined
in the overlap space of two statistically independent systems

044145-10



GEOMETRIC CLUSTERS IN THE OVERLAP OF THE ...

PHYSICAL REVIEW E 108, 044145 (2023)

1.88
1.87
1.86
1.85
1.84 T
1.83
1.82
1.81
1.8 +
1.79
1.78 | € (a) T

1.77 - L L
1073 1072 1071

joint fit ——+— |

(/)

1.84
1.83
1.82
1.81
1.8 ¢
1.79 -
1.78
1.77 |
1.76 -
1.75

1.74 €L (b) L
1.73 Lo . L

joint fit ——— |

(v/r)™

1/Lmin

FIG. 16. Exponent ratio y /v resulting from the joint fit of all
definitions as a function of 1/L, for (a) soft-constraint and (b) hard-
constraint clusters.

of the square-lattice ferromagnetic Ising model. To this end,
two distinct cluster types were introduced which we dubbed
soft- and hard-constraint clusters. After a short exposition of
the behavior of the main observables, i.e., the wrapping prob-
abilities, average cluster sizes, and percolation strengths, the
critical behavior of the system was investigated. Our results
indicate that both cluster types are described by the same
correlation length exponent which is found to be in agreement
with the value v = 1 of the Ising ferromagnet. Additionally,
both cluster types percolate at a temperature that is indistin-
guishable from the transition point of the two-dimensional
Ising model for the lattice sizes up to L = 2048 that we con-
sidered in our study. In marked contrast with the exponent v,
our analysis for the exponent ratios 8/v and y /v manifests
the following: (i) the exponent values are clearly different
from those that characterize the geometrical clusters of the
Ising model, and (ii) there is a small but seemingly systematic
difference in the exponents estimated for the soft-constraint
and the hard-constraint clusters, cf. the overview of exponent
estimates provided in Table I.

Under the assumption that 7, = T; that is so well corrob-
orated by our numerical results, the scaling exponents for the
overlap clusters can be deduced from the following argument:
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FIG. 17. Corrections-to-scaling exponent  resulting from the
joint fit of all definitions as a function of 1/L,,, for (a) soft-constraint
and (b) hard-constraint clusters.

according to the expected scaling of P, at T; the probability
of a randomly picked site to be in the percolating cluster
of replica one scales as ~L~#/V)6 where (8/v)ig = 5/96
corresponds to the exponent of the geometrical clusters in the
Ising model. As the same holds for replica two and the two
replicas are uncorrelated, the probability of the site being in
the percolating cluster of both replicas decays as ~L~28/v)c
such that 8/v =2(8/v)ic = 10/96 ~ 0.1042. As a conse-
quence, one expects y /v =2 —4(B/v)ic = 43/24 ~ 1.792

TABLE 1. Critical exponents of the soft- and hard-constraint
clusters in comparison to the exact values of the geometrical clusters
of the square-lattice Ising model model.

Overlap Ising
Constraint

Exponent Soft Hard -

v 1.005(5)  1.00(3) 1

B/v 0.0950(7) 0.1184(11) 5/96 ~ 0.052
y/v 1.814(5)  1.765(4) 91/48 ~ 1.895
D=y/v+B/v 1.909(5) 1.883(4) 187/96 ~ 1.947
D=d—-B/v 1.9050(7) 1.8816(11) 187/96
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and D=2 —2(8/v)ic =91/48 ~ 1.8958. As a glance at
Table I shows, these values are quite compatible with our
findings, in particular, for the hard-constraint clusters to which
this type of argument applies. The small deviations observed
might be a consequence of the slow decay of scaling cor-
rections expressed in the small value w ~ 0.2 of the Wegner
exponent. The clusters in the soft-constraint problem are, by
construction, larger than those of the hard-constraint variant,
but their scaling does not directly follow from the above argu-
ment, so it is possible that they show asymptotically different
exponents.

At the same time, the density of the percolating cluster
in the overlap is below that of the percolating spin cluster
in a single Ising model, while the clusters of the first are
also found to be more compact than those in the second.
This is a natural consequence of the superimposition of the

two fractal structures such that the objects investigated here
correspond to their intersection. It would be most intriguing
to study how clusters in the mutual overlap of more than two
copies of the system behave; this task is left for future work,
however.
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